1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
-- sewuence generator
-- note: cos,sin output on negative edge before pha, sync.
-- pha on positive edge, sync on positive edge
entity ram_lut is
port( nreset,clk,wstb,rstb: in std_logic;
cmd: in std_logic_vector(2 downto 0); -- control
din: in std_logic_vector(7 downto 0);
dout: out std_logic_vector(7 downto 0);
pos_ctr: out std_logic_vector(9 downto 0);
sin,cos,indo,pha,sync:out std_logic);
end ram_lut;
architecture rtl of ram_lut is
component ram2k8 is
port( clk,WEn,CSn: in std_logic; -- clk rising edge, WEn & CSn are active low
ADDR: in std_logic_vector(10 downto 0);
dw: in std_logic_vector(7 downto 0); -- write data
dr: out std_logic_vector(7 downto 0) -- read data
);
end component;
-- signals for memory
signal mCLK,mWEn,mCEn: std_logic;
signal mA11: std_logic_vector(10 downto 0); -- address for the 2k mem
signal mA: std_logic_vector(8 downto 0); -- normal address
signal mD: std_logic_vector(7 downto 0);
signal mQ: std_logic_vector(7 downto 0);
signal mQr: std_logic_vector(7 downto 0); -- register to hold data
-- signals for sequence generator
signal ctr_lim: unsigned(8 downto 0); -- final byte address
signal dib_ctr: unsigned(1 downto 0);
signal sini,cosi,indoi,phai,synci: std_logic;
signal pos_ctri:unsigned(9 downto 0);
signal lut_ctl: std_logic_vector(7 downto 0); -- see below:
alias lut_run: std_logic is lut_ctl(7);
alias lut_3ph: std_logic is lut_ctl(5);
alias indo_def: std_logic is lut_ctl(4);
alias dib_lim: std_logic_vector(1 downto 0) is lut_ctl(2 downto 1);
signal rd,csgen,csregen:std_logic; -- mem rd, controls for generator
signal mxo:std_logic_vector(2 downto 0);-- mux of data
begin
pos_ctr<=std_logic_vector(pos_ctri);
sync<=synci;
sin<=sini;
cos<=cosi;
pha<=phai;
indo<=indoi;
-- dout
dout<= mQ when cmd="000" else
std_logic_vector(ctr_lim(7 downto 0)) when cmd="010" else
lut_ctl when cmd="011" else
"01111110"; -- 7e
mD<=din; --always
-- modified controls
-- cmd: 000 read or write mem, autoinc
-- 001 zero address - wstb
-- 010 ctr_lim(7 downto 0) - wstb, rstb
-- 011 lut_ctl - wstb,rstb
-- 101
--
-- lut_ctl: run,0,3pha,set_indo,0,dib_lim1,dib_lim0.ctr_lim(8)
mCEn<='0' when ((cmd="000") and ((wstb='1') or (rstb='1'))) else
'0' when rd='1' else
'1'; -- 1 cycle long
mWEn<='0' when ((cmd="000") and ((wstb='1')))
else '1';
mCLK<=not(clk) and not(mCEn); -- only clock when necessary
process(mQ,dib_ctr) begin -- set mxo(2 downto 0) to indoi,mxo(1),mxo(0)
if lut_3ph='0' then
mxo(2)<=indo_def; -- per lut_ctl
case dib_ctr is
when "00"=>
mxo(0)<=mQ(0);
mxo(1)<=mQ(1);
when "01"=>
mxo(0)<=mQ(2);
mxo(1)<=mQ(3);
when "10"=>
mxo(0)<=mQ(4);
mxo(1)<=mQ(5);
when others=>
mxo(0)<=mQ(6);
mxo(1)<=mQ(7);
end case;
else -- lut_3ph='1'
case dib_ctr is
when "00"=>
mxo(0)<=mQ(0);
mxo(1)<=mQ(1);
mxo(2)<=mq(2);
when others=>
mxo(0)<=mQ(4);
mxo(1)<=mQ(5);
mxo(2)<=mq(6);
end case;
end if;
end process;
process (nreset,clk) -- generator
begin
if nreset='0' then
synci<='0';
cosi<='0';
sini<='0';
phai<='0';
pos_ctri<=(others=>'0');
csgen<='0'; -- 1 when running
csregen<='0'; -- 1 when output cos,sin to register
dib_ctr<=(others=>'0');
mQr<=(others=>'0');
rd<='0'; -- read data byte
elsif clk'event and clk='1' then
synci<='0'; -- will give a pulse at adr 0
rd<='0'; -- pulse
if mCEn='0' then -- always autoinc at end of access.
mQr<=mQ;
mA<=std_logic_vector(unsigned(mA) + 1);
end if;
if lut_run='0' then -- hold in reset
if ((cmd="001") and (wstb='1')) then -- handle table write from spi
mA<=(others=>'0'); -- separate or part of cycle
elsif (mCEn='0') then
mA<=std_logic_vector(unsigned(mA) + 1);
end if;
dib_ctr<=(others=>'0');
phai<='0';
pos_ctri<=(others=>'0');
else -- lut_run='1'
if csregen='1' then -- timing: pha follows cos,sin output
phai<=not(phai);
end if;
if rd='1' then
mQr<=mQ;
mA<=std_logic_vector(unsigned(mA) + 1);
end if;
if csgen='0' then
mA<=(others=>'0'); -- separate or part of cycle
synci<='1';
rd<='1';
else -- csgen='1';
dib_ctr<=dib_ctr+1;
if ((pos_ctri=ctr_lim) and (dib_ctr=unsigned(dib_lim))) then
dib_ctr<="00";
pos_ctri<=(others=>'0');
mA<=(others=>'0');
rd<='1';
synci<='1';
elsif dib_ctr="11" then
dib_ctr<="00";
rd<='1';
end if;
end if;
end if;
elsif clk'event and clk='0' then -- to get cos,sin on negedge
if lut_run='0' then
csregen<='0';
elsif csregen='0' then
if rd='1' then csregen<='1'; end if; -- set it once
else -- normal running
cosi<=mxo(0);
sini<=mxo(1);
indoi<=mxo(2);
end if;
end if;
end process;
process (nreset,clk) -- handle setting things per cmd
begin
if nreset='0' then
ctr_lim<=(others=>'0');
lut_ctl<=(others=>'0');
elsif clk'event and clk='1' then
if wstb='1' then
case cmd is
when "010"=> -- load ctr_lim
ctr_lim<=unsigned(lut_ctl(0) & din); -- so load lut ctl first
when "011"=> -- load cmd
lut_ctl<=din;
dib_lim<=unsigned(din(2 downto 1));
ctr_lim(8)<=din(0);
when others=>
end case;
end if;
end if;
end process;
-- this is based on 512 bytes so we do not need 2 upper bits
mA11<=("00" & mA);
-- based on ram2k8.vhp in vhdl_ip.
-- need to move this RAM out so we just have ports.
-- target -Dxfab 512x8 for asic
-- -Dghdl model for simulation
-- -Dxilinx model for fpga
r1:ram2k8 port map(
mCLK,mWEn,mCEn,
mA11, mD, mQ);
end rtl;
|