1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity ADDER is
generic( WIDTH : positive := 8 );
port( CIN : in std_logic;
A : in std_logic_vector(WIDTH-1 downto 0);
B : in std_logic_vector(WIDTH-1 downto 0);
F : out std_logic_vector(WIDTH-1 downto 0);
COUT : out std_logic);
end entity ADDER;
-- Ripple Carry Adder
architecture RCA of ADDER is
signal CIN0 : unsigned(0 downto 0);
signal FIN : unsigned(WIDTH downto 0);
begin
CIN0(0) <= CIN;
FIN <= resize(unsigned(A), WIDTH+1) + resize(unsigned(B), WIDTH+1) + CIN0; -- yes, I know it's not a ripple carry adder
F <= std_logic_vector(FIN(WIDTH-1 downto 0));
COUT <= FIN(WIDTH);
end architecture RCA;
-- Carry Select Adder
architecture CSA of ADDER is
component ADDER is
generic( WIDTH : positive );
port( CIN : in std_logic;
A : in std_logic_vector(WIDTH-1 downto 0);
B : in std_logic_vector(WIDTH-1 downto 0);
F : out std_logic_vector(WIDTH-1 downto 0);
COUT : out std_logic);
end component ADDER;
signal F0, F1 : std_logic_vector(WIDTH-1 downto 0);
signal COUT0, COUT1 : std_logic;
begin
ADD0: ADDER generic map( WIDTH => WIDTH)
port map (
CIN => '0' ,
A => A ,
B => B ,
F => F0 ,
COUT => COUT0 );
ADD1: ADDER generic map( WIDTH => WIDTH)
port map (
CIN => '1' ,
A => A ,
B => B ,
F => F1 ,
COUT => COUT1 );
COUT <= COUT1 when CIN = '1' else COUT0;
F <= F1 when CIN = '1' else F0;
end architecture CSA;
-- here's the configuration
configuration CSAC of ADDER is
for CSA
for all: ADDER
use entity work.ADDER(RCA);
end for;
end for;
end configuration CSAC;
|