1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity zigzag_index is
port (
clk : in std_logic;
ra0_addr : in std_logic_vector(5 downto 0);
ra0_data : out std_logic_vector(5 downto 0)
);
end zigzag_index;
architecture augh of zigzag_index is
-- Embedded RAM
type ram_type is array (0 to 63) of std_logic_vector(5 downto 0);
signal ram : ram_type := (
"000000", "000001", "000101", "000110", "001110", "001111", "011011", "011100", "000010", "000100", "000111", "001101",
"010000", "011010", "011101", "101010", "000011", "001000", "001100", "010001", "011001", "011110", "101001", "101011",
"001001", "001011", "010010", "011000", "011111", "101000", "101100", "110101", "001010", "010011", "010111", "100000",
"100111", "101101", "110100", "110110", "010100", "010110", "100001", "100110", "101110", "110011", "110111", "111100",
"010101", "100010", "100101", "101111", "110010", "111000", "111011", "111101", "100011", "100100", "110000", "110001",
"111001", "111010", "111110", "111111"
);
-- Little utility functions to make VHDL syntactically correct
-- with the syntax to_integer(unsigned(vector)) when 'vector' is a std_logic.
-- This happens when accessing arrays with <= 2 cells, for example.
function to_integer(B: std_logic) return integer is
variable V: std_logic_vector(0 to 0);
begin
V(0) := B;
return to_integer(unsigned(V));
end;
function to_integer(V: std_logic_vector) return integer is
begin
return to_integer(unsigned(V));
end;
begin
-- The component is a ROM.
-- There is no Write side.
-- The Read side (the outputs)
ra0_data <= ram( to_integer(ra0_addr) );
end architecture;
|