1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
|
-- EMACS settings: -*- tab-width: 2; indent-tabs-mode: t -*-
-- vim: tabstop=2:shiftwidth=2:noexpandtab
-- kate: tab-width 2; replace-tabs off; indent-width 2;
--
-- ============================================================================
-- Package: Common functions and types
--
-- Authors: Thomas B. Preusser
-- Martin Zabel
-- Patrick Lehmann
--
-- Description:
-- ------------------------------------
-- For detailed documentation see below.
--
-- License:
-- ============================================================================
-- Copyright 2007-2014 Technische Universitaet Dresden - Germany
-- Chair for VLSI-Design, Diagnostics and Architecture
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-- ============================================================================
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library PoC;
use PoC.utils.all;
use PoC.strings.all;
package vectors is
-- ==========================================================================
-- Type declarations
-- ==========================================================================
-- STD_LOGIC_VECTORs
subtype T_SLV_2 is STD_LOGIC_VECTOR(1 downto 0);
subtype T_SLV_3 is STD_LOGIC_VECTOR(2 downto 0);
subtype T_SLV_4 is STD_LOGIC_VECTOR(3 downto 0);
subtype T_SLV_8 is STD_LOGIC_VECTOR(7 downto 0);
subtype T_SLV_12 is STD_LOGIC_VECTOR(11 downto 0);
subtype T_SLV_16 is STD_LOGIC_VECTOR(15 downto 0);
subtype T_SLV_24 is STD_LOGIC_VECTOR(23 downto 0);
subtype T_SLV_32 is STD_LOGIC_VECTOR(31 downto 0);
subtype T_SLV_48 is STD_LOGIC_VECTOR(47 downto 0);
subtype T_SLV_64 is STD_LOGIC_VECTOR(63 downto 0);
subtype T_SLV_96 is STD_LOGIC_VECTOR(95 downto 0);
subtype T_SLV_128 is STD_LOGIC_VECTOR(127 downto 0);
subtype T_SLV_256 is STD_LOGIC_VECTOR(255 downto 0);
subtype T_SLV_512 is STD_LOGIC_VECTOR(511 downto 0);
-- STD_LOGIC_VECTOR_VECTORs
-- type T_SLVV is array(NATURAL range <>) of STD_LOGIC_VECTOR; -- VHDL 2008 syntax - not yet supported by Xilinx
type T_SLVV_2 is array(NATURAL range <>) of T_SLV_2;
type T_SLVV_3 is array(NATURAL range <>) of T_SLV_3;
type T_SLVV_4 is array(NATURAL range <>) of T_SLV_4;
type T_SLVV_8 is array(NATURAL range <>) of T_SLV_8;
type T_SLVV_12 is array(NATURAL range <>) of T_SLV_12;
type T_SLVV_16 is array(NATURAL range <>) of T_SLV_16;
type T_SLVV_24 is array(NATURAL range <>) of T_SLV_24;
type T_SLVV_32 is array(NATURAL range <>) of T_SLV_32;
type T_SLVV_48 is array(NATURAL range <>) of T_SLV_48;
type T_SLVV_64 is array(NATURAL range <>) of T_SLV_64;
type T_SLVV_128 is array(NATURAL range <>) of T_SLV_128;
type T_SLVV_256 is array(NATURAL range <>) of T_SLV_256;
type T_SLVV_512 is array(NATURAL range <>) of T_SLV_512;
-- STD_LOGIC_MATRIXs
type T_SLM is array(NATURAL range <>, NATURAL range <>) of STD_LOGIC;
-- ATTENTION:
-- 1. you MUST initialize your matrix signal with 'Z' to get correct simulation results (iSIM, vSIM, ghdl/gtkwave)
-- Example: signal myMatrix : T_SLM(3 downto 0, 7 downto 0) := (others => (others => 'Z'));
-- 2. Xilinx iSIM work-around: DON'T use myMatrix'range(n) for n >= 2
-- because: myMatrix'range(2) returns always myMatrix'range(1); tested with ISE/iSIM 14.2
-- USAGE NOTES:
-- dimmension 1 => rows - e.g. Words
-- dimmension 2 => columns - e.g. Bits/Bytes in a word
-- ==========================================================================
-- Function declarations
-- ==========================================================================
-- slicing boundary calulations
function low (lenvec : T_POSVEC; index : NATURAL) return NATURAL;
function high(lenvec : T_POSVEC; index : NATURAL) return NATURAL;
-- Assign procedures: assign_*
procedure assign_row(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant RowIndex : NATURAL); -- assign vector to complete row
procedure assign_row(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant RowIndex : NATURAL; Position : NATURAL); -- assign short vector to row starting at position
procedure assign_row(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant RowIndex : NATURAL; High : NATURAL; Low : NATURAL); -- assign short vector to row in range high:low
