1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
--------------------------------------------------------------------------------
--! @file
--! @brief A bunch of useful functions for (non)synthesizable VHDL
--------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.math_real.all;
library std;
use std.textio.all;
package er_pack is
-- constants used inside function 'rt'
constant simres : time := 1 ps; -- simulation resolution (time)
constant resreal : real := 1.0e-12; -- simulation resolution (real)
----------------------------------------------------------------------------
-- Types, Subtypes, and constants
----------------------------------------------------------------------------
type integer_vector is array (integer range <>) of integer;
type natural_vector is array (integer range <>) of natural;
type real_vector is array (integer range <>) of real;
----------------------------------------------------------------------------
----------------------------------------------------------------------------
-- synthesis off
function print_nibble(arg : std_logic_vector(3 downto 0)) return character;
function print_message(arg : string) return boolean;
-- synthesis on
----------------------------------------------------------------------------
-- print function
----------------------------------------------------------------------------
-- synthesis off
function slv2string (arg : in std_logic_vector) return string;
-- synthesis on
----------------------------------------------------------------------------
--! Return a vector of all ones.
--! @param arg The number of bits in the output vector.
--! @returns A vector of all ones.
----------------------------------------------------------------------------
function ones (arg : natural) return std_logic_vector;
----------------------------------------------------------------------------
--! Return a vector of all zeros.
--! @param arg The number of bits in the output vector.
--! @returns A vector of all zeros.
----------------------------------------------------------------------------
function zeros(arg : natural) return std_logic_vector;
----------------------------------------------------------------------------
--! Return the maximum (max positive) 2's complement value that can be
--! expressed in the given number of bits. This is defined as {0,1,...,1}.
--! @param arg The number of bits in the output vector.
--! @returns The maximum 2's complement value.
----------------------------------------------------------------------------
function max (arg : natural) return std_logic_vector;
----------------------------------------------------------------------------
--! Return the minimum (max negative) 2's complement value that can be
--! expressed in the given number of bits. This is defined as {1,0,...,0}.
--! @param arg The number of bits in the output vector.
--! @returns The minimum 2's complement value.
----------------------------------------------------------------------------
function min (arg : natural) return std_logic_vector;
----------------------------------------------------------------------------
--! Return the maximum value of two input values.
--! @param a The first input value
--! @param b The second input value
--! @returns The maximum value of a and b
----------------------------------------------------------------------------
function max(a:natural; b:natural) return natural;
----------------------------------------------------------------------------
--! Return the minimum value of two input values.
--! @param a The first input value
--! @param b The second input value
--! @returns The minimum value of a and b
----------------------------------------------------------------------------
function min(a:natural; b:natural) return natural;
----------------------------------------------------------------------------
--! Return the next multiple of the given variable
--! @param arg The input value
--! @param mult The multiple
--! @returns arg rounded up to the next multiple of mult
----------------------------------------------------------------------------
function next_multiple (arg : natural; mult : natural) return natural;
----------------------------------------------------------------------------
--! Log function
--! This might be the single most useful function in all of VHDL. It simply
--! returns the log of a value
--! @param base The base to use for the log.
--! @param arg The value to log.
--! @returns The log (arg)
----------------------------------------------------------------------------
function log (base : positive; arg : positive) return natural;
----------------------------------------------------------------------------
--! Log2 function
--! This might be the single most useful function in all of VHDL. It simply
--! returns the log2 of a value
--! @param arg The value to log.
--! @returns The log2 (arg)
----------------------------------------------------------------------------
function log2 (arg : positive) return natural;
----------------------------------------------------------------------------
--! Number of Bits function
--! Return the number of bits necessary to hold a particular values. This
--! is the log2 function rounded up
--! @param arg The value to store
--! @returns The number of bits necessary to hold arg
----------------------------------------------------------------------------
function num_bits (arg : positive) return natural;
----------------------------------------------------------------------------
--! delay via register
--! This function should take place in a clocked process, but is an easy
--! way to delay a signal
--! @param reg The shift register that is doing the delaying
--! @param sig The signal that is being delayed. This is put in the low
--! address of the signal.
