aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/vhdl-evaluation.adb
blob: 53c82abf9d1e06142fb0e2ebb567b9f54ee1e857 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
--  Evaluation of static expressions.
--  Copyright (C) 2002, 2003, 2004, 2005 Tristan Gingold
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Ada.Unchecked_Deallocation;
with Ada.Characters.Handling;
with Interfaces;

with Name_Table; use Name_Table;
with Str_Table;
with Flags; use Flags;
with Std_Names;
with Errorout; use Errorout;

with Vhdl.Scanner;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Std_Package; use Vhdl.Std_Package;
with Vhdl.Ieee.Std_Logic_1164;

with Elab.Vhdl_Objtypes;
with Elab.Vhdl_Types;
with Elab.Memtype;
with Synth.Vhdl_Eval;

with Grt.Types;
with Grt.Vhdl_Types;
with Grt.Fcvt;
with Grt.To_Strings;

package body Vhdl.Evaluation is
   --  If FORCE is true, always return a literal.
   function Eval_Expr_Keep_Orig (Expr : Iir; Force : Boolean) return Iir;

   function Eval_Check_Bound (Expr : Iir; Sub_Type : Iir) return Boolean;

   function Eval_Enum_To_String (Lit : Iir; Orig : Iir) return Iir;
   function Eval_Integer_Image (Val : Int64; Orig : Iir) return Iir;
   function Eval_Floating_Image (Val : Fp64; Orig : Iir) return Iir;
   function Eval_Floating_To_String_Format (Val : Fp64; Fmt : Iir; Orig : Iir)
                                           return Iir;
   procedure Eval_Range_Bounds (Rng : Iir;
                                Dir : out Direction_Type;
                                Left, Right : out Iir);

   function Eval_Scalar_Compare (Left, Right : Iir) return Compare_Type;

   function Get_Physical_Value (Expr : Iir) return Int64
   is
      pragma Unsuppress (Overflow_Check);
      Kind : constant Iir_Kind := Get_Kind (Expr);
      Unit : Iir;
   begin
      case Kind is
         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal =>
            --  Extract Unit.
            Unit := Get_Physical_Literal
              (Get_Named_Entity (Get_Unit_Name (Expr)));
            pragma Assert (Get_Kind (Unit) = Iir_Kind_Integer_Literal);
            case Iir_Kinds_Physical_Literal (Kind) is
               when Iir_Kind_Physical_Int_Literal =>
                  return Get_Value (Expr) * Get_Value (Unit);
               when Iir_Kind_Physical_Fp_Literal =>
                  return Int64 (Get_Fp_Value (Expr) * Fp64 (Get_Value (Unit)));
            end case;
         when Iir_Kind_Integer_Literal =>
            return Get_Value (Expr);
         when Iir_Kind_Unit_Declaration =>
            return Get_Value (Get_Physical_Literal (Expr));
         when others =>
            Error_Kind ("get_physical_value", Expr);
      end case;
   end Get_Physical_Value;

   function Build_Integer (Val : Int64; Lit_Type : Iir; Orig : Iir) return Iir
   is
      Res : Iir_Integer_Literal;
   begin
      Res := Create_Iir (Iir_Kind_Integer_Literal);
      Location_Copy (Res, Orig);
      Set_Value (Res, Val);
      Set_Type (Res, Lit_Type);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Integer;

   function Build_Integer (Val : Int64; Origin : Iir) return Iir
   is
      Res : Iir_Integer_Literal;
   begin
      Res := Build_Integer (Val, Get_Type (Origin), Origin);
      Set_Literal_Origin (Res, Origin);
      return Res;
   end Build_Integer;

   function Build_Floating (Val : Fp64; Origin : Iir)
                           return Iir_Floating_Point_Literal
   is
      Res : Iir_Floating_Point_Literal;
   begin
      Res := Create_Iir (Iir_Kind_Floating_Point_Literal);
      Location_Copy (Res, Origin);
      Set_Fp_Value (Res, Val);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Floating;

   function Build_Enumeration_Constant
     (Val : Iir_Index32; Lit_Type : Iir; Orig : Iir) return Iir
   is
      Enum_Type : constant Iir := Get_Base_Type (Lit_Type);
      Enum_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Enum_Type);
      Lit : constant Iir_Enumeration_Literal :=
        Get_Nth_Element (Enum_List, Integer (Val));
      Res : Iir_Enumeration_Literal;
   begin
      Res := Copy_Enumeration_Literal (Lit);
      Location_Copy (Res, Orig);
      return Res;
   end Build_Enumeration_Constant;

   function Build_Enumeration_Constant (Val : Iir_Index32; Origin : Iir)
     return Iir_Enumeration_Literal
   is
      Res : Iir_Enumeration_Literal;
   begin
      Res := Build_Enumeration_Constant (Val, Get_Type (Origin), Origin);
      Set_Literal_Origin (Res, Origin);
      return Res;
   end Build_Enumeration_Constant;

   function Build_Physical (Val : Int64; Origin : Iir)
                           return Iir_Integer_Literal
   is
      Res : Iir_Integer_Literal;
   begin
      Res := Create_Iir (Iir_Kind_Integer_Literal);
      Location_Copy (Res, Origin);
      Set_Value (Res, Val);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Physical;

   function Build_Discrete (Val : Int64; Origin : Iir) return Iir is
   begin
      case Get_Kind (Get_Type (Origin)) is
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            return Build_Enumeration_Constant (Iir_Index32 (Val), Origin);
         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            return Build_Integer (Val, Origin);
         when others =>
            Error_Kind ("build_discrete", Get_Type (Origin));
      end case;
   end Build_Discrete;

   function Build_String (Val : String8_Id; Len : Nat32; Origin : Iir)
                         return Iir
   is
      Res : Iir;
   begin
      Res := Create_Iir (Iir_Kind_String_Literal8);
      Location_Copy (Res, Origin);
      Set_String8_Id (Res, Val);
      Set_String_Length (Res, Len);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_String;

   function Build_String (Str : String; Orig : Iir) return Iir
   is
      use Str_Table;
      Id : String8_Id;
   begin
      Id := Create_String8;
      for I in Str'Range loop
         Append_String8_Char (Str (I));
      end loop;
      return Build_String (Id, Int32 (Str'Length), Orig);
   end Build_String;


   --  Build a simple aggregate composed of EL_LIST from ORIGIN.  STYPE is the
   --  type of the aggregate.  DEF_TYPE should be either Null_Iir or STYPE.  It
   --  is set only when a new subtype has been created for the aggregate.
   function Build_Simple_Aggregate (El_List : Iir_Flist;
                                    Origin : Iir;
                                    Stype : Iir;
                                    Def_Type : Iir := Null_Iir)
                                   return Iir_Simple_Aggregate
   is
      Res : Iir_Simple_Aggregate;
   begin
      Res := Create_Iir (Iir_Kind_Simple_Aggregate);
      Location_Copy (Res, Origin);
      Set_Simple_Aggregate_List (Res, El_List);
      Set_Type (Res, Stype);
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      Set_Literal_Subtype (Res, Def_Type);
      return Res;
   end Build_Simple_Aggregate;

   function Build_Overflow (Origin : Iir; Expr_Type : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Create_Iir (Iir_Kind_Overflow_Literal);
      Location_Copy (Res, Origin);
      Set_Type (Res, Expr_Type);
      Set_Literal_Origin (Res, Origin);
      --  Expression is not static so that it will be an error if it needs
      --  to.  Otherwise, the error will occur at runtime.
      Set_Expr_Staticness (Res, None);
      return Res;
   end Build_Overflow;

   function Build_Overflow (Origin : Iir) return Iir is
   begin
      return Build_Overflow (Origin, Get_Type (Origin));
   end Build_Overflow;

   function Build_Constant (Val : Iir; Origin : Iir) return Iir
   is
      Res : Iir;
   begin
      --  Note: this must work for any literals, because it may be used to
      --  replace a locally static constant by its initial value.
      case Get_Kind (Val) is
         when Iir_Kind_Integer_Literal =>
            Res := Create_Iir (Iir_Kind_Integer_Literal);
            Set_Value (Res, Get_Value (Val));

         when Iir_Kind_Floating_Point_Literal =>
            Res := Create_Iir (Iir_Kind_Floating_Point_Literal);
            Set_Fp_Value (Res, Get_Fp_Value (Val));

         when Iir_Kind_Enumeration_Literal =>
            return Build_Enumeration_Constant
              (Iir_Index32 (Get_Enum_Pos (Val)), Origin);

