blob: d72f7ea557cf96ca72814e7da468ea715f8f0bc2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
-------------------------------------------------------------------------------
-- Title : AXI-Lite Master BFM
-- Project : P500
-------------------------------------------------------------------------------
-- File : axi_master.vhd
-- Author : Rob Gaddi <rgaddi@highlandtechnology.com>
-- Company : Highland Technology, Inc.
-- Created : 21-Nov-2017
-- Last update: 21-Nov-2017
-- Platform : Simulation
-- Standard : VHDL-2008
-------------------------------------------------------------------------------
-- Description: Simulation model of an AXI4-Lite bus master.
-------------------------------------------------------------------------------
-- Revision History:
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library osvvm;
use osvvm.TbUtilPkg.all;
use osvvm.AlertLogPkg.all;
use work.AbstractMmPkg.all;
entity axi_master is
generic (
LOG_NAME : string := "axi_master";
DATAWIDTH : positive := 32;
ADDRWIDTH : positive := 12
);
port (
-- AXI interface
AWADDR : out std_logic_vector(ADDRWIDTH-1 downto 0);
AWPROT : out std_logic_vector(2 downto 0);
AWVALID : out std_logic;
AWREADY : in std_logic;
WDATA : out std_logic_vector(DATAWIDTH-1 downto 0);
WSTRB : out std_logic_vector((DATAWIDTH/8)-1 downto 0);
WVALID : out std_logic;
WREADY : in std_logic;
BRESP : in std_logic_vector(1 downto 0);
BVALID : in std_logic;
BREADY : out std_logic;
ARADDR : out std_logic_vector(ADDRWIDTH-1 downto 0);
ARPROT : out std_logic_vector(2 downto 0);
ARVALID : out std_logic;
ARREADY : in std_logic;
RDATA : in std_logic_vector(DATAWIDTH-1 downto 0);
RRESP : in std_logic_vector(1 downto 0);
RVALID : in std_logic;
RREADY : out std_logic;
ACLK : in std_logic;
ARESETn : in std_logic;
-- AMR interface
amr : inout AbstractMmRecType
);
end entity axi_master;
architecture Behavioral of axi_master is
constant ALRT : AlertLogIDType := GetAlertLogID(LOG_NAME);
signal prot: std_logic_vector(2 downto 0);
constant BADREADDATA : std_logic_vector(RDATA'range) := (others => 'X');
begin
INITIALIZE: process
begin
prot <= (others => '0');
wait;
end process INITIALIZE;
AXI: process
procedure SingleRead is
variable request_ack : boolean := false;
begin
ARADDR <= STD_LOGIC_VECTOR(GetByteAddress(amr));
ARPROT <= prot;
ARVALID <= '1';
while not request_ack loop
wait until rising_edge(ACLK);
if RVALID = '1' then
RREADY <= '0';
request_ack := true;
end if;
end loop;
RREADY <= '1';
wait until rising_edge(ACLK) and RVALID='1';
if RRESP = "00" then
amr.readdata <= RDATA;
else
amr.readdata <= BADREADDATA;
end if;
RREADY <= '0';
end procedure SingleRead;
procedure SingleWrite is
variable addr_ack : boolean := false;
variable data_ack : boolean := false;
variable resp_ack : boolean := false;
begin
AWADDR <= STD_LOGIC_VECTOR(GetByteAddress(amr));
AWPROT <= prot;
AWVALID <= '1';
WDATA <= amr.writedata;
WSTRB <= amr.byteen;
WVALID <= '1';
while not (addr_ack and data_ack) loop
wait until rising_edge(ACLK);
if AWREADY = '1' then
AWVALID <= '0';
addr_ack := true;
end if;
if WREADY = '1' then
WVALID <= '0';
data_ack := true;
end if;
end loop;
BREADY <= '1';
wait until rising_edge(ACLK) and BVALID='1';
BREADY <= '0';
end procedure SingleWrite;
begin
InitializeAmr(amr);
amr.alert <= ALRT;
loop
AWVALID <= '0';
WVALID <= '0';
BREADY <= '0';
ARVALID <= '0';
RREADY <= '0';
WaitForTransaction(ACLK, amr.rdy, amr.ack);
if ARESETn = '0' then
wait until ARESETn = '1';
end if;
case amr.trans is
when SINGLE =>
if amr.write = AMR_READ then
SingleRead;
else
SingleWrite;
end if;
when others =>
Alert(ALRT, "Transaction type " & TransactionType'image(amr.trans) &
" not supported by model.", FAILURE);
end case;
end loop;
end process AXI;
end architecture Behavioral;
|