aboutsummaryrefslogtreecommitdiffstats
path: root/testsuite/gna/bug043/sha256.vhd
blob: 5169f4853e7ab49ff305283debdea18269da2e54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
library ieee;
use     ieee.std_logic_1164.all;
use     ieee.numeric_std.all;
--use IEEE.std_logic_unsigned.all;

ENTITY sha256forBTC is
    Port ( reset 	: in  STD_LOGIC;
           clock 	: in  STD_LOGIC;
           --data input signals
           data 	: in  STD_LOGIC_VECTOR (511 downto 0);
           enable : in  STD_LOGIC;
           busy   : out STD_LOGIC;
           --hash output signals
           digest	: out STD_LOGIC_VECTOR (255 downto 0);
           ready 	: out STD_LOGIC);
end sha256forBTC;

ARCHITECTURE Behavioral of sha256forBTC is

   type hT is array (0 to 7) of STD_LOGIC_VECTOR(31 downto 0);
   constant hInit : hT :=
     (x"6a09e667", x"bb67ae85", x"3c6ef372", x"a54ff53a", x"510e527f", x"9b05688c", x"1f83d9ab", x"5be0cd19");
   type kT is array (0 to 63) of STD_LOGIC_VECTOR(31 downto 0);
   constant k : kT :=
     (x"428a2f98", x"71374491", x"b5c0fbcf", x"e9b5dba5", x"3956c25b", x"59f111f1", x"923f82a4", x"ab1c5ed5",
      x"d807aa98", x"12835b01", x"243185be", x"550c7dc3", x"72be5d74", x"80deb1fe", x"9bdc06a7", x"c19bf174",
      x"e49b69c1", x"efbe4786", x"0fc19dc6", x"240ca1cc", x"2de92c6f", x"4a7484aa", x"5cb0a9dc", x"76f988da",
      x"983e5152", x"a831c66d", x"b00327c8", x"bf597fc7", x"c6e00bf3", x"d5a79147", x"06ca6351", x"14292967",
      x"27b70a85", x"2e1b2138", x"4d2c6dfc", x"53380d13", x"650a7354", x"766a0abb", x"81c2c92e", x"92722c85",
      x"a2bfe8a1", x"a81a664b", x"c24b8b70", x"c76c51a3", x"d192e819", x"d6990624", x"f40e3585", x"106aa070",
      x"19a4c116", x"1e376c08", x"2748774c", x"34b0bcb5", x"391c0cb3", x"4ed8aa4a", x"5b9cca4f", x"682e6ff3",
      x"748f82ee", x"78a5636f", x"84c87814", x"8cc70208", x"90befffa", x"a4506ceb", x"bef9a3f7", x"c67178f2");
   signal a,b,c,d,e,f,g,h,h0,h1,h2,h3,h4,h5,h6,h7,s0,s1,su0,su1,maj,ch,temp1,temp2 : STD_LOGIC_VECTOR(31 downto 0);
   type wT is array (15 downto 0) of STD_LOGIC_VECTOR(31 downto 0);
   signal w : wT;
   signal wCNT, chunkCNT : STD_LOGIC_VECTOR(6 downto 0);
   signal intEnable : STD_LOGIC;

BEGIN

   fsm: process(clock)
   begin
      if rising_edge(clock) then
         if reset = '1' then
            chunkCNT <= "1000000";
         else
            if chunkCNT = "1000000" then
               if enable = '1' then
                  chunkCNT <= "0000000";
               end if;
            else
               chunkCNT <= std_logic_vector(unsigned(chunkCNT) + 1);
            end if;
         end if;
      ready <= not intEnable;
      end if;
   end process;

   intEnable <= not chunkCNT(6);
   busy <= intEnable;
   