procedure assign_col(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant ColIndex : NATURAL); -- assign vector to complete column
-- ATTENTION: see T_SLM definition for further details and work-arounds
-- Matrix to matrix conversion: slm_slice*
function slm_slice(slm : T_SLM; RowIndex : NATURAL; ColIndex : NATURAL; Height : NATURAL; Width : NATURAL) return T_SLM; -- get submatrix in boundingbox RowIndex,ColIndex,Height,Width
function slm_slice_rows(slm : T_SLM; High : NATURAL; Low : NATURAL) return T_SLM; -- get submatrix / all rows in RowIndex range high:low
function slm_slice_cols(slm : T_SLM; High : NATURAL; Low : NATURAL) return T_SLM; -- get submatrix / all columns in ColIndex range high:low
-- Matrix concatenation: slm_merge_*
function slm_merge_rows(slm1 : T_SLM; slm2 : T_SLM) return T_SLM;
function slm_merge_cols(slm1 : T_SLM; slm2 : T_SLM) return T_SLM;
-- Matrix to vector conversion: get_*
function get_col(slm : T_SLM; ColIndex : NATURAL) return STD_LOGIC_VECTOR; -- get a matrix column
function get_row(slm : T_SLM; RowIndex : NATURAL) return STD_LOGIC_VECTOR; -- get a matrix row
function get_row(slm : T_SLM; RowIndex : NATURAL; Length : POSITIVE) return STD_LOGIC_VECTOR; -- get a matrix row of defined length [length - 1 downto 0]
function get_row(slm : T_SLM; RowIndex : NATURAL; High : NATURAL; Low : NATURAL) return STD_LOGIC_VECTOR; -- get a sub vector of a matrix row at high:low
-- Convert to vector: to_slv
function to_slv(slvv : T_SLVV_2) return STD_LOGIC_VECTOR; -- convert vector-vector to flatten vector
function to_slv(slvv : T_SLVV_4) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_8) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_12) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_16) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_24) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_32) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_64) return STD_LOGIC_VECTOR; -- ...
function to_slv(slvv : T_SLVV_128) return STD_LOGIC_VECTOR; -- ...
function to_slv(slm : T_SLM) return STD_LOGIC_VECTOR; -- convert matrix to flatten vector
-- Convert flat vector to avector-vector: to_slvv_*
function to_slvv_4(slv : STD_LOGIC_VECTOR) return T_SLVV_4; --
function to_slvv_8(slv : STD_LOGIC_VECTOR) return T_SLVV_8; --
function to_slvv_12(slv : STD_LOGIC_VECTOR) return T_SLVV_12; --
function to_slvv_16(slv : STD_LOGIC_VECTOR) return T_SLVV_16; --
function to_slvv_32(slv : STD_LOGIC_VECTOR) return T_SLVV_32; --
function to_slvv_64(slv : STD_LOGIC_VECTOR) return T_SLVV_64; --
function to_slvv_128(slv : STD_LOGIC_VECTOR) return T_SLVV_128; --
function to_slvv_256(slv : STD_LOGIC_VECTOR) return T_SLVV_256; --
function to_slvv_512(slv : STD_LOGIC_VECTOR) return T_SLVV_512; --
-- Convert matrix to avector-vector: to_slvv_*
function to_slvv_4(slm : T_SLM) return T_SLVV_4; --
function to_slvv_8(slm : T_SLM) return T_SLVV_8; --
function to_slvv_12(slm : T_SLM) return T_SLVV_12; --
function to_slvv_16(slm : T_SLM) return T_SLVV_16; --
function to_slvv_32(slm : T_SLM) return T_SLVV_32; --
function to_slvv_64(slm : T_SLM) return T_SLVV_64; --
function to_slvv_128(slm : T_SLM) return T_SLVV_128; --
function to_slvv_256(slm : T_SLM) return T_SLVV_256; --
function to_slvv_512(slm : T_SLM) return T_SLVV_512; --
-- Convert vector-vector to matrix: to_slm
function to_slm(slv : STD_LOGIC_VECTOR; ROWS : POSITIVE; COLS : POSITIVE) return T_SLM; -- create matrix from vector
function to_slm(slvv : T_SLVV_4) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_8) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_12) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_16) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_32) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_48) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_64) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_128) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_256) return T_SLM; -- create matrix from vector-vector
function to_slm(slvv : T_SLVV_512) return T_SLM; -- create matrix from vector-vector
-- Change vector direction
function dir(slvv : T_SLVV_8) return T_SLVV_8;
-- Reverse vector elements
function rev(slvv : T_SLVV_4) return T_SLVV_4;