--! @returns This will return the shifted (delayed) vector
----------------------------------------------------------------------------
function delay (
reg : natural_vector;
sig : natural) return natural_vector;
----------------------------------------------------------------------------
--! delay via register
--! This function should take place in a clocked process, but is an easy
--! way to delay a signal
--! @param reg The shift register that is doing the delaying
--! @param sig The signal that is being delayed. This is put in the low
--! address of the signal.
--! @returns This will return the shifted (delayed) vector
----------------------------------------------------------------------------
function delay (
reg : integer_vector;
sig : integer) return integer_vector;
----------------------------------------------------------------------------
--! delay via register
--! This function should take place in a clocked process, but is an easy
--! way to delay a signal
--! @param reg The shift register that is doing the delaying
--! @param sig The signal that is being delayed. This is put in the low
--! address of the signal.
--! @returns This will return the shifted (delayed) vector
----------------------------------------------------------------------------
function delay (
reg : std_logic_vector;
sig : std_logic) return std_logic_vector;
----------------------------------------------------------------------------
--! Return a std_logic that is the result of a rising edge detector. There
--! will need to be an input register with at least two values in it, since
--! different indexes are used to derive the output.
--! @param reg The input shift/Delay register
--! @param idx (Optional) The index of the input reg register to start the
--! the detection. The default value is the highest most index.
--! @return not reg(idx) and reg(idx-1);
----------------------------------------------------------------------------
function rising_edge (reg : std_logic_vector; idx : integer) return std_logic;
function rising_edge (reg : std_logic_vector) return std_logic;
----------------------------------------------------------------------------
--! Return a std_logic that is the result of a falling edge detector. There
--! will need to be an input register with at least two values in it, since
--! different indexes are used to derive the output.
--! @param reg The input shift/Delay register
--! @param idx (Optional) The index of the input reg register to start the
--! the detection. The default value is the highest most index.
--! @return reg(idx) and not reg(idx-1);
----------------------------------------------------------------------------
function falling_edge (reg : std_logic_vector; idx : integer) return std_logic;
function falling_edge (reg : std_logic_vector) return std_logic;
----------------------------------------------------------------------------
--! Return a std_logic that is the result of an edge detector. There will
--! need to be an input register with at least two values in it, since
--! different indexes are used to derive the output.
--! @param reg The input shift/Delay register
--! @param idx (Optional) The index of the input reg register to start the
--! the detection. The default value is the highest most index.
--! @return reg(idx) xor reg(idx-1);
----------------------------------------------------------------------------
function edge (reg : std_logic_vector) return std_logic;
function edge (reg : std_logic_vector; idx : integer) return std_logic;
----------------------------------------------------------------------------
--! Flip a register. This will put the high bits in the low positions,
--! producing a mirror image of the bits. It will preserve the range of the
--! input vector.
--! @param ret The input register.
--! @return The flipped version of the input register.
----------------------------------------------------------------------------
function flip (reg : std_logic_vector) return std_logic_vector;
----------------------------------------------------------------------------
--! Convert a real number to a std_logic_vector with a given number of bits.
--! The input real should be a value between 1.0 and -1.0. Any value
--! outside of this range will saturate the output vector.
--! @param l The real number
--! @param b The number of bits for the std_logic_vector
----------------------------------------------------------------------------
function to_slv(l:real; b:natural) return std_logic_vector;
----------------------------------------------------------------------------
-- Convert a time to a real representation for the number of seconds
-- @param t The time to convert
-- @return The real time (in seconds)
----------------------------------------------------------------------------
function rt(t : time) return real;
----------------------------------------------------------------------------
--! Divide two times. Return a real
--! @param l The numerator
--! @param r The denominator
--! @returns The result of the divide in a real number
----------------------------------------------------------------------------
function "/" (l, r : time) return real;
----------------------------------------------------------------------------
--! Priority decoder
--! Return the lowest index that is set high.
--! @param reg the register to decode
--! @returns The index of the highest bit set. If the whole register is
--! zero, then it returns an out-of-bound integer
----------------------------------------------------------------------------
function priority_decode(reg : std_logic_vector) return integer;
----------------------------------------------------------------------------
--! Saturate an unsigned value to the given number of bits.
--! @param val The unsigned value
--! @param bits The number of bits
--! @returns If the input value is greater than the requested number of bits
--! can hold, it will return 2^bits-1. All other cases will return the
--! original number.