         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal
           | Iir_Kind_Unit_Declaration =>
            Res := Create_Iir (Iir_Kind_Integer_Literal);
            Set_Value (Res, Get_Physical_Value (Val));

         when Iir_Kind_String_Literal8 =>
            Res := Create_Iir (Iir_Kind_String_Literal8);
            Set_String8_Id (Res, Get_String8_Id (Val));
            Set_String_Length (Res, Get_String_Length (Val));

         when Iir_Kind_Simple_Aggregate =>
            Res := Create_Iir (Iir_Kind_Simple_Aggregate);
            Set_Simple_Aggregate_List (Res, Get_Simple_Aggregate_List (Val));

         when Iir_Kind_Aggregate =>
            --  FIXME: ownership violation: both RES and VAL are parents of
            --   association_choices_chain and aggregate_info.
            --  But this aggregate is always temporary.
            --  TODO: add maybe_ref_chain.
            Res := Create_Iir (Iir_Kind_Aggregate);
            Set_Association_Choices_Chain
              (Res, Get_Association_Choices_Chain (Val));
            Set_Aggregate_Info (Res, Get_Aggregate_Info (Val));
            Set_Aggregate_Expand_Flag (Res, Get_Aggregate_Expand_Flag (Val));

         when Iir_Kind_Overflow_Literal =>
            Res := Create_Iir (Iir_Kind_Overflow_Literal);

         when others =>
            Error_Kind ("build_constant", Val);
      end case;
      Location_Copy (Res, Origin);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Constant;

   function Copy_Constant (Val : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Build_Constant (Val, Val);
      Set_Literal_Origin (Res, Null_Iir);
      return Res;
   end Copy_Constant;

   --  FIXME: origin ?
   function Build_Boolean (Cond : Boolean) return Iir is
   begin
      if Cond then
         return Boolean_True;
      else
         return Boolean_False;
      end if;
   end Build_Boolean;

   function Build_Enumeration (Val : Iir_Index32; Origin : Iir)
                              return Iir_Enumeration_Literal
   is
      Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
      Enum_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Enum_Type);
   begin
      return Get_Nth_Element (Enum_List, Integer (Val));
   end Build_Enumeration;

   function Build_Enumeration (Val : Boolean; Origin : Iir)
                              return Iir_Enumeration_Literal
   is
      Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
      Enum_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Enum_Type);
   begin
      return Get_Nth_Element (Enum_List, Boolean'Pos (Val));
   end Build_Enumeration;

   function Build_Extreme_Value (Is_Pos : Boolean; Origin : Iir) return Iir
   is
      Orig_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
   begin
      case Get_Kind (Orig_Type) is
         when Iir_Kind_Integer_Type_Definition =>
            if Is_Pos then
               return Build_Integer (Int64'Last, Origin);
            else
               return Build_Integer (Int64'First, Origin);
            end if;
         when others =>
            Error_Kind ("build_extreme_value", Orig_Type);
      end case;
   end Build_Extreme_Value;

   --  Check VAL fits in the base type.
   function Build_Integer_Check (Val : Int64; Origin : Iir)
     return Iir_Integer_Literal
   is
      Atype : constant Iir := Get_Base_Type (Get_Type (Origin));
      subtype Rng_32 is Int64 range Int64 (Int32'First) .. Int64 (Int32'Last);
   begin
      if Get_Scalar_Size (Atype) = Scalar_32
        and then Val not in Rng_32
      then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Origin,
                          "arithmetic overflow in static expression");
         return Build_Overflow (Origin);
      end if;

      return Build_Integer (Val, Origin);
   end Build_Integer_Check;

   --  A_RANGE is a range expression, whose type, location, expr_staticness,
   --  left_limit and direction are set.
   --  Type of A_RANGE must have a range_constraint.
   --  Set the right limit of A_RANGE from LEN.
   procedure Set_Right_Limit_By_Length (A_Range : Iir; Len : Int64)
   is
      A_Type : constant Iir := Get_Type (A_Range);
      Left : constant Iir := Get_Left_Limit (A_Range);
      Right : Iir;
      Pos : Int64;
   begin
      pragma Assert (Get_Expr_Staticness (A_Range) = Locally);

      Pos := Eval_Pos (Left);
      case Get_Direction (A_Range) is
         when Dir_To =>
            Pos := Pos + Len - 1;
         when Dir_Downto =>
            Pos := Pos - Len + 1;
      end case;
      if Len > 0
        and then not Eval_Int_In_Range (Pos, Get_Range_Constraint (A_Type))
      then
         Error_Msg_Sem (+A_Range, "range length is beyond subtype length");
         Right := Left;
      else
         Right := Build_Discrete (Pos, A_Range);
         Set_Literal_Origin (Right, Null_Iir);
         Set_Right_Limit_Expr (A_Range, Right);
      end if;
      Set_Right_Limit (A_Range, Right);
   end Set_Right_Limit_By_Length;

   --  LRM08 9.3.2 Literals
   --  If there is a value to the left of the nominal leftmost bound (given by
   --  the 'LEFTOF) attribute, then the leftmost bound is the nominal leftmost
   --  bound, and the rightmost bound is the value to the left of the nominal
   --  leftmost bound.  Otherwise, the leftmost bound is the value to the
   --  right of the nominal leftmost bound, and the rightmost bound is the
   --  nominal leftmost bound.
   procedure Set_Enumeration_Null_Range_Limits (A_Range : Iir)
   is
      A_Type : constant Iir := Get_Type (A_Range);
      Btype : constant Iir := Get_Base_Type (A_Type);
      Enum_List : constant Iir_Flist := Get_Enumeration_Literal_List (Btype);
      Last_Enum : constant Natural := Flist_Last (Enum_List);
      Left : constant Iir := Get_Left_Limit (A_Range);
      Right : Iir;
      Pos : Int64;
      Invert : Boolean;
   begin
      pragma Assert (Get_Expr_Staticness (A_Range) = Locally);

      if Last_Enum = 0 then
         Error_Msg_Sem
           (+A_Range, "null range not supported for enumeration type %n",
            +A_Type);
         Right := Left;
      else
         Pos := Eval_Pos (Left);
         Invert := False;
         case Get_Direction (A_Range) is
            when Dir_To =>
               if Pos = 0 then
                  Pos := Pos + 1;
                  Invert := True;
               else
                  Pos := Pos - 1;
               end if;
            when Dir_Downto =>
               if Pos = Int64 (Last_Enum) then
                  Pos := Pos - 1;
                  Invert := True;
               else
                  Pos := Pos + 1;
               end if;
         end case;

         Right := Build_Discrete (Pos, A_Range);
         Set_Literal_Origin (Right, Null_Iir);

         if Invert then
            Set_Left_Limit_Expr (A_Range, Right);
            Set_Left_Limit (A_Range, Right);
            Set_Right_Limit (A_Range, Left);
         else
            Set_Right_Limit_Expr (A_Range, Right);
            Set_Right_Limit (A_Range, Right);
         end if;
      end if;
   end Set_Enumeration_Null_Range_Limits;

   --  Create a range of type A_TYPE whose length is LEN.
   --  Note: only two nodes are created:
   --  * the range_expression (node returned)
   --  * the right bound
   --  The left bound *IS NOT* created, but points to the left bound of A_TYPE.
   function Create_Range_By_Length
     (A_Type : Iir; Len : Int64; Loc : Location_Type)
     return Iir
   is
      Index_Constraint : Iir;
      Constraint : Iir;
   begin
      --  The left limit must be locally static in order to compute the right
      --  limit.
      pragma Assert (Get_Type_Staticness (A_Type) = Locally);

      Index_Constraint := Get_Range_Constraint (A_Type);
      Constraint := Create_Iir (Iir_Kind_Range_Expression);
      Set_Location (Constraint, Loc);
      Set_Expr_Staticness (Constraint, Locally);
      Set_Type (Constraint, A_Type);
      Set_Left_Limit (Constraint, Get_Left_Limit (Index_Constraint));
      Set_Direction (Constraint, Get_Direction (Index_Constraint));
      if Len = 0
        and then (Get_Kind (Get_Base_Type (A_Type))
                    = Iir_Kind_Enumeration_Type_Definition)
      then
         Set_Enumeration_Null_Range_Limits (Constraint);
      else
         Set_Right_Limit_By_Length (Constraint, Len);
      end if;
      return Constraint;
   end Create_Range_By_Length;

   function Create_Range_Subtype_From_Type (A_Type : Iir; Loc : Location_Type)
                                          return Iir
   is
      Res : Iir;
   begin
      pragma Assert (Get_Type_Staticness (A_Type) = Locally);

      case Get_Kind (A_Type) is
         when Iir_Kind_Enumeration_Type_Definition =>
            Res := Create_Iir (Iir_Kind_Enumeration_Subtype_Definition);
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            Res := Create_Iir (Get_Kind (A_Type));
         when others =>
            Error_Kind ("create_range_subtype_by_length", A_Type);
      end case;
      Set_Location (Res, Loc);
      Set_Parent_Type (Res, A_Type);
      Set_Type_Staticness (Res, Locally);

      return Res;
   end Create_Range_Subtype_From_Type;

