blob: e68a04e55397872c4667516347c75258c841ce11 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
entity FIFO is
generic(Depth : integer := 3);
port(
iClk : in std_logic;
iReset : in std_logic;
-- write port
iWrEn : in std_logic;
iData : in std_logic_vector(7 downto 0);
oHasSpace : out std_logic;
-- read port
iRdEn : in std_logic;
oData : out std_logic_vector(7 downto 0);
oHasData : out std_logic
);
end FIFO;
architecture behaviour of FIFO is
constant DMSB : integer := Depth - 1;
constant Size : integer := 2 ** DEPTH;
type regArrayT is array(0 to Size-1) of std_logic_vector(7 downto 0);
signal free : unsigned(Depth downto 0) := (others => '0');
signal rIdx, wIdx : unsigned(DMSB downto 0) := (others => '0');
signal regArray : regArrayT;
signal rdEn, wrEn : std_logic;
signal hasData, hasSpace : std_logic;
begin
oData <= regArray(to_integer(rIdx));
hasData <= '0' when free = Size else '1';
oHasData <= hasData;
hasSpace <= '0' when free = to_unsigned(0, Depth) else '1';
oHasSpace <= hasSpace;
rdEn <= iRdEn and hasData;
wrEn <= iWrEn and hasSpace;
main: process(iClk) begin
if iClk'event and iClk = '1' then
if iReset = '1' then
free <= to_unsigned(Size, Depth + 1);
rIdx <= (others => '0');
wIdx <= (others => '0');
elsif wrEn = '1' and rdEn = '1' then
rIdx <= rIdx + 1;
regArray(to_integer(wIdx)) <= iData;
wIdx <= wIdx + 1;
elsif rdEn = '1' then
rIdx <= rIdx + 1;
free <= free + 1;
elsif wrEn = '1' then
regArray(to_integer(wIdx)) <= iData;
wIdx <= wIdx + 1;
free <= free - 1;
end if;
end if;
end process;
end behaviour;
|