----------------------------------------------------------------------------
function saturate(val : unsigned; bits : natural) return unsigned;
function usat(val : std_logic_vector; bits : natural ) return std_logic_vector;
----------------------------------------------------------------------------
--! Saturate a signed value to the given number of bits.
--! @param val The signed value
--! @param bits The number of bits
--! @returns If the absolute value of the input value is greater than
--! 2^(bits-1)-1, then return the appriate signed version of 2^(bits-1)-1.
--! All other cases will return the original number.
----------------------------------------------------------------------------
function saturate(val : signed; bits : natural) return signed;
function ssat(val : std_logic_vector; bits : natural ) return std_logic_vector;
----------------------------------------------------------------------------
--! numeric_std helper functions
--! (un)signed shift left/right
----------------------------------------------------------------------------
--! unsigned shift left
function usl (val : std_logic_vector; bits : natural) return std_logic_vector;
--! unsigned shift right
function usr (val : std_logic_vector; bits : natural) return std_logic_vector;
--! signed shift left
function ssl (val : std_logic_vector; bits : natural) return std_logic_vector;
--! signed shift right
function ssr (val : std_logic_vector; bits : natural) return std_logic_vector;
end package er_pack;
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- Package body
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
package body er_pack is
----------------------------------------------------------------------------
-- synthesis off
function print_nibble(arg : std_logic_vector(3 downto 0))
return character is
variable ret : character;
variable num : natural;
-- status variables
variable is_x : boolean;
variable is_u : boolean;
variable is_dash : boolean;
variable is_z : boolean;
variable is_w : boolean;
begin
for idx in arg'range loop
-- take care of the special cases
case arg(idx) is
when 'X' => is_x := true;
when 'U' => is_u := true;
when '-' => is_dash := true;
when 'Z' => is_z := true;
when 'W' => is_w := true;
when others => NULL;
end case;
end loop;
-- Print it
if is_x then ret := 'X';
elsif is_u then ret := 'U';
elsif is_dash then ret := '-';
elsif is_z then ret := 'Z';
elsif is_w then ret := 'W';
else
num := to_integer(unsigned(arg));
case num is
when 15 => ret := 'F';
when 14 => ret := 'E';
when 13 => ret := 'D';
when 12 => ret := 'C';
when 11 => ret := 'B';
when 10 => ret := 'A';
when 9 => ret := '9';
when 8 => ret := '8';
when 7 => ret := '7';
when 6 => ret := '6';
when 5 => ret := '5';
when 4 => ret := '4';
when 3 => ret := '3';
when 2 => ret := '2';
when 1 => ret := '1';
when 0 => ret := '0';
when others => ret := 'J';
end case;
end if;
-- we're done
return ret;
end function print_nibble;
--! Just print a string. It's not hard, but it takes more than one line
--! without the function
function print_message(arg : string) return boolean is
variable out_line : line;
begin
write(out_line, arg);
writeline(output, out_line);
return true;
end function print_message;
-- print function
function slv2string (arg : in std_logic_vector) return string is
variable ret : string (1 to arg'length/4+1);
variable jdx : integer;
variable tmp_nibble : std_logic_vector(3 downto 0);
variable kdx : natural := 1;
begin
-- Try to get a useful hex value
jdx := 0;
kdx := ret'high;
for idx in arg'reverse_range loop
-- fill the next value of the nibble
tmp_nibble(jdx) := arg(idx);
-- correct jdx and print accordingly
if jdx = 3 then
-- reset the jdx value
jdx := 0;
ret(kdx) := print_nibble(tmp_nibble);
-- correct kdx
kdx := kdx - 1;
else
-- decrement jdx
jdx := jdx + 1;
end if;
end loop;
-- edge cases
if jdx /= 0 then
tmp_nibble(3 downto jdx) := (others => '0');
ret(kdx) := print_nibble(tmp_nibble);
return ret;
end if;
-- if we got here, then we have an exact number of nibbles. Give back
-- all but one character.