   --  Create a subtype of A_TYPE whose length is LEN.
   --  This is used to create subtypes for strings or aggregates.
   function Create_Range_Subtype_By_Length
     (A_Type : Iir; Len : Int64; Loc : Location_Type)
     return Iir
   is
      Res : Iir;
   begin
      Res := Create_Range_Subtype_From_Type (A_Type, Loc);

      Set_Range_Constraint (Res, Create_Range_By_Length (A_Type, Len, Loc));
      return Res;
   end Create_Range_Subtype_By_Length;

   function Create_Unidim_Array_From_Index
     (Base_Type : Iir; Index_Type : Iir; Loc : Iir)
     return Iir_Array_Subtype_Definition
   is
      Res : Iir_Array_Subtype_Definition;
   begin
      Res := Create_Array_Subtype (Base_Type, Get_Location (Loc));
      Set_Nth_Element (Get_Index_Subtype_List (Res), 0, Index_Type);
      Set_Type_Staticness (Res, Min (Get_Type_Staticness (Res),
                                     Get_Type_Staticness (Index_Type)));
      Set_Constraint_State (Res, Fully_Constrained);
      Set_Index_Constraint_Flag (Res, True);
      return Res;
   end Create_Unidim_Array_From_Index;

   function Create_Unidim_Array_By_Length
     (Base_Type : Iir; Len : Int64; Loc : Iir)
     return Iir_Array_Subtype_Definition
   is
      Index_Type : constant Iir := Get_Index_Type (Base_Type, 0);
      N_Index_Type : Iir;
   begin
      N_Index_Type := Create_Range_Subtype_By_Length
        (Index_Type, Len, Get_Location (Loc));
      return Create_Unidim_Array_From_Index (Base_Type, N_Index_Type, Loc);
   end Create_Unidim_Array_By_Length;

   procedure Free_Eval_Static_Expr (Res : Iir; Orig : Iir) is
   begin
      if Res /= Orig and then Get_Literal_Origin (Res) = Orig then
         Free_Iir (Res);
      end if;
   end Free_Eval_Static_Expr;

   --  Free the result RES of Eval_String_Literal called with ORIG, if created.
   procedure Free_Eval_String_Literal (Res : Iir; Orig : Iir)
   is
      L : Iir_Flist;
   begin
      if Res /= Orig then
         L := Get_Simple_Aggregate_List (Res);
         Destroy_Iir_Flist (L);
         Free_Iir (Res);
      end if;
   end Free_Eval_String_Literal;

   function String_Literal8_To_Simple_Aggregate (Str : Iir) return Iir
   is
      Element_Type : constant Iir := Get_Base_Type
        (Get_Element_Subtype (Get_Base_Type (Get_Type (Str))));
      Literal_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Element_Type);

      Len : constant Nat32 := Get_String_Length (Str);
      Id : constant String8_Id := Get_String8_Id (Str);

      List : Iir_Flist;
      Lit : Iir;
   begin
      List := Create_Iir_Flist (Natural (Len));

      for I in 1 .. Len loop
         Lit := Get_Nth_Element
           (Literal_List, Natural (Str_Table.Element_String8 (Id, I)));
         Set_Nth_Element (List, Natural (I - 1), Lit);
      end loop;
      return Build_Simple_Aggregate (List, Str, Get_Type (Str));
   end String_Literal8_To_Simple_Aggregate;

   --  Return the offset of EXPR in RNG.  A result of 0 means the left bound,
   --  a result of 1 mean the next element after the left bound.
   --  Assume no overflow.
   function Eval_Pos_In_Range (Rng : Iir; Expr : Iir) return Iir_Index32
   is
      Left_Pos : constant Int64 := Eval_Pos (Get_Left_Limit (Rng));
      Pos : constant Int64 := Eval_Pos (Expr);
   begin
      case Get_Direction (Rng) is
         when Dir_To =>
            return Iir_Index32 (Pos - Left_Pos);
         when Dir_Downto =>
            return Iir_Index32 (Left_Pos - Pos);
      end case;
   end Eval_Pos_In_Range;

   procedure Build_Array_Choices_Vector (Vect : out Iir_Array;
                                         Choice_Range : Iir;
                                         Choices_Chain : Iir;
                                         Last_Dim : Boolean)
   is
      pragma Assert (Vect'First = 0);
      pragma Assert (Vect'Length = Eval_Discrete_Range_Length (Choice_Range));
      Assoc : Iir;
      Expr : Iir;
      Cur_Pos : Natural;
   begin
      --  Initialize Vect (to correctly handle 'others').
      Vect := (others => Null_Iir);

      Assoc := Choices_Chain;
      Cur_Pos := 0;
      Expr := Null_Iir;
      while Is_Valid (Assoc) loop
         if not Get_Same_Alternative_Flag (Assoc) then
            if Last_Dim then
               Expr := Get_Associated_Expr (Assoc);
            else
               Expr := Assoc;
            end if;
         end if;
         case Iir_Kinds_Array_Choice (Get_Kind (Assoc)) is
            when Iir_Kind_Choice_By_None =>
               if Get_Element_Type_Flag (Assoc) then
                  Vect (Cur_Pos) := Expr;
                  Cur_Pos := Cur_Pos + 1;
               else
                  declare
                     Assoc_Len : Int64;
                  begin
                     pragma Assert (Last_Dim);
                     Assoc_Len := Eval_Discrete_Type_Length
                       (Get_Index_Type (Get_Type (Expr), 0));
                     for I in 0 .. Iir_Index32 (Assoc_Len - 1) loop
                        Vect (Cur_Pos) :=
                          Eval_Indexed_Name_By_Offset (Expr, I);
                        Cur_Pos := Cur_Pos + 1;
                     end loop;
                  end;
               end if;
            when Iir_Kind_Choice_By_Range =>
               declare
                  Rng : constant Iir := Get_Choice_Range (Assoc);
                  Rng_Start : Iir;
                  Rng_Len : Int64;
                  E : Iir;
               begin
                  if Get_Direction (Rng) = Get_Direction (Choice_Range) then
                     Rng_Start := Get_Left_Limit (Rng);
                  else
                     Rng_Start := Get_Right_Limit (Rng);
                  end if;
                  Cur_Pos := Natural
                    (Eval_Pos_In_Range (Choice_Range, Rng_Start));
                  Rng_Len := Eval_Discrete_Range_Length (Rng);
                  for I in 1 .. Iir_Index32 (Rng_Len) loop
                     if Get_Element_Type_Flag (Assoc) then
                        E := Expr;
                     else
                        pragma Assert (Last_Dim);
                        E := Eval_Indexed_Name_By_Offset (Expr, I - 1);
                     end if;
                     Vect (Cur_Pos) := E;
                     Cur_Pos := Cur_Pos + 1;
                  end loop;
               end;
            when Iir_Kind_Choice_By_Expression =>
               Cur_Pos := Natural
                 (Eval_Pos_In_Range (Choice_Range,
                                     Get_Choice_Expression (Assoc)));
               Vect (Cur_Pos) := Expr;
            when Iir_Kind_Choice_By_Others =>
               for I in Vect'Range loop
                  if Vect (I) = Null_Iir then
                     Vect (I) := Expr;
                  end if;
               end loop;
         end case;
         Assoc := Get_Chain (Assoc);
      end loop;
   end Build_Array_Choices_Vector;

   function Array_Aggregate_To_Simple_Aggregate (Aggr : Iir) return Iir
   is
      Aggr_Type : constant Iir := Get_Type (Aggr);
      Index_Type : constant Iir := Get_Index_Type (Aggr_Type, 0);
      Index_Range : constant Iir := Eval_Static_Range (Index_Type);
      Len : constant Int64 := Eval_Discrete_Range_Length (Index_Range);
      Assocs : constant Iir := Get_Association_Choices_Chain (Aggr);
      Vect : Iir_Array (0 .. Integer (Len - 1));
      List : Iir_Flist;
      Assoc : Iir;
      Expr : Iir;
   begin
      Assoc := Assocs;
      while Is_Valid (Assoc) loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Expr := Get_Associated_Expr (Assoc);
            if Get_Kind (Get_Type (Expr))
              in Iir_Kinds_Scalar_Type_And_Subtype_Definition
            then
               Expr := Eval_Expr_Keep_Orig (Expr, True);
               Set_Associated_Expr (Assoc, Expr);
            end if;
         end if;
         Assoc := Get_Chain (Assoc);
      end loop;

      Build_Array_Choices_Vector (Vect, Index_Range, Assocs, True);

