1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity izigzag_index is
port (
clk : in std_logic;
ra0_addr : in std_logic_vector(5 downto 0);
ra0_data : out std_logic_vector(5 downto 0)
);
end izigzag_index;
architecture augh of izigzag_index is
-- Embedded RAM
type ram_type is array (0 to 63) of std_logic_vector(5 downto 0);
signal ram : ram_type := (
"000000", "000001", "001000", "010000", "001001", "000010", "000011", "001010", "010001", "011000", "100000", "011001",
"010010", "001011", "000100", "000101", "001100", "010011", "011010", "100001", "101000", "110000", "101001", "100010",
"011011", "010100", "001101", "000110", "000111", "001110", "010101", "011100", "100011", "101010", "110001", "111000",
"111001", "110010", "101011", "100100", "011101", "010110", "001111", "010111", "011110", "100101", "101100", "110011",
"111010", "111011", "110100", "101101", "100110", "011111", "100111", "101110", "110101", "111100", "111101", "110110",
"101111", "110111", "111110", "111111"
);
-- Little utility functions to make VHDL syntactically correct
-- with the syntax to_integer(unsigned(vector)) when 'vector' is a std_logic.
-- This happens when accessing arrays with <= 2 cells, for example.
function to_integer(B: std_logic) return integer is
variable V: std_logic_vector(0 to 0);
begin
V(0) := B;
return to_integer(unsigned(V));
end;
function to_integer(V: std_logic_vector) return integer is
begin
return to_integer(unsigned(V));
end;
begin
-- The component is a ROM.
-- There is no Write side.
-- The Read side (the outputs)
ra0_data <= ram( to_integer(ra0_addr) );
end architecture;
|