   extension_pipe: process(clock)
   begin
      if rising_edge(clock) then
         if enable = '1' then
            w(0) <= data(31 downto 0);
            w(1) <= data(63 downto 32);
            w(2) <= data(95 downto 64);
            w(3) <= data(127 downto 96);
            w(4) <= data(159 downto 128);
            w(5) <= data(191 downto 160);
            w(6) <= data(223 downto 192);
            w(7) <= data(255 downto 224);
            w(8) <= data(287 downto 256);
            w(9) <= data(319 downto 288);
            w(10) <= data(351 downto 320);
            w(11) <= data(383 downto 352);
            w(12) <= data(415 downto 384);
            w(13) <= data(447 downto 416);
            w(14) <= data(479 downto 448);
            w(15) <= data(511 downto 480);
         elsif intEnable = '1' then
	 w <= w(14 downto 0) & std_logic_vector(unsigned(w(15)) + unsigned(s0) + unsigned(w(6)) + unsigned(s1));
         end if;
      end if;
   end process;
   --extension_pipe asynchron circuitry
   s0 <= (w(14)(6 downto 0) & w(14)(31 downto 7)) xor (w(14)(17 downto 0) & w(14)(31 downto 18)) xor ("000" & w(14)(31 downto 3));
   s1 <= (w(1)(16 downto 0) & w(1)(31 downto 17)) xor (w(1)(18 downto 0) & w(1)(31 downto 19)) xor ("0000000000" & w(1)(31 downto 10));
   --end of extension_pipe asynchron circuitry

   main_loop_pipe: process(clock)
   begin
      if rising_edge(clock) then
         if reset = '1' then
            a <= hInit(0);
            b <= hInit(1);
            c <= hInit(2);
            d <= hInit(3);
            e <= hInit(4);
            f <= hInit(5);
            g <= hInit(6);
            h <= hInit(7);
         elsif intEnable = '0' then
            a <= std_logic_vector(unsigned(h0) + unsigned(a));
            b <= std_logic_vector(unsigned(h1) + unsigned(b));
            c <= std_logic_vector(unsigned(h2) + unsigned(c));
            d <= std_logic_vector(unsigned(h3) + unsigned(d));
            e <= std_logic_vector(unsigned(h4) + unsigned(e));
            f <= std_logic_vector(unsigned(h5) + unsigned(f));
            g <= std_logic_vector(unsigned(h6) + unsigned(g));
            h <= std_logic_vector(unsigned(h7) + unsigned(h));
         else
            h <= g;
            g <= f;
            f <= e;
            e <= std_logic_vector(unsigned(d) + unsigned(temp1));
            d <= c;
            c <= b;
            b <= a;
            a <= temp2;
         end if;
      end if;
   end process;
   --main_loop_pipe asynchron circuitry
   su1   <= (e(5 downto 0) & e(31 downto 6)) xor (e(10 downto 0) & e(31 downto 11)) xor (e(24 downto 0) & e(31 downto 25));
   ch    <= (e and f) xor ((not e) and g);
   temp1 <= std_logic_vector(unsigned(h) + 
	    unsigned(su1) + 
	    unsigned(ch) + 
	    unsigned(k(to_integer(unsigned(chunkCNT(5 downto 0))))) + 
	    unsigned(w(15)));
   su0   <= (a(1 downto 0) & a(31 downto 2)) xor (a(12 downto 0) & a(31 downto 13)) xor (a(21 downto 0) & a(31 downto 22));
   maj   <= (a and (b xor c)) xor (b and c);
   temp2 <= std_logic_vector(unsigned(temp1) + unsigned(su0) + unsigned(maj));
   --end of main_loop_pipe asynchron circuitry
   
   add_hash_chunk: process(clock)
   begin
      if rising_edge(clock) then
         if reset = '1' then
            h0 <= x"00000000";
            h1 <= x"00000000";
            h2 <= x"00000000";
            h3 <= x"00000000";
            h4 <= x"00000000";
            h5 <= x"00000000";
            h6 <= x"00000000";
            h7 <= x"00000000";
         else
            if intEnable = '0' then
               h0 <= std_logic_vector(unsigned(h0) + unsigned(a));
               h1 <= std_logic_vector(unsigned(h1) + unsigned(b));
               h2 <= std_logic_vector(unsigned(h2) + unsigned(c));
               h3 <= std_logic_vector(unsigned(h3) + unsigned(d));
               h4 <= std_logic_vector(unsigned(h4) + unsigned(e));
               h5 <= std_logic_vector(unsigned(h5) + unsigned(f));
               h6 <= std_logic_vector(unsigned(h6) + unsigned(g));
               h7 <= std_logic_vector(unsigned(h7) + unsigned(h));
            end if;
         end if;
      end if;
   end process;

   digest <= h0 & h1 & h2 & h3 & h4 & h5 & h6 & h7;

end Behavioral;