      List := Create_Iir_Flist (Natural (Len));
      if Len > 0 then
         --  Workaround GNAT GPL2014 compiler bug.
         for I in Vect'Range loop
            Set_Nth_Element (List, I, Vect (I));
         end loop;
      end if;

      return Build_Simple_Aggregate (List, Aggr, Aggr_Type);
   end Array_Aggregate_To_Simple_Aggregate;

   function Eval_String_Literal (Str : Iir) return Iir is
   begin
      case Get_Kind (Str) is
         when Iir_Kind_String_Literal8 =>
            return String_Literal8_To_Simple_Aggregate (Str);

         when Iir_Kind_Aggregate =>
            return Array_Aggregate_To_Simple_Aggregate (Str);

         when Iir_Kind_Simple_Aggregate =>
            return Str;

         when others =>
            Error_Kind ("eval_string_literal", Str);
      end case;
   end Eval_String_Literal;

   package Synth_Helpers is
      use Elab.Vhdl_Objtypes;
      use Elab.Memtype;

      function Convert_Node_To_Typ (N : Iir) return Type_Acc;
      function Convert_Node_To_Memtyp (N : Iir) return Memtyp;
      function Convert_Memtyp_To_Node (Mt : Memtyp; Btype : Iir; Orig : Iir)
                                      return Iir;
   end Synth_Helpers;

   package body Synth_Helpers is
      use Elab.Vhdl_Types;

      function Convert_Discrete_Range (Rng : Iir) return Discrete_Range_Type is
      begin
         return Build_Discrete_Range_Type
           (Eval_Pos (Get_Left_Limit (Rng)),
            Eval_Pos (Get_Right_Limit (Rng)),
            Get_Direction (Rng));
      end Convert_Discrete_Range;

      function Convert_Node_To_Typ (N : Iir) return Type_Acc is
      begin
         case Get_Kind (N) is
            when Iir_Kind_Enumeration_Type_Definition =>
               return Elab_Enumeration_Type_Definition (N);
            when Iir_Kind_Integer_Type_Definition =>
               declare
                  Decl : constant Iir := Get_Type_Declarator (N);
                  St : constant Iir := Get_Subtype_Definition (Decl);
                  pragma Assert
                    (Get_Kind (St) = Iir_Kind_Integer_Subtype_Definition);
               begin
                  return Elab_Scalar_Type_Definition (N, St);
               end;
            when Iir_Kind_Integer_Subtype_Definition
              | Iir_Kind_Enumeration_Subtype_Definition =>
               declare
                  Rng : constant Iir := Get_Range_Constraint (N);
                  Base_Typ : Type_Acc;
                  Res_Rng : Discrete_Range_Type;
                  W : Uns32;
               begin
                  Base_Typ := Convert_Node_To_Typ (Get_Base_Type (N));
                  if Base_Typ.Kind in Type_Nets then
                     --  A subtype of a bit/logic type is still a bit/logic.
                     --  FIXME: bounds.
                     return Base_Typ;
                  end if;
                  Res_Rng := Convert_Discrete_Range (Rng);
                  W := Discrete_Range_Width (Res_Rng);
                  return Create_Discrete_Type (Res_Rng, Base_Typ.Sz, W);
               end;
            when Iir_Kind_Floating_Type_Definition =>
               return Create_Float_Type ((Dir_To, Fp64'First, Fp64'Last));
            when Iir_Kind_Array_Type_Definition =>
               declare
                  El : Type_Acc;
                  Idx : Type_Acc;
               begin
                  if Get_Nbr_Elements (Get_Index_Subtype_List (N)) /= 1 then
                     raise Internal_Error;
                  end if;
                  El := Convert_Node_To_Typ (Get_Element_Subtype (N));
                  Idx := Convert_Node_To_Typ (Get_Index_Type (N, 0));
                  if El.Kind in Type_Nets then
                     return Create_Unbounded_Vector (El, Idx);
                  else
                     return Create_Unbounded_Array (Idx, True, El);
                  end if;
               end;
            when Iir_Kind_Array_Subtype_Definition =>
               declare
                  Idx : constant Iir := Get_Index_Type (N, 0);
                  El_Typ : Type_Acc;
                  Res_Rng : Discrete_Range_Type;
               begin
                  El_Typ := Convert_Node_To_Typ (Get_Element_Subtype (N));
                  pragma Assert (El_Typ.Kind in Type_Nets);
                  Res_Rng := Convert_Discrete_Range
                    (Get_Range_Constraint (Idx));
                  return Create_Vector_Type
                    (Synth_Bounds_From_Range (Res_Rng), True, El_Typ);
               end;

            when others =>
               Error_Kind ("convert_node_to_typ", N);
         end case;
         return null;
      end Convert_Node_To_Typ;

      function Convert_Node_To_Memtyp (N : Iir; Typ : Type_Acc) return Memtyp
      is
         Res : Memtyp;
      begin
         case Get_Kind (N) is
            when Iir_Kind_Aggregate =>
               declare
                  Sa : Iir;
               begin
                  Sa := Array_Aggregate_To_Simple_Aggregate (N);
                  Res := Convert_Node_To_Memtyp (Sa, Typ);
                  --  TODO: destroy SA
                  return Res;
               end;
            when Iir_Kind_Simple_Aggregate =>
               declare
                  Els : constant Iir_Flist := Get_Simple_Aggregate_List (N);
                  Last : constant Natural := Flist_Last (Els);
                  Val : Iir;
               begin
                  pragma Assert (Typ.Kind = Type_Vector);
                  Res := Create_Memory (Typ);

                  for I in Flist_First .. Last loop
                     --  Elements are static.
                     Val := Get_Nth_Element (Els, I);
                     Write_Discrete (Res.Mem + Size_Type (I) * Typ.Arr_El.Sz,
                                     Typ.Arr_El, Eval_Pos (Val));
                  end loop;
               end;
            when Iir_Kind_String_Literal8 =>
               declare
                  Element_Type : constant Iir := Get_Base_Type
                    (Get_Element_Subtype (Get_Base_Type (Get_Type (N))));
                  Literal_List : constant Iir_Flist :=
                    Get_Enumeration_Literal_List (Element_Type);

                  Len : constant Nat32 := Get_String_Length (N);
                  Id : constant String8_Id := Get_String8_Id (N);

                  Lit : Iir;
               begin
                  Res := Create_Memory (Typ);

                  for I in 1 .. Len loop
                     Lit := Get_Nth_Element
                       (Literal_List,
                        Natural (Str_Table.Element_String8 (Id, I)));
                     Write_Discrete (Res.Mem + Size_Type (I - 1), Typ.Arr_El,
                                     Int64 (Get_Enum_Pos (Lit)));
                  end loop;
               end;
            when Iir_Kind_Integer_Literal
              | Iir_Kind_Enumeration_Literal =>
               Res := Create_Memory (Typ);
               Write_Discrete (Res.Mem, Typ, Eval_Pos (N));

            when Iir_Kind_Floating_Point_Literal =>
               Res := Create_Memory (Typ);
               Write_Fp64 (Res.Mem, Get_Fp_Value (N));

            when Iir_Kind_Character_Literal =>
               --  For default values of interfaces.
               return Convert_Node_To_Memtyp (Get_Named_Entity (N), Typ);

            when others =>
               Error_Kind ("convert_node_to_memtyp", N);
         end case;
         return Res;
      end Convert_Node_To_Memtyp;

      function Convert_Node_To_Memtyp (N : Iir) return Memtyp
      is
         Typ : Type_Acc;
      begin
         Typ := Convert_Node_To_Typ (Get_Type (N));
         return Convert_Node_To_Memtyp (N, Typ);
      end Convert_Node_To_Memtyp;

      function Convert_Discrete_To_Node (V : Int64; Vtype : Iir; Orig : Iir)
                                        return Iir is
      begin
         case Get_Kind (Vtype) is
            when Iir_Kind_Integer_Subtype_Definition =>
               return Build_Integer (V, Vtype, Orig);
            when Iir_Kind_Enumeration_Subtype_Definition
              | Iir_Kind_Enumeration_Type_Definition =>
               return Build_Enumeration_Constant
                 (Iir_Index32 (V), Vtype, Orig);
            when others =>
               Error_Kind ("convert_discrete_to_node", Vtype);
         end case;
      end Convert_Discrete_To_Node;

      function Convert_Bound_To_Node
        (Bnd : Bound_Type; Btype : Iir; Orig : Iir) return Iir
      is
         Rng : Iir;
         Limit : Iir;
      begin
         Rng := Create_Iir (Iir_Kind_Range_Expression);
         Location_Copy (Rng, Orig);
         Set_Expr_Staticness (Rng, Locally);
         Set_Type (Rng, Btype);
         Set_Direction (Rng, Bnd.Dir);
         Limit := Convert_Discrete_To_Node (Int64 (Bnd.Left), Btype, Orig);
         Set_Left_Limit_Expr (Rng, Limit);
         Set_Left_Limit (Rng, Limit);
         Limit := Convert_Discrete_To_Node (Int64 (Bnd.Right), Btype, Orig);
         Set_Right_Limit_Expr (Rng, Limit);
         Set_Right_Limit (Rng, Limit);
         return Rng;
      end Convert_Bound_To_Node;

      function Convert_Typ_To_Node (Typ : Type_Acc; Btype : Iir; Orig : Iir)
                                   return Iir
      is
         Res : Iir;
      begin
         case Get_Kind (Btype) is
            when Iir_Kind_Array_Type_Definition =>
               declare
                  Loc : constant Location_Type := Get_Location (Orig);
                  Base_Idx : constant Iir := Get_Index_Type (Btype, 0);
                  Rng : Iir;
                  Idx_Type : Iir;
               begin
                  Idx_Type := Create_Range_Subtype_From_Type (Base_Idx, Loc);
                  Rng := Convert_Bound_To_Node (Typ.Abound, Base_Idx, Orig);
                  Set_Range_Constraint (Idx_Type, Rng);