return ret(2 to ret'high);
end function slv2string;
-- synthesis on
----------------------------------------------------------------------------
function ones (arg : natural) return std_logic_vector is
variable ret : std_logic_vector(arg-1 downto 0) := (others => '1');
begin
return ret;
end function ones;
----------------------------------------------------------------------------
function zeros(arg : natural) return std_logic_vector is
variable ret : std_logic_vector(arg-1 downto 0) := (others => '0');
begin
return ret;
end function zeros;
----------------------------------------------------------------------------
function max (arg : natural) return std_logic_vector is
variable ret : std_logic_vector(arg-1 downto 0) := '0' & ones(arg-1);
begin
return ret;
end function max;
----------------------------------------------------------------------------
function min (arg : natural) return std_logic_vector is
variable ret : std_logic_vector(arg-1 downto 0) := '1' & zeros(arg-1);
begin
return ret;
end function min;
----------------------------------------------------------------------------
function max(a:natural; b:natural) return natural is
begin
if a > b then
return a;
end if;
return b;
end function max;
----------------------------------------------------------------------------
function min(a:natural; b:natural) return natural is
begin
if a < b then
return a;
end if;
return b;
end function min;
----------------------------------------------------------------------------
function next_multiple (arg : natural; mult : natural)
return natural is
begin
return (arg / mult) * mult;
end function next_multiple;
----------------------------------------------------------------------------
function log (base : positive; arg : positive) return natural is
variable div : positive := arg;
variable ret : natural := 0;
begin
while div > 1 loop
div := div / base;
ret := ret + 1;
end loop;
return ret;
end function log;
----------------------------------------------------------------------------
function log2 (arg : positive) return natural is
begin
return log(2, arg);
end function log2;
----------------------------------------------------------------------------
function num_bits (arg : positive) return natural is
variable ret : natural := log2(arg);
begin
if 2**ret /= arg then
ret := ret + 1;
end if;
return ret;
end function num_bits;
----------------------------------------------------------------------------
function delay (
reg : integer_vector;
sig : integer)
return integer_vector is
variable ret : integer_vector(reg'range);
begin
if ret'ascending then
ret := sig & reg(reg'low to reg'high-1);
else
ret := reg(reg'high-1 downto reg'low) & sig;
end if;
return ret;
end function;
function delay (
reg : natural_vector;
sig : natural)
return natural_vector is
variable ret : natural_vector(reg'range);
begin
if ret'ascending then
ret := sig & reg(reg'low to reg'high-1);
else
ret := reg(reg'high-1 downto reg'low) & sig;
end if;
return ret;
end function;
function delay (
reg : std_logic_vector;
sig : std_logic)
return std_logic_vector is
variable ret : std_logic_vector(reg'range);
begin
if ret'ascending then
ret := sig & reg(reg'low to reg'high-1);
else
ret := reg(reg'high-1 downto reg'low) & sig;
end if;
return ret;
end function;
----------------------------------------------------------------------------
function rising_edge (
reg : std_logic_vector)
return std_logic is
variable idx : integer := reg'high;
begin
return rising_edge(reg, idx);
end function;
----------------------------------------------------------------------------
function rising_edge (
reg : std_logic_vector;
idx : integer)
return std_logic is
begin
-- Check the input for validity
assert reg'length >= 2
report "input vector not long enough" severity error;
assert idx <= reg'high and idx > reg'low
report "input vector not long enough" severity error;
-- now just return the answer
return not reg(idx) and reg(idx-1);
end function;
----------------------------------------------------------------------------
function falling_edge (
reg : std_logic_vector)
return std_logic is
variable idx : integer := reg'high;
begin
return falling_edge(reg, idx);
end function falling_edge;
----------------------------------------------------------------------------
function falling_edge (
reg : std_logic_vector;
idx : integer)
return std_logic is
begin
-- Check the input for validity
assert reg'length >= 2
report "input vector not long enough" severity error;
assert idx <= reg'high and idx > reg'low
report "input vector not long enough" severity error;
-- now just return the answer
return reg(idx) and not reg(idx-1);
end function falling_edge;
----------------------------------------------------------------------------
function edge (
reg : std_logic_vector)
return std_logic is