function rev(slvv : T_SLVV_8) return T_SLVV_8;
function rev(slvv : T_SLVV_12) return T_SLVV_12;
function rev(slvv : T_SLVV_16) return T_SLVV_16;
function rev(slvv : T_SLVV_32) return T_SLVV_32;
function rev(slvv : T_SLVV_64) return T_SLVV_64;
function rev(slvv : T_SLVV_128) return T_SLVV_128;
function rev(slvv : T_SLVV_256) return T_SLVV_256;
function rev(slvv : T_SLVV_512) return T_SLVV_512;
-- TODO:
function resize(slm : T_SLM; size : POSITIVE) return T_SLM;
-- to_string
function to_string(slvv : T_SLVV_8; sep : CHARACTER := ':') return STRING;
function to_string(slm : T_SLM; groups : POSITIVE := 4; format : CHARACTER := 'b') return STRING;
end package vectors;
package body vectors is
-- slicing boundary calulations
-- ==========================================================================
function low(lenvec : T_POSVEC; index : NATURAL) return NATURAL is
variable pos : NATURAL := 0;
begin
for i in lenvec'low to index - 1 loop
pos := pos + lenvec(i);
end loop;
return pos;
end function;
function high(lenvec : T_POSVEC; index : NATURAL) return NATURAL is
variable pos : NATURAL := 0;
begin
for i in lenvec'low to index loop
pos := pos + lenvec(i);
end loop;
return pos - 1;
end function;
-- Assign procedures: assign_*
-- ==========================================================================
procedure assign_row(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant RowIndex : NATURAL) is
variable temp : STD_LOGIC_VECTOR(slm'high(2) downto slm'low(2)); -- Xilinx iSIM work-around, because 'range(2) evaluates to 'range(1); tested with ISE/iSIM 14.2
begin
temp := slv;
for i in temp'range loop
slm(RowIndex, i) <= temp(i);
end loop;
end procedure;
procedure assign_row(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant RowIndex : NATURAL; Position : NATURAL) is
variable temp : STD_LOGIC_VECTOR(Position + slv'length - 1 downto Position);
begin
temp := slv;
for i in temp'range loop
slm(RowIndex, i) <= temp(i);
end loop;
end procedure;
procedure assign_row(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant RowIndex : NATURAL; High : NATURAL; Low : NATURAL) is
variable temp : STD_LOGIC_VECTOR(High downto Low);
begin
temp := slv;
for i in temp'range loop
slm(RowIndex, i) <= temp(i);
end loop;
end procedure;
procedure assign_col(signal slm : out T_SLM; slv : STD_LOGIC_VECTOR; constant ColIndex : NATURAL) is
variable temp : STD_LOGIC_VECTOR(slm'range(1));
begin
temp := slv;
for i in temp'range loop
slm(i, ColIndex) <= temp(i);
end loop;
end procedure;
-- Matrix to matrix conversion: slm_slice*
-- ==========================================================================
function slm_slice(slm : T_SLM; RowIndex : NATURAL; ColIndex : NATURAL; Height : NATURAL; Width : NATURAL) return T_SLM is
variable Result : T_SLM(Height - 1 downto 0, Width - 1 downto 0) := (others => (others => '0'));
begin
for i in 0 to Height - 1 loop
for j in 0 to Width - 1 loop
Result(i, j) := slm(RowIndex + i, ColIndex + j);
end loop;
end loop;
return Result;
end function;
function slm_slice_rows(slm : T_SLM; High : NATURAL; Low : NATURAL) return T_SLM is
variable Result : T_SLM(High - Low downto 0, slm'length(2) - 1 downto 0) := (others => (others => '0'));
begin
for i in 0 to High - Low loop
for j in 0 to slm'length(2) - 1 loop
Result(i, j) := slm(Low + i, slm'low(2) + j);
end loop;
end loop;
return Result;
end function;
function slm_slice_cols(slm : T_SLM; High : NATURAL; Low : NATURAL) return T_SLM is
variable Result : T_SLM(slm'length(1) - 1 downto 0, High - Low downto 0) := (others => (others => '0'));
begin
for i in 0 to slm'length(1) - 1 loop
for j in 0 to High - Low loop
Result(i, j) := slm(slm'low(1) + i, Low + j);
end loop;
end loop;
return Result;
end function;
-- Matrix concatenation: slm_merge_*
function slm_merge_rows(slm1 : T_SLM; slm2 : T_SLM) return T_SLM is
constant ROWS : POSITIVE := slm1'length(1) + slm2'length(1);
constant COLUMNS : POSITIVE := slm1'length(2);
variable slm : T_SLM(ROWS - 1 downto 0, COLUMNS - 1 downto 0);
begin
for i in slm1'range(1) loop
for j in slm1'low(2) to slm1'high(2) loop
slm(i, j) := slm1(i, j);
end loop;
end loop;
for i in slm2'range(1) loop
for j in slm2'low(2) to slm2'high(2) loop
slm(slm1'length(1) + i, j) := slm2(i, j);
end loop;