                  Res := Create_Array_Subtype (Btype, Loc);
                  Set_Nth_Element (Get_Index_Subtype_List (Res), 0, Idx_Type);
                  Set_Type_Staticness (Res, Locally);
                  Set_Constraint_State (Res, Fully_Constrained);
                  Set_Index_Constraint_Flag (Res, True);
                  return Res;
               end;
            when others =>
               Error_Kind ("convert_typ_to_node", Btype);
               return Null_Iir;
         end case;
      end Convert_Typ_To_Node;

      function Convert_Vect_To_Simple_Aggregate
        (Mt : Memtyp; Res_Type : Iir; Orig : Iir) return Iir
      is
         Element_Type : constant Iir := Get_Base_Type
           (Get_Element_Subtype (Get_Base_Type (Res_Type)));
         Literal_List : constant Iir_Flist :=
           Get_Enumeration_Literal_List (Element_Type);

         Len : constant Nat32 := Nat32 (Mt.Typ.Abound.Len);

         List : Iir_Flist;
         El : Int64;
         Lit : Iir;
      begin
         List := Create_Iir_Flist (Natural (Len));

         for I in 1 .. Len loop
            El := Read_Discrete (Mt.Mem + Size_Type (I - 1),
                                 Mt.Typ.Arr_El);
            Lit := Get_Nth_Element (Literal_List, Natural (El));
            Set_Nth_Element (List, Natural (I - 1), Lit);
         end loop;
         return Build_Simple_Aggregate (List, Orig, Res_Type, Res_Type);
      end Convert_Vect_To_Simple_Aggregate;

      function Convert_Memtyp_To_Node (Mt : Memtyp; Btype : Iir; Orig : Iir)
                                      return Iir
      is
         Res_Type : Iir;
      begin
         case Mt.Typ.Kind is
            when Type_Vector
              | Type_Array =>
               Res_Type := Convert_Typ_To_Node (Mt.Typ, Btype, Orig);
               return Convert_Vect_To_Simple_Aggregate
                 (Mt, Res_Type, Orig);
            when Type_Logic
              | Type_Bit =>
               return Convert_Discrete_To_Node
                 (Read_Discrete (Mt), Btype, Orig);
            when Type_Float =>
               return Build_Floating (Read_Fp64 (Mt), Orig);
            when Type_Discrete =>
               Res_Type := Get_Type (Orig);
               case Iir_Kinds_Discrete_Type_Definition (Get_Kind (Res_Type)) is
                  when Iir_Kind_Integer_Type_Definition
                    | Iir_Kind_Integer_Subtype_Definition =>
                     return Build_Integer (Read_Discrete (Mt), Orig);
                  when Iir_Kind_Enumeration_Type_Definition
                    | Iir_Kind_Enumeration_Subtype_Definition =>
                     --  Cannot happen: only bit and std_ulogic are involed in
                     --  static operations and those are handled by Type_Logic
                     --  and Type_Bit.
                     raise Internal_Error;
               end case;
            when others =>
               raise Internal_Error;
         end case;
      end Convert_Memtyp_To_Node;
   end Synth_Helpers;

   function Eval_Ieee_Operation
     (Orig : Iir; Imp : Iir; Left : Iir; Right : Iir) return Iir
   is
      use Elab.Vhdl_Objtypes;
      use Synth.Vhdl_Eval;
      use Synth_Helpers;

      Res_Type : constant Iir := Get_Return_Type (Imp);
      Marker : Mark_Type;
      Left_Mt, Right_Mt : Memtyp;
      Res_Typ : Type_Acc;
      Res_Mt : Memtyp;
      Res : Iir;
   begin
      Mark_Expr_Pool (Marker);

      Res_Typ := Convert_Node_To_Typ (Res_Type);
      Left_Mt := Convert_Node_To_Memtyp (Left);
      if Right /= Null_Iir then
         Right_Mt := Convert_Node_To_Memtyp (Right);
      else
         Right_Mt := Null_Memtyp;
      end if;

      Res_Mt := Eval_Static_Predefined_Function_Call
        (null, Left_Mt, Right_Mt, Res_Typ, Orig);

      Res := Convert_Memtyp_To_Node (Res_Mt, Res_Type, Orig);
      Release_Expr_Pool (Marker);

      return Res;
   end Eval_Ieee_Operation;

   function Eval_Predefined_Call (Orig : Iir;
                                  Call : Iir;
                                  Param1, Param2 : Iir) return Iir
   is
      use Elab.Vhdl_Objtypes;
      use Synth.Vhdl_Eval;
      use Synth_Helpers;

      Imp : constant Iir := Get_Implementation (Call);
      Res_Type : constant Iir := Get_Return_Type (Imp);
      Marker : Mark_Type;
      Param1_Mt, Param2_Mt : Memtyp;
      Res_Typ : Type_Acc;
      Res_Mt : Memtyp;
      Res : Iir;
   begin
      Mark_Expr_Pool (Marker);

      Res_Typ := Convert_Node_To_Typ (Res_Type);
      Param1_Mt := Convert_Node_To_Memtyp (Param1);
      if Param2 /= Null_Iir then
         Param2_Mt := Convert_Node_To_Memtyp (Param2);
      else
         Param2_Mt := Null_Memtyp;
      end if;
      Res_Mt := Eval_Static_Predefined_Function_Call
        (null, Param1_Mt, Param2_Mt, Res_Typ, Call);
      Res := Convert_Memtyp_To_Node (Res_Mt, Res_Type, Orig);
      Release_Expr_Pool (Marker);

      return Res;
   end Eval_Predefined_Call;

   function Eval_Monadic_Operator (Orig : Iir; Operand : Iir) return Iir
   is
      pragma Unsuppress (Overflow_Check);
      subtype Iir_Predefined_Vector_Minmax is Iir_Predefined_Functions range
        Iir_Predefined_Vector_Minimum .. Iir_Predefined_Vector_Maximum;

      Imp : constant Iir := Get_Implementation (Orig);
      Func : Iir_Predefined_Functions;
   begin
      if Is_Overflow_Literal (Operand) then
         --  Propagate overflow.
         return Build_Overflow (Orig);
      end if;

      Func := Get_Implicit_Definition (Imp);
      case Func is
         when Iir_Predefined_Integer_Negation =>
            return Build_Integer (-Get_Value (Operand), Orig);
         when Iir_Predefined_Integer_Identity =>
            return Build_Integer (Get_Value (Operand), Orig);
         when Iir_Predefined_Integer_Absolute =>
            return Build_Integer (abs Get_Value (Operand), Orig);

         when Iir_Predefined_Floating_Negation =>
            return Build_Floating (-Get_Fp_Value (Operand), Orig);
         when Iir_Predefined_Floating_Identity =>
            return Build_Floating (Get_Fp_Value (Operand), Orig);
         when Iir_Predefined_Floating_Absolute =>
            return Build_Floating (abs Get_Fp_Value (Operand), Orig);

         when Iir_Predefined_Physical_Negation =>
            return Build_Physical (-Get_Physical_Value (Operand), Orig);
         when Iir_Predefined_Physical_Identity =>
            return Build_Physical (Get_Physical_Value (Operand), Orig);
         when Iir_Predefined_Physical_Absolute =>
            return Build_Physical (abs Get_Physical_Value (Operand), Orig);

