1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--use IEEE.std_logic_unsigned.all;
ENTITY sha256forBTC is
Port ( reset : in STD_LOGIC;
clock : in STD_LOGIC;
--data input signals
data : in STD_LOGIC_VECTOR (511 downto 0);
enable : in STD_LOGIC;
busy : out STD_LOGIC;
--hash output signals
digest : out STD_LOGIC_VECTOR (255 downto 0);
ready : out STD_LOGIC);
end sha256forBTC;
ARCHITECTURE Behavioral of sha256forBTC is
type hT is array (0 to 7) of STD_LOGIC_VECTOR(31 downto 0);
constant hInit : hT :=
(x"6a09e667", x"bb67ae85", x"3c6ef372", x"a54ff53a", x"510e527f", x"9b05688c", x"1f83d9ab", x"5be0cd19");
type kT is array (0 to 63) of STD_LOGIC_VECTOR(31 downto 0);
constant k : kT :=
(x"428a2f98", x"71374491", x"b5c0fbcf", x"e9b5dba5", x"3956c25b", x"59f111f1", x"923f82a4", x"ab1c5ed5",
x"d807aa98", x"12835b01", x"243185be", x"550c7dc3", x"72be5d74", x"80deb1fe", x"9bdc06a7", x"c19bf174",
x"e49b69c1", x"efbe4786", x"0fc19dc6", x"240ca1cc", x"2de92c6f", x"4a7484aa", x"5cb0a9dc", x"76f988da",
x"983e5152", x"a831c66d", x"b00327c8", x"bf597fc7", x"c6e00bf3", x"d5a79147", x"06ca6351", x"14292967",
x"27b70a85", x"2e1b2138", x"4d2c6dfc", x"53380d13", x"650a7354", x"766a0abb", x"81c2c92e", x"92722c85",
x"a2bfe8a1", x"a81a664b", x"c24b8b70", x"c76c51a3", x"d192e819", x"d6990624", x"f40e3585", x"106aa070",
x"19a4c116", x"1e376c08", x"2748774c", x"34b0bcb5", x"391c0cb3", x"4ed8aa4a", x"5b9cca4f", x"682e6ff3",
x"748f82ee", x"78a5636f", x"84c87814", x"8cc70208", x"90befffa", x"a4506ceb", x"bef9a3f7", x"c67178f2");
signal a,b,c,d,e,f,g,h,h0,h1,h2,h3,h4,h5,h6,h7,s0,s1,su0,su1,maj,ch,temp1,temp2 : STD_LOGIC_VECTOR(31 downto 0);
type wT is array (15 downto 0) of STD_LOGIC_VECTOR(31 downto 0);
signal w : wT;
signal wCNT, chunkCNT : STD_LOGIC_VECTOR(6 downto 0);
signal intEnable : STD_LOGIC;
BEGIN
fsm: process(clock)
begin
if rising_edge(clock) then
if reset = '1' then
chunkCNT <= "1000000";
else
if chunkCNT = "1000000" then
if enable = '1' then
chunkCNT <= "0000000";
end if;
else
chunkCNT <= std_logic_vector(unsigned(chunkCNT) + 1);
end if;
end if;
ready <= not intEnable;
end if;
end process;
intEnable <= not chunkCNT(6);
busy <= intEnable;
extension_pipe: process(clock)
begin
if rising_edge(clock) then
if enable = '1' then
w(0) <= data(31 downto 0);
w(1) <= data(63 downto 32);
w(2) <= data(95 downto 64);
w(3) <= data(127 downto 96);
w(4) <= data(159 downto 128);
w(5) <= data(191 downto 160);
w(6) <= data(223 downto 192);
w(7) <= data(255 downto 224);
w(8) <= data(287 downto 256);
w(9) <= data(319 downto 288);
w(10) <= data(351 downto 320);
w(11) <= data(383 downto 352);
w(12) <= data(415 downto 384);
w(13) <= data(447 downto 416);
w(14) <= data(479 downto 448);