end loop;
return slm;
end function;
function slm_merge_cols(slm1 : T_SLM; slm2 : T_SLM) return T_SLM is
constant ROWS : POSITIVE := slm1'length(1);
constant COLUMNS : POSITIVE := slm1'length(2) + slm2'length(2);
variable slm : T_SLM(ROWS - 1 downto 0, COLUMNS - 1 downto 0);
begin
for i in slm1'range(1) loop
for j in slm1'low(2) to slm1'high(2) loop
slm(i, j) := slm1(i, j);
end loop;
for j in slm2'low(2) to slm2'high(2) loop
slm(i, slm1'length(2) + j) := slm2(i, j);
end loop;
end loop;
return slm;
end function;
-- Matrix to vector conversion: get_*
-- ==========================================================================
-- get a matrix column
function get_col(slm : T_SLM; ColIndex : NATURAL) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR(slm'range(1));
begin
for i in slm'range(1) loop
slv(i) := slm(i, ColIndex);
end loop;
return slv;
end function;
-- get a matrix row
function get_row(slm : T_SLM; RowIndex : NATURAL) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR(slm'high(2) downto slm'low(2)); -- Xilinx iSIM work-around, because 'range(2) = 'range(1); tested with ISE/iSIM 14.2
begin
for i in slv'range loop
slv(i) := slm(RowIndex, i);
end loop;
return slv;
end function;
-- get a matrix row of defined length [length - 1 downto 0]
function get_row(slm : T_SLM; RowIndex : NATURAL; Length : POSITIVE) return STD_LOGIC_VECTOR is
begin
return get_row(slm, RowIndex, (Length - 1), 0);
end function;
-- get a sub vector of a matrix row at high:low
function get_row(slm : T_SLM; RowIndex : NATURAL; High : NATURAL; Low : NATURAL) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR(High downto Low); -- Xilinx iSIM work-around, because 'range(2) = 'range(1); tested with ISE/iSIM 14.2
begin
for i in slv'range loop
slv(i) := slm(RowIndex, i);
end loop;
return slv;
end function;
-- Convert to vector: to_slv
-- ==========================================================================
-- convert vector-vector to flatten vector
function to_slv(slvv : T_SLVV_2) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 2) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 2) + 1 downto (i * 2)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_4) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 4) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 4) + 3 downto (i * 4)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_8) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 8) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 8) + 7 downto (i * 8)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_12) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 12) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 12) + 11 downto (i * 12)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_16) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 16) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 16) + 15 downto (i * 16)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_24) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 24) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 24) + 23 downto (i * 24)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_32) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 32) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 32) + 31 downto (i * 32)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_64) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 64) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 64) + 63 downto (i * 64)) := slvv(i);
end loop;
return slv;
end function;
function to_slv(slvv : T_SLVV_128) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slvv'length * 128) - 1 downto 0);
begin
for i in slvv'range loop
slv((i * 128) + 127 downto (i * 128)) := slvv(i);
end loop;
return slv;
end function;
-- convert matrix to flatten vector
function to_slv(slm : T_SLM) return STD_LOGIC_VECTOR is
variable slv : STD_LOGIC_VECTOR((slm'length(1) * slm'length(2)) - 1 downto 0);
begin
for i in slm'range(1) loop
for j in slm'high(2) downto slm'low(2) loop -- Xilinx iSIM work-around, because 'range(2) evaluates to 'range(1); tested with ISE/iSIM 14.2
slv((i * slm'length(2)) + j) := slm(i, j);
end loop;
end loop;
return slv;
end function;
-- Convert flat vector to a vector-vector: to_slvv_*