         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Bit_Not =>
            return Build_Enumeration (Get_Enum_Pos (Operand) = 0, Orig);

         when Iir_Predefined_Bit_Condition =>
            return Build_Enumeration (Get_Enum_Pos (Operand) = 1, Orig);

         when Iir_Predefined_TF_Array_Not =>
            declare
               Lit_Val : Iir;
               O_List : Iir_Flist;
               R_List : Iir_Flist;
               El : Iir;
               Lit : Iir;
            begin
               Lit_Val := Eval_String_Literal (Operand);
               O_List := Get_Simple_Aggregate_List (Lit_Val);
               R_List := Create_Iir_Flist (Get_Nbr_Elements (O_List));

               for I in Flist_First .. Flist_Last (O_List) loop
                  El := Get_Nth_Element (O_List, I);
                  case Get_Enum_Pos (El) is
                     when 0 =>
                        Lit := Bit_1;
                     when 1 =>
                        Lit := Bit_0;
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (R_List, I, Lit);
               end loop;
               Free_Eval_String_Literal (Lit_Val, Operand);
               return Build_Simple_Aggregate
                 (R_List, Orig, Get_Type (Operand));
            end;

         when Iir_Predefined_Enum_To_String =>
            return Eval_Enum_To_String (Operand, Orig);
         when Iir_Predefined_Integer_To_String =>
            return Eval_Integer_Image (Get_Value (Operand), Orig);
         when Iir_Predefined_Floating_To_String =>
            return Eval_Floating_Image (Get_Fp_Value (Operand), Orig);

         when Iir_Predefined_Array_Char_To_String =>
            --  LRM08 5.7 String representation
            --  - For a given value that is of a one-dimensional array type
            --    whose element type is a character type that contains only
            --    character literals, the string representation has the same
            --    length as the given value.  Each element of the string
            --    representation is the same character literal as the matching
            --    element of the given value.
            declare
               Saggr : Iir;
               Lits : Iir_Flist;
               El : Iir;
               C : Character;
               String_Id : String8_Id;
               Len : Natural;
            begin
               Saggr := Eval_String_Literal (Operand);
               Lits := Get_Simple_Aggregate_List (Saggr);
               Len := Get_Nbr_Elements (Lits);
               String_Id := Str_Table.Create_String8;
               for I in Flist_First .. Flist_Last (Lits) loop
                  El := Get_Nth_Element (Lits, I);
                  C := Get_Character (Get_Identifier (El));
                  Str_Table.Append_String8_Char (C);
               end loop;
               Free_Eval_String_Literal (Saggr, Operand);

               return Build_String (String_Id, Nat32 (Len), Orig);
            end;

         when Iir_Predefined_Vector_Minimum
           | Iir_Predefined_Vector_Maximum =>
            --  LRM08 5.3.2.4 Predefined operations on array types
            declare
               Saggr : Iir;
               Lits : Iir_Flist;
               Res : Iir;
               El : Iir;
               Cmp : Compare_Type;
            begin
               Saggr := Eval_String_Literal (Operand);
               Lits := Get_Simple_Aggregate_List (Saggr);

               if Get_Nbr_Elements (Lits) = 0 then
                  declare
                     Typ : constant Iir :=
                       Get_Type (Get_Implementation (Orig));
                     Rng : constant Iir := Eval_Static_Range (Typ);
                  begin
                     case Iir_Predefined_Vector_Minmax (Func) is
                        when Iir_Predefined_Vector_Minimum =>
                           Res := Get_High_Limit (Rng);
                        when Iir_Predefined_Vector_Maximum =>
                           Res := Get_Low_Limit (Rng);
                     end case;
                     Res := Eval_Static_Expr (Res);
                  end;
               else
                  Res := Get_Nth_Element (Lits, 0);
                  for I in Flist_First .. Flist_Last (Lits) loop
                     El := Get_Nth_Element (Lits, I);
                     Cmp := Eval_Scalar_Compare (El, Res);
                     case Iir_Predefined_Vector_Minmax (Func) is
                        when Iir_Predefined_Vector_Minimum =>
                           if Cmp <= Compare_Eq then
                              Res := El;
                           end if;
                        when Iir_Predefined_Vector_Maximum =>
                           if Cmp >= Compare_Eq then
                              Res := El;
                           end if;
                     end case;
                  end loop;
               end if;
               Free_Eval_String_Literal (Saggr, Operand);
               return Res;
            end;

         when Iir_Predefined_IEEE_Explicit
            | Iir_Predefined_Bit_Vector_To_Hstring
            | Iir_Predefined_Bit_Vector_To_Ostring =>
            return Eval_Ieee_Operation (Orig, Imp, Operand, Null_Iir);

         when others =>
            Error_Internal (Orig, "eval_monadic_operator: " &
                            Iir_Predefined_Functions'Image (Func));
      end case;
   exception
      when Constraint_Error =>
         --  Can happen for absolute.
         Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                          "arithmetic overflow in static expression");
         return Build_Overflow (Orig);
   end Eval_Monadic_Operator;

   function Eval_Dyadic_Bit_Array_Operator
     (Expr : Iir;
      Left, Right : Iir;
      Func : Iir_Predefined_Dyadic_TF_Array_Functions) return Iir
   is
      Expr_Type : constant Iir := Get_Type (Expr);
      El_Type : constant Iir :=
        Get_Base_Type (Get_Element_Subtype (Expr_Type));
      Enum_List : constant Iir_Flist := Get_Enumeration_Literal_List (El_Type);
      Cst_0 : constant Iir := Get_Nth_Element (Enum_List, 0);
      Cst_1 : constant Iir := Get_Nth_Element (Enum_List, 1);
      Left_Val, Right_Val : Iir;
      R_List, L_List : Iir_Flist;
      Len : Natural;
      Res : Iir;
      Res_List : Iir_Flist;
      El : Iir;
   begin
      Left_Val := Eval_String_Literal (Left);
      Right_Val := Eval_String_Literal (Right);

      L_List := Get_Simple_Aggregate_List (Left_Val);
      R_List := Get_Simple_Aggregate_List (Right_Val);
      Len := Get_Nbr_Elements (L_List);

      if Len /= Get_Nbr_Elements (R_List) then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                          "length of left and right operands mismatch");
         Res := Build_Overflow (Expr);
      else
         Res_List := Create_Iir_Flist (Len);

         case Func is
            when Iir_Predefined_TF_Array_And =>
               for I in 0 .. Len - 1 loop
                  El := Get_Nth_Element (L_List, I);
                  case Get_Enum_Pos (El) is
                     when 0 =>
                        null;
                     when 1 =>
                        El := Get_Nth_Element (R_List, I);
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (Res_List, I, El);
               end loop;
            when Iir_Predefined_TF_Array_Nand =>
               for I in 0 .. Len - 1 loop
                  El := Get_Nth_Element (L_List, I);
                  case Get_Enum_Pos (El) is
                     when 0 =>
                        El := Cst_1;
                     when 1 =>
                        El := Get_Nth_Element (R_List, I);
                        case Get_Enum_Pos (El) is
                           when 0 =>
                              El := Cst_1;
                           when 1 =>
                              El := Cst_0;
                           when others =>
                              raise Internal_Error;
                        end case;
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (Res_List, I, El);
               end loop;
            when Iir_Predefined_TF_Array_Or =>
               for I in 0 .. Len - 1 loop
                  El := Get_Nth_Element (L_List, I);
                  case Get_Enum_Pos (El) is
                     when 1 =>
                        null;
                     when 0 =>
                        El := Get_Nth_Element (R_List, I);
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (Res_List, I, El);
               end loop;
            when Iir_Predefined_TF_Array_Nor =>
               for I in 0 .. Len - 1 loop
                  El := Get_Nth_Element (L_List, I);
                  case Get_Enum_Pos (El) is
                     when 1 =>
                        El := Cst_0;
                     when 0 =>
                        El := Get_Nth_Element (R_List, I);
                        case Get_Enum_Pos (El) is
                           when 0 =>
                              El := Cst_1;
                           when 1 =>
                              El := Cst_0;
                           when others =>
                              raise Internal_Error;
                        end case;
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (Res_List, I, El);
               end loop;
            when Iir_Predefined_TF_Array_Xor =>
               for I in 0 .. Len - 1 loop
                  El := Get_Nth_Element (L_List, I);
                  case Get_Enum_Pos (El) is
                     when 1 =>
                        El := Get_Nth_Element (R_List, I);
                        case Get_Enum_Pos (El) is
                           when 0 =>
                              El := Cst_1;
                           when 1 =>
                              El := Cst_0;
                           when others =>
                              raise Internal_Error;
                        end case;
                     when 0 =>
                        El := Get_Nth_Element (R_List, I);
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (Res_List, I, El);
               end loop;
            when others =>
               Error_Internal (Expr, "eval_dyadic_bit_array_functions: " &
                                 Iir_Predefined_Functions'Image (Func));
         end case;

         Res := Build_Simple_Aggregate (Res_List, Expr, Expr_Type);
      end if;