w(15) <= data(511 downto 480);
elsif intEnable = '1' then
w <= w(14 downto 0) & std_logic_vector(unsigned(w(15)) + unsigned(s0) + unsigned(w(6)) + unsigned(s1));
end if;
end if;
end process;
--extension_pipe asynchron circuitry
s0 <= (w(14)(6 downto 0) & w(14)(31 downto 7)) xor (w(14)(17 downto 0) & w(14)(31 downto 18)) xor ("000" & w(14)(31 downto 3));
s1 <= (w(1)(16 downto 0) & w(1)(31 downto 17)) xor (w(1)(18 downto 0) & w(1)(31 downto 19)) xor ("0000000000" & w(1)(31 downto 10));
--end of extension_pipe asynchron circuitry
main_loop_pipe: process(clock)
begin
if rising_edge(clock) then
if reset = '1' then
a <= hInit(0);
b <= hInit(1);
c <= hInit(2);
d <= hInit(3);
e <= hInit(4);
f <= hInit(5);
g <= hInit(6);
h <= hInit(7);
elsif intEnable = '0' then
a <= std_logic_vector(unsigned(h0) + unsigned(a));
b <= std_logic_vector(unsigned(h1) + unsigned(b));
c <= std_logic_vector(unsigned(h2) + unsigned(c));
d <= std_logic_vector(unsigned(h3) + unsigned(d));
e <= std_logic_vector(unsigned(h4) + unsigned(e));
f <= std_logic_vector(unsigned(h5) + unsigned(f));
g <= std_logic_vector(unsigned(h6) + unsigned(g));
h <= std_logic_vector(unsigned(h7) + unsigned(h));
else
h <= g;
g <= f;
f <= e;
e <= std_logic_vector(unsigned(d) + unsigned(temp1));
d <= c;
c <= b;
b <= a;
a <= temp2;
end if;
end if;
end process;
--main_loop_pipe asynchron circuitry
su1 <= (e(5 downto 0) & e(31 downto 6)) xor (e(10 downto 0) & e(31 downto 11)) xor (e(24 downto 0) & e(31 downto 25));
ch <= (e and f) xor ((not e) and g);
temp1 <= std_logic_vector(unsigned(h) +
unsigned(su1) +
unsigned(ch) +
unsigned(k(to_integer(unsigned(chunkCNT(5 downto 0))))) +
unsigned(w(15)));
su0 <= (a(1 downto 0) & a(31 downto 2)) xor (a(12 downto 0) & a(31 downto 13)) xor (a(21 downto 0) & a(31 downto 22));
maj <= (a and (b xor c)) xor (b and c);
temp2 <= std_logic_vector(unsigned(temp1) + unsigned(su0) + unsigned(maj));
--end of main_loop_pipe asynchron circuitry
add_hash_chunk: process(clock)
begin
if rising_edge(clock) then
if reset = '1' then
h0 <= x"00000000";
h1 <= x"00000000";
h2 <= x"00000000";
h3 <= x"00000000";
h4 <= x"00000000";
h5 <= x"00000000";
h6 <= x"00000000";
h7 <= x"00000000";
else
if intEnable = '0' then
h0 <= std_logic_vector(unsigned(h0) + unsigned(a));
h1 <= std_logic_vector(unsigned(h1) + unsigned(b));
h2 <= std_logic_vector(unsigned(h2) + unsigned(c));
h3 <= std_logic_vector(unsigned(h3) + unsigned(d));
h4 <= std_logic_vector(unsigned(h4) + unsigned(e));
h5 <= std_logic_vector(unsigned(h5) + unsigned(f));
h6 <= std_logic_vector(unsigned(h6) + unsigned(g));
h7 <= std_logic_vector(unsigned(h7) + unsigned(h));
end if;
end if;
end if;
end process;
digest <= h0 & h1 & h2 & h3 & h4 & h5 & h6 & h7;
end Behavioral;
|