-- ==========================================================================
-- create vector-vector from vector (4 bit)
function to_slvv_4(slv : STD_LOGIC_VECTOR) return T_SLVV_4 is
variable Result : T_SLVV_4((slv'length / 4) - 1 downto 0);
begin
if ((slv'length mod 4) /= 0) then report "to_slvv_4: width mismatch - slv'length is no multiple of 4 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 4) + 3 downto (i * 4));
end loop;
return Result;
end function;
-- create vector-vector from vector (8 bit)
function to_slvv_8(slv : STD_LOGIC_VECTOR) return T_SLVV_8 is
variable Result : T_SLVV_8((slv'length / 8) - 1 downto 0);
begin
if ((slv'length mod 8) /= 0) then report "to_slvv_8: width mismatch - slv'length is no multiple of 8 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 8) + 7 downto (i * 8));
end loop;
return Result;
end function;
-- create vector-vector from vector (12 bit)
function to_slvv_12(slv : STD_LOGIC_VECTOR) return T_SLVV_12 is
variable Result : T_SLVV_12((slv'length / 12) - 1 downto 0);
begin
if ((slv'length mod 12) /= 0) then report "to_slvv_12: width mismatch - slv'length is no multiple of 12 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 12) + 11 downto (i * 12));
end loop;
return Result;
end function;
-- create vector-vector from vector (16 bit)
function to_slvv_16(slv : STD_LOGIC_VECTOR) return T_SLVV_16 is
variable Result : T_SLVV_16((slv'length / 16) - 1 downto 0);
begin
if ((slv'length mod 16) /= 0) then report "to_slvv_16: width mismatch - slv'length is no multiple of 16 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 16) + 15 downto (i * 16));
end loop;
return Result;
end function;
-- create vector-vector from vector (32 bit)
function to_slvv_32(slv : STD_LOGIC_VECTOR) return T_SLVV_32 is
variable Result : T_SLVV_32((slv'length / 32) - 1 downto 0);
begin
if ((slv'length mod 32) /= 0) then report "to_slvv_32: width mismatch - slv'length is no multiple of 32 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 32) + 31 downto (i * 32));
end loop;
return Result;
end function;
-- create vector-vector from vector (64 bit)
function to_slvv_64(slv : STD_LOGIC_VECTOR) return T_SLVV_64 is
variable Result : T_SLVV_64((slv'length / 64) - 1 downto 0);
begin
if ((slv'length mod 64) /= 0) then report "to_slvv_64: width mismatch - slv'length is no multiple of 64 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 64) + 63 downto (i * 64));
end loop;
return Result;
end function;
-- create vector-vector from vector (128 bit)
function to_slvv_128(slv : STD_LOGIC_VECTOR) return T_SLVV_128 is
variable Result : T_SLVV_128((slv'length / 128) - 1 downto 0);
begin
if ((slv'length mod 128) /= 0) then report "to_slvv_128: width mismatch - slv'length is no multiple of 128 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 128) + 127 downto (i * 128));
end loop;
return Result;
end function;
-- create vector-vector from vector (256 bit)
function to_slvv_256(slv : STD_LOGIC_VECTOR) return T_SLVV_256 is
variable Result : T_SLVV_256((slv'length / 256) - 1 downto 0);
begin
if ((slv'length mod 256) /= 0) then report "to_slvv_256: width mismatch - slv'length is no multiple of 256 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 256) + 255 downto (i * 256));
end loop;
return Result;
end function;
-- create vector-vector from vector (512 bit)
function to_slvv_512(slv : STD_LOGIC_VECTOR) return T_SLVV_512 is
variable Result : T_SLVV_512((slv'length / 512) - 1 downto 0);
begin
if ((slv'length mod 512) /= 0) then report "to_slvv_512: width mismatch - slv'length is no multiple of 512 (slv'length=" & INTEGER'image(slv'length) & ")" severity FAILURE; end if;
for i in Result'range loop
Result(i) := slv((i * 512) + 511 downto (i * 512));
end loop;
return Result;
end function;
-- Convert matrix to avector-vector: to_slvv_*
-- ==========================================================================
-- create vector-vector from matrix (4 bit)
function to_slvv_4(slm : T_SLM) return T_SLVV_4 is
variable Result : T_SLVV_4(slm'range(1));
begin
if (slm'length(2) /= 4) then report "to_slvv_4: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (8 bit)
function to_slvv_8(slm : T_SLM) return T_SLVV_8 is