      Free_Eval_Static_Expr (Left_Val, Left);
      Free_Eval_Static_Expr (Right_Val, Right);

      --  The unconstrained type is replaced by the constrained one.
      Set_Type (Res, Get_Type (Left));
      return Res;
   end Eval_Dyadic_Bit_Array_Operator;

   --  Return TRUE if VAL /= 0.
   function Check_Integer_Division_By_Zero (Expr : Iir; Val : Iir)
                                           return Boolean
   is
   begin
      if Get_Value (Val) = 0 then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr, "division by 0");
         return False;
      else
         return True;
      end if;
   end Check_Integer_Division_By_Zero;

   function Eval_Shift_Operator
     (Left, Right : Iir; Origin : Iir; Func : Iir_Predefined_Shift_Functions)
     return Iir
   is
      Count : constant Int64 := Get_Value (Right);
      Arr_List : constant Iir_Flist := Get_Simple_Aggregate_List (Left);
      Len : constant Natural := Get_Nbr_Elements (Arr_List);
      Cnt : Natural;
      Res_List : Iir_Flist;
      Dir_Left : Boolean;
      E : Iir;
   begin
      --  LRM93 7.2.3
      --  That is, if R is 0 or if L is a null array, the return value is L.
      if Count = 0 or Len = 0 then
         return Build_Simple_Aggregate (Arr_List, Origin, Get_Type (Left));
      end if;
      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Rol =>
            Dir_Left := True;
         when Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Ror =>
            Dir_Left := False;
      end case;
      if Count < 0 then
         Cnt := Natural (-Count);
         Dir_Left := not Dir_Left;
      else
         Cnt := Natural (Count);
      end if;

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl =>
            declare
               Enum_List : constant Iir_Flist :=
                 Get_Enumeration_Literal_List
                 (Get_Base_Type (Get_Element_Subtype (Get_Type (Left))));
            begin
               E := Get_Nth_Element (Enum_List, 0);
            end;
         when Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               E := Get_Nth_Element (Arr_List, Len - 1);
            else
               E := Get_Nth_Element (Arr_List, 0);
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            Cnt := Cnt mod Len;
            if not Dir_Left then
               Cnt := (Len - Cnt) mod Len;
            end if;
      end case;

      Res_List := Create_Iir_Flist (Len);

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               if Cnt < Len then
                  for I in Cnt .. Len - 1 loop
                     Set_Nth_Element
                       (Res_List, I - Cnt, Get_Nth_Element (Arr_List, I));
                  end loop;
               else
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Set_Nth_Element (Res_List, Len - Cnt + I, E);
               end loop;
            else
               if Cnt > Len then
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Set_Nth_Element (Res_List, I, E);
               end loop;
               for I in Cnt .. Len - 1 loop
                  Set_Nth_Element
                    (Res_List, I, Get_Nth_Element (Arr_List, I - Cnt));
               end loop;
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            for I in 1 .. Len loop
               Set_Nth_Element
                 (Res_List, I - 1, Get_Nth_Element (Arr_List, Cnt));
               Cnt := Cnt + 1;
               if Cnt = Len then
                  Cnt := 0;
               end if;
            end loop;
      end case;
      return Build_Simple_Aggregate (Res_List, Origin, Get_Type (Left));
   end Eval_Shift_Operator;

   --  Concatenate all the elements of OPERANDS.
   --  The first element of OPERANDS is the rightest one, the last the
   --  leftest one.  All the elements are concatenation operators.
   --  All the elements are static.
   function Eval_Concatenation (Operands : Iir_Array) return Iir
   is
      pragma Assert (Operands'First = 1);
      Orig : constant Iir := Operands (1);
      Origin_Type : constant Iir := Get_Type (Orig);

      Ops_Val : Iir_Array (Operands'Range);
      Str_Lits : Iir_Array (Operands'Range);
      Left_Op : Iir;
      Left_Val : Iir;
      Left_Lit : Iir;
      Res_List : Iir_Flist;
      Res_Len : Natural;
      Res_Type : Iir;
      Def, Left_Def : Iir_Predefined_Functions;
      Op : Iir;
      El : Iir;
      El_List : Iir_Flist;
      El_Len : Natural;
      Err_Orig : Iir;

      --  To compute the index range of the result for vhdl87.
      Leftest_Non_Null : Iir;
      Bounds_From_Subtype : Boolean;
   begin
      --  Eval operands, compute length of the result.
      Err_Orig := Null_Iir;
      Res_Len := 0;
      for I in Operands'Range loop
         Op := Operands (I);
         Def := Get_Implicit_Definition (Get_Implementation (Op));
         if Get_Kind (Op) = Iir_Kind_Function_Call then
            El := Get_Actual
              (Get_Chain (Get_Parameter_Association_Chain (Op)));
         else
            El := Get_Right (Op);
         end if;
         Ops_Val (I) := Eval_Static_Expr (El);
         if Is_Overflow_Literal (Ops_Val (I)) then
            Err_Orig := El;
         else
            case Iir_Predefined_Concat_Functions (Def) is
               when Iir_Predefined_Array_Element_Concat
                 | Iir_Predefined_Element_Element_Concat =>
                  Res_Len := Res_Len + 1;
               when Iir_Predefined_Element_Array_Concat
                 | Iir_Predefined_Array_Array_Concat =>
                  Str_Lits (I) := Eval_String_Literal (Ops_Val (I));
                  El_List := Get_Simple_Aggregate_List (Str_Lits (I));
                  Res_Len := Res_Len + Get_Nbr_Elements (El_List);
            end case;
         end if;
      end loop;

      Op := Operands (Operands'Last);
      if Get_Kind (Op) = Iir_Kind_Function_Call then
         Left_Op := Get_Actual (Get_Parameter_Association_Chain (Op));
      else
         Left_Op := Get_Left (Op);
      end if;
      Left_Val := Eval_Static_Expr (Left_Op);
      if Is_Overflow_Literal (Left_Val) then
         Err_Orig := Left_Op;
      else
         Left_Def := Def;
         case Iir_Predefined_Concat_Functions (Left_Def) is
            when Iir_Predefined_Element_Array_Concat
              | Iir_Predefined_Element_Element_Concat =>
               Res_Len := Res_Len + 1;
            when Iir_Predefined_Array_Element_Concat
              | Iir_Predefined_Array_Array_Concat =>
               Left_Lit := Eval_String_Literal (Left_Val);
               El_List := Get_Simple_Aggregate_List (Left_Lit);
               Res_Len := Res_Len + Get_Nbr_Elements (El_List);
         end case;
      end if;

      --  Handle overflow.
      if Err_Orig /= Null_Iir then
         --  Free all.
         for I in Ops_Val'Range loop
            Free_Eval_Static_Expr (Ops_Val (I), Operands (I));
         end loop;
         Free_Eval_Static_Expr (Left_Val, Left_Op);

         return Build_Overflow (Err_Orig);
      end if;

      Res_List := Create_Iir_Flist (Res_Len);

      --  Do the concatenation.
      --  Left:
      Leftest_Non_Null := Null_Iir;
      case Iir_Predefined_Concat_Functions (Left_Def) is
         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Element_Element_Concat =>
            Set_Nth_Element (Res_List, 0, Left_Val);
            Bounds_From_Subtype := True;
            Res_Len := 1;
         when Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Array_Array_Concat =>
            El_List := Get_Simple_Aggregate_List (Left_Lit);
            Res_Len := Get_Nbr_Elements (El_List);
            for I in 0 .. Res_Len - 1 loop
               Set_Nth_Element (Res_List, I, Get_Nth_Element (El_List, I));
            end loop;
            Bounds_From_Subtype := Def = Iir_Predefined_Array_Element_Concat;
            if Res_Len > 0 then
               Leftest_Non_Null := Get_Type (Left_Lit);
            end if;
            Free_Eval_String_Literal (Left_Lit, Left_Val);
      end case;

      --  Right:
      for I in reverse Operands'Range loop
         Def := Get_Implicit_Definition (Get_Implementation (Operands (I)));
         case Iir_Predefined_Concat_Functions (Def) is
            when Iir_Predefined_Array_Element_Concat
              | Iir_Predefined_Element_Element_Concat =>
               Set_Nth_Element (Res_List, Res_Len, Ops_Val (I));
               Bounds_From_Subtype := True;
               Res_Len := Res_Len + 1;
            when Iir_Predefined_Element_Array_Concat
              | Iir_Predefined_Array_Array_Concat =>
               El_List := Get_Simple_Aggregate_List (Str_Lits (I));
               El_Len := Get_Nbr_Elements (El_List);
               for I in 0 .. El_Len - 1 loop
                  Set_Nth_Element
                    (Res_List, Res_Len + I, Get_Nth_Element (El_List, I));
               end loop;
               Bounds_From_Subtype := Bounds_From_Subtype
                 or Def = Iir_Predefined_Element_Array_Concat;
               if Leftest_Non_Null = Null_Iir and then El_Len /= 0 then
                  Leftest_Non_Null := Get_Type (Ops_Val (I));
               end if;
               Free_Eval_String_Literal (Str_Lits (I), Ops_Val (I));
               Res_Len := Res_Len + El_Len;
         end case;
      end loop;