variable idx : integer := reg'high;
begin
return edge(reg, idx);
end function edge;
----------------------------------------------------------------------------
function edge (
reg : std_logic_vector;
idx : integer)
return std_logic is
begin
-- Check the input for validity
assert reg'length >= 2
report "input vector not long enough" severity error;
assert idx <= reg'high and idx > reg'low
report "input vector not long enough" severity error;
-- now just return the answer
return reg(idx) xor reg(idx-1);
end function edge;
----------------------------------------------------------------------------
function flip (reg : std_logic_vector) return std_logic_vector is
variable ret : std_logic_vector(reg'range);
variable idx : integer := reg'high;
variable jdx : integer := reg'low;
begin
while jdx < idx loop
-- Populate ret with the reg bits backwards
ret(idx) := reg(jdx);
ret(jdx) := reg(idx);
-- update the counters
idx := idx + 1;
jdx := jdx + 1;
end loop;
-- return the flipped register
return ret;
end function flip;
----------------------------------------------------------------------------
function to_slv(l:real; b:natural) return std_logic_vector is
variable slv : std_logic_vector(b-1 downto 0);
variable temp_r : real;
variable temp_i : integer;
begin
-- Check the bounds and saturate when necessary
if l <= -1.0 then
slv := min(b);
elsif l >= 1.0 then
slv := max(b);
else
-- Compute the answer
temp_r := l * real(2**(b-1)-1); -- Scale the real to not overflow
temp_i := integer(round(temp_r)); -- round it and turn it into an integer
slv := std_logic_vector(to_signed(temp_i, b)); -- Turn it to an slv
end if;
-- Now just return it
return slv;
end function to_slv;
----------------------------------------------------------------------------
function rt(t : time) return real is
variable nat_time : natural := t / simres;
variable real_time : real := real(nat_time);
begin
return real_time * resreal;
end;
----------------------------------------------------------------------------
function "/" (l, r : time) return real is
variable real_l : real := rt(l);
variable real_r : real := rt(r);
begin
return real_l / real_r;
end function "/";
----------------------------------------------------------------------------
function priority_decode(reg : std_logic_vector) return integer is
variable ret : integer;
begin
-- Start with the default value
if reg'ascending then
ret := reg'right + 1;
else
ret := reg'right - 1;
end if;
-- now determine which one is lit
for idx in reg'reverse_range loop
if reg(idx) = '1' then
ret := idx;
end if;
end loop;
-- return it
return ret;
end function priority_decode;
----------------------------------------------------------------------------
function saturate(val : unsigned; bits : natural) return unsigned is
variable max_val : unsigned(bits-1 downto 0) := unsigned(ones(bits));
begin
-- Check the value over the max
if val > max_val then
return resize(max_val, val'length);
end if;
-- If we got here, we just return the value
return val;
end function saturate;
-- The std_logic_vector version
function usat(val : std_logic_vector; bits : natural ) return std_logic_vector is
begin
return std_logic_vector(saturate(unsigned(val), bits));
end function usat;
----------------------------------------------------------------------------
function saturate(val : signed; bits : natural) return signed is
variable max_val : signed(bits-1 downto 0) := '0' & signed(ones (bits-2)) & '1';
variable min_val : signed(bits-1 downto 0) := '1' & signed(zeros(bits-2)) & '1';
begin
-- Check the value over the max
if val > max_val then
return resize(max_val, val'length);
elsif val < min_val then
return resize(min_val, val'length);
end if;
-- If we got here, we just return the value
return val;
end function saturate;
-- The std_logic_vector version
function ssat(val : std_logic_vector; bits : natural ) return std_logic_vector is
begin
return std_logic_vector(saturate(signed(val), bits));
end function ssat;
----------------------------------------------------------------------------
-- numeric_std helper functions
----------------------------------------------------------------------------
function usl (val : std_logic_vector; bits : natural) return std_logic_vector is
begin
return std_logic_vector(shift_left(unsigned(val), bits));
end function usl;
function usr (val : std_logic_vector; bits : natural) return std_logic_vector is
begin
return std_logic_vector(shift_right(unsigned(val), bits));
end function usr;
function ssl (val : std_logic_vector; bits : natural) return std_logic_vector is
begin
return std_logic_vector(shift_left(signed(val), bits));
end function ssl;
function ssr (val : std_logic_vector; bits : natural) return std_logic_vector is
begin
return std_logic_vector(shift_right(signed(val), bits));
end function ssr;
end package body;
|