variable Result : T_SLVV_8(slm'range(1));
begin
if (slm'length(2) /= 8) then report "to_slvv_8: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (12 bit)
function to_slvv_12(slm : T_SLM) return T_SLVV_12 is
variable Result : T_SLVV_12(slm'range(1));
begin
if (slm'length(2) /= 12) then report "to_slvv_12: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (16 bit)
function to_slvv_16(slm : T_SLM) return T_SLVV_16 is
variable Result : T_SLVV_16(slm'range(1));
begin
if (slm'length(2) /= 16) then report "to_slvv_16: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (32 bit)
function to_slvv_32(slm : T_SLM) return T_SLVV_32 is
variable Result : T_SLVV_32(slm'range(1));
begin
if (slm'length(2) /= 32) then report "to_slvv_32: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (64 bit)
function to_slvv_64(slm : T_SLM) return T_SLVV_64 is
variable Result : T_SLVV_64(slm'range(1));
begin
if (slm'length(2) /= 64) then report "to_slvv_64: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (128 bit)
function to_slvv_128(slm : T_SLM) return T_SLVV_128 is
variable Result : T_SLVV_128(slm'range(1));
begin
if (slm'length(2) /= 128) then report "to_slvv_128: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (256 bit)
function to_slvv_256(slm : T_SLM) return T_SLVV_256 is
variable Result : T_SLVV_256(slm'range);
begin
if (slm'length(2) /= 256) then report "to_slvv_256: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- create vector-vector from matrix (512 bit)
function to_slvv_512(slm : T_SLM) return T_SLVV_512 is
variable Result : T_SLVV_512(slm'range(1));
begin
if (slm'length(2) /= 512) then report "to_slvv_512: type mismatch - slm'length(2)=" & INTEGER'image(slm'length(2)) severity FAILURE; end if;
for i in slm'range(1) loop
Result(i) := get_row(slm, i);
end loop;
return Result;
end function;
-- Convert vector-vector to matrix: to_slm
-- ==========================================================================
-- create matrix from vector
function to_slm(slv : STD_LOGIC_VECTOR; ROWS : POSITIVE; COLS : POSITIVE) return T_SLM is
variable slm : T_SLM(ROWS - 1 downto 0, COLS - 1 downto 0);
begin
for i in 0 to ROWS - 1 loop
for j in 0 to COLS - 1 loop
slm(i, j) := slv((i * COLS) + j);
end loop;
end loop;
return slm;
end function;
-- create matrix from vector-vector
function to_slm(slvv : T_SLVV_4) return T_SLM is
variable slm : T_SLM(slvv'range, 3 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_4'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_8) return T_SLM is
-- variable test : STD_LOGIC_VECTOR(T_SLV_8'range);
-- variable slm : T_SLM(slvv'range, test'range); -- BUG: iSIM 14.5 cascaded 'range accesses let iSIM break down
-- variable slm : T_SLM(slvv'range, T_SLV_8'range); -- BUG: iSIM 14.5 allocates 9 bits in dimmension 2
variable slm : T_SLM(slvv'range, 7 downto 0);
begin
-- report "slvv: slvv.length=" & INTEGER'image(slvv'length) & " slm.dim0.length=" & INTEGER'image(slm'length(1)) & " slm.dim1.length=" & INTEGER'image(slm'length(2)) severity NOTE;
-- report "T_SLV_8: .length=" & INTEGER'image(T_SLV_8'length) & " .high=" & INTEGER'image(T_SLV_8'high) & " .low=" & INTEGER'image(T_SLV_8'low) severity NOTE;
-- report "test: test.length=" & INTEGER'image(test'length) & " .high=" & INTEGER'image(test'high) & " .low=" & INTEGER'image(test'low) severity NOTE;
for i in slvv'range loop
for j in T_SLV_8'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_12) return T_SLM is
variable slm : T_SLM(slvv'range, 11 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_12'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_16) return T_SLM is
variable slm : T_SLM(slvv'range, 15 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_16'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_32) return T_SLM is
variable slm : T_SLM(slvv'range, 31 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_32'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_48) return T_SLM is
variable slm : T_SLM(slvv'range, 47 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_48'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_64) return T_SLM is
variable slm : T_SLM(slvv'range, 63 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_64'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_128) return T_SLM is
