blob: 07fb427cd30443fd5ddaa5052531569374ea58e1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity idctbuff is
port (
wa0_data : in std_logic_vector(31 downto 0);
wa0_addr : in std_logic_vector(8 downto 0);
clk : in std_logic;
ra2_data : out std_logic_vector(31 downto 0);
ra2_addr : in std_logic_vector(8 downto 0);
ra1_data : out std_logic_vector(31 downto 0);
ra1_addr : in std_logic_vector(8 downto 0);
ra0_addr : in std_logic_vector(8 downto 0);
ra0_data : out std_logic_vector(31 downto 0);
wa0_en : in std_logic
);
end idctbuff;
architecture augh of idctbuff is
-- Embedded RAM
type ram_type is array (0 to 383) of std_logic_vector(31 downto 0);
signal ram : ram_type := (others => (others => '0'));
-- Little utility functions to make VHDL syntactically correct
-- with the syntax to_integer(unsigned(vector)) when 'vector' is a std_logic.
-- This happens when accessing arrays with <= 2 cells, for example.
function to_integer(B: std_logic) return integer is
variable V: std_logic_vector(0 to 0);
begin
V(0) := B;
return to_integer(unsigned(V));
end;
function to_integer(V: std_logic_vector) return integer is
begin
return to_integer(unsigned(V));
end;
begin
-- Sequential process
-- It handles the Writes
process (clk)
begin
if rising_edge(clk) then
-- Write to the RAM
-- Note: there should be only one port.
if wa0_en = '1' then
ram( to_integer(wa0_addr) ) <= wa0_data;
end if;
end if;
end process;
-- The Read side (the outputs)
ra1_data <= ram( to_integer(ra1_addr) ) when to_integer(ra1_addr) < 384 else (others => '-');
ra0_data <= ram( to_integer(ra0_addr) ) when to_integer(ra0_addr) < 384 else (others => '-');
ra2_data <= ram( to_integer(ra2_addr) ) when to_integer(ra2_addr) < 384 else (others => '-');
end architecture;
|