variable slm : T_SLM(slvv'range, 127 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_128'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_256) return T_SLM is
variable slm : T_SLM(slvv'range, 255 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_256'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
function to_slm(slvv : T_SLVV_512) return T_SLM is
variable slm : T_SLM(slvv'range, 511 downto 0);
begin
for i in slvv'range loop
for j in T_SLV_512'range loop
slm(i, j) := slvv(i)(j);
end loop;
end loop;
return slm;
end function;
-- Change vector direction
-- ==========================================================================
function dir(slvv : T_SLVV_8) return T_SLVV_8 is
variable Result : T_SLVV_8(slvv'reverse_range);
begin
Result := slvv;
return Result;
end function;
-- Reverse vector elements
function rev(slvv : T_SLVV_4) return T_SLVV_4 is
variable Result : T_SLVV_4(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_8) return T_SLVV_8 is
variable Result : T_SLVV_8(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_12) return T_SLVV_12 is
variable Result : T_SLVV_12(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_16) return T_SLVV_16 is
variable Result : T_SLVV_16(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_32) return T_SLVV_32 is
variable Result : T_SLVV_32(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_64) return T_SLVV_64 is
variable Result : T_SLVV_64(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_128) return T_SLVV_128 is
variable Result : T_SLVV_128(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_256) return T_SLVV_256 is
variable Result : T_SLVV_256(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
function rev(slvv : T_SLVV_512) return T_SLVV_512 is
variable Result : T_SLVV_512(slvv'range);
begin
for i in slvv'low to slvv'high loop
Result(slvv'high - i) := slvv(i);
end loop;
return Result;
end function;
-- Resize functions
-- ==========================================================================
-- Resizes the vector to the specified length. Input vectors larger than the specified size are truncated from the left side. Smaller input
-- vectors are extended on the left by the provided fill value (default: '0'). Use the resize functions of the numeric_std package for
-- value-preserving resizes of the signed and unsigned data types.
function resize(slm : T_SLM; size : POSITIVE) return T_SLM is
variable Result : T_SLM(size - 1 downto 0, slm'high(2) downto slm'low(2)) := (others => (others => '0'));
begin
for i in slm'range(1) loop
for j in slm'high(2) downto slm'low(2) loop
Result(i, j) := slm(i, j);
end loop;
end loop;
return Result;
end function;
function to_string(slvv : T_SLVV_8; sep : CHARACTER := ':') return STRING is
constant hex_len : POSITIVE := ite((sep = C_POC_NUL), (slvv'length * 2), (slvv'length * 3) - 1);
variable Result : STRING(1 to hex_len) := (others => sep);
variable pos : POSITIVE := 1;
begin
for i in slvv'range loop
Result(pos to pos + 1) := to_string(slvv(i), 'h');
pos := pos + ite((sep = C_POC_NUL), 2, 3);
end loop;
return Result;
end function;
function to_string_bin(slm : T_SLM; groups : POSITIVE := 4; format : CHARACTER := 'h') return STRING is
variable PerLineOverheader : POSITIVE := div_ceil(slm'length(2), groups);
variable Result : STRING(1 to (slm'length(1) * (slm'length(2) + PerLineOverheader)) + 10);
variable Writer : POSITIVE;
variable GroupCounter : NATURAL;
begin
Result := (others => C_POC_NUL);
Result(1) := LF;
Writer := 2;
GroupCounter := 0;
for i in slm'low(1) to slm'high(1) loop
for j in slm'high(2) downto slm'low(2) loop
Result(Writer) := to_char(slm(i, j));
Writer := Writer + 1;
GroupCounter := GroupCounter + 1;
if (GroupCounter = groups) then
Result(Writer) := ' ';
Writer := Writer + 1;
GroupCounter := 0;
end if;
end loop;
Result(Writer - 1) := LF;
GroupCounter := 0;
end loop;
return str_trim(Result);
end function;
function to_string(slm : T_SLM; groups : POSITIVE := 4; format : CHARACTER := 'b') return STRING is
begin
if (format = 'b') then
return to_string_bin(slm, groups);
else
return "Format not supported.";
end if;
end function;
end package body;
|