      --  Compute subtype...
      if Flags.Vhdl_Std > Vhdl_87 then
         --  LRM93 7.2.4
         --  If both operands are null arrays, then the result of the
         --  concatenation is the right operand.
         if Res_Len = 0 then
            Res_Type := Get_Type (Get_Right (Operands (1)));
         else
            --  LRM93 7.2.4
            --  Otherwise, the direction and bounds of the result are
            --  determined as follows: let S be the index subtype of the base
            --  type of the result.  The direction of the result of the
            --  concatenation is the direction of S, and the left bound of the
            --  result is S'LEFT.
            Res_Type := Create_Unidim_Array_By_Length
              (Origin_Type, Int64 (Res_Len), Orig);
         end if;
      else
         --  LRM87 7.2.3
         --  The left bound of the result is the left operand, [...]
         --
         --  LRM87 7.2.3
         --  The direction of the result is the direction of the left
         --  operand, [...]
         --
         --  LRM87 7.2.3
         --  [...], unless the left operand is a null array, in which case
         --  the result of the concatenation is the right operand.

         --  Look for the first operand that is either an element or
         --  a non-null array.  If it is an element, create the bounds
         --  by length.  If it is an array, create the bounds from it.  If
         --  there is no such operand, use the leftest operands for the
         --  bounds.
         if Bounds_From_Subtype then
            --  There is at least one concatenation with an element.
            Res_Type := Create_Unidim_Array_By_Length
              (Origin_Type, Int64 (Res_Len), Orig);
         else
            if Res_Len = 0 then
               Res_Type := Get_Type (Get_Right (Operands (1)));
            else
               declare
                  Left_Index : constant Iir :=
                    Get_Index_Type (Leftest_Non_Null, 0);
                  Left_Range : constant Iir :=
                    Get_Range_Constraint (Left_Index);
                  Ret_Type : constant Iir :=
                    Get_Return_Type (Get_Implementation (Orig));
                  Rng_Type : constant Iir := Get_Index_Type (Ret_Type, 0);
                  A_Range : Iir;
                  Index_Type : Iir;
               begin
                  A_Range := Create_Iir (Iir_Kind_Range_Expression);
                  Location_Copy (A_Range, Orig);
                  Set_Type (A_Range, Rng_Type);
                  Set_Expr_Staticness (A_Range, Locally);
                  Set_Left_Limit (A_Range, Get_Left_Limit (Left_Range));
                  Set_Direction (A_Range, Get_Direction (Left_Range));
                  Set_Right_Limit_By_Length (A_Range, Int64 (Res_Len));

                  Index_Type := Create_Range_Subtype_From_Type
                    (Rng_Type, Get_Location (Orig));
                  Set_Range_Constraint (Index_Type, A_Range);
                  Res_Type := Create_Unidim_Array_From_Index
                    (Origin_Type, Index_Type, Orig);
               end;
            end if;
         end if;
      end if;

      for I in Ops_Val'Range loop
         Free_Eval_Static_Expr (Ops_Val (I), Operands (I));
      end loop;
      Free_Eval_Static_Expr (Left_Val, Left_Op);

      --  FIXME: this is not necessarily a string, it may be an aggregate if
      --  element type is not a character type.
      return Build_Simple_Aggregate (Res_List, Orig, Res_Type, Res_Type);
   end Eval_Concatenation;

   function Eval_Scalar_Compare (Left, Right : Iir) return Compare_Type
   is
      Ltype : constant Iir := Get_Base_Type (Get_Type (Left));
   begin
      pragma Assert
        (Get_Kind (Ltype) = Get_Kind (Get_Base_Type (Get_Type (Right))));

      case Get_Kind (Ltype) is
         when Iir_Kind_Enumeration_Type_Definition =>
            declare
               L_Pos : constant Iir_Int32 := Get_Enum_Pos (Left);
               R_Pos : constant Iir_Int32 := Get_Enum_Pos (Right);
            begin
               if L_Pos = R_Pos then
                  return Compare_Eq;
               else
                  if L_Pos < R_Pos then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when Iir_Kind_Physical_Type_Definition =>
            declare
               L_Val : constant Int64 := Get_Physical_Value (Left);
               R_Val : constant Int64 := Get_Physical_Value (Right);
            begin
               if L_Val = R_Val then
                  return Compare_Eq;
               else
                  if L_Val < R_Val then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when Iir_Kind_Integer_Type_Definition =>
            declare
               L_Val : constant Int64 := Get_Value (Left);
               R_Val : constant Int64 := Get_Value (Right);
            begin
               if L_Val = R_Val then
                  return Compare_Eq;
               else
                  if L_Val < R_Val then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when Iir_Kind_Floating_Type_Definition =>
            declare
               L_Val : constant Fp64 := Get_Fp_Value (Left);
               R_Val : constant Fp64 := Get_Fp_Value (Right);
            begin
               if L_Val = R_Val then
                  return Compare_Eq;
               else
                  if L_Val < R_Val then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when others =>
            Error_Kind ("eval_scalar_compare", Ltype);
      end case;
   end Eval_Scalar_Compare;

   function Eval_Array_Compare (Left, Right : Iir) return Compare_Type is
   begin
      if Get_Kind (Left) = Iir_Kind_String_Literal8
        and then Get_Kind (Right) = Iir_Kind_String_Literal8
      then
         --  Common case: both parameters are strings.
         declare
            L_Id : constant String8_Id := Get_String8_Id (Left);
            R_Id : constant String8_Id := Get_String8_Id (Right);
            L_Len : constant Int32 := Get_String_Length (Left);
            R_Len : constant Int32 := Get_String_Length (Right);
            L_El, R_El : Nat8;
            P : Nat32;
         begin
            P := 1;
            while P <= L_Len and P <= R_Len loop
               L_El := Str_Table.Element_String8 (L_Id, P);
               R_El := Str_Table.Element_String8 (R_Id, P);
               if L_El /= R_El then
                  if L_El < R_El then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
               P := P + 1;
            end loop;
            if L_Len = R_Len then
               return Compare_Eq;
            elsif L_Len < R_Len then
               return Compare_Lt;
            else
               return Compare_Gt;
            end if;
         end;
      else
         --  General case.
         declare
            Left_Val, Right_Val : Iir;
            R_List, L_List : Iir_Flist;
            R_Len, L_Len : Natural;
            P : Natural;
            Res : Compare_Type;
         begin
            Left_Val := Eval_String_Literal (Left);
            Right_Val := Eval_String_Literal (Right);

            L_List := Get_Simple_Aggregate_List (Left_Val);
            R_List := Get_Simple_Aggregate_List (Right_Val);
            L_Len := Get_Nbr_Elements (L_List);
            R_Len := Get_Nbr_Elements (R_List);

            Res := Compare_Eq;
            P := 0;
            while P < L_Len and P < R_Len loop
               Res := Eval_Scalar_Compare (Get_Nth_Element (L_List, P),
                                             Get_Nth_Element (R_List, P));
               exit when Res /= Compare_Eq;
               P := P + 1;
            end loop;
            if Res = Compare_Eq then
               if L_Len < R_Len then
                  Res := Compare_Lt;
               elsif L_Len > R_Len then
                  Res := Compare_Gt;
               end if;
            end if;

            Free_Eval_Static_Expr (Left_Val, Left);
            Free_Eval_Static_Expr (Right_Val, Right);

            return Res;
         end;
      end if;
   end Eval_Array_Compare;

   function Eval_Logic_Match_Equality (L, R : Iir_Int32; Loc : Iir)
                                      return Iir_Index32
   is
      use Vhdl.Ieee.Std_Logic_1164;
      Lb, Rb : Boolean;
   begin
      if L = Std_Logic_D_Pos or R = Std_Logic_D_Pos then
         Warning_Msg_Sem
           (Warnid_Analyze_Assert, +Loc,
            "STD_LOGIC_1164: '-' operand for matching ordering operator");
         return Std_Logic_1_Pos;
      end if;
      if L = Std_Logic_U_Pos or R = Std_Logic_U_Pos then
         return Std_Logic_U_Pos;
      end if;
      if L = Std_Logic_X_Pos
        or L = Std_Logic_Z_Pos
        or L = Std_Logic_W_Pos
      then
         return Std_Logic_X_Pos;
      end if;
      if R = Std_Logic_X_Pos
        or R = Std_Logic_Z_Pos
        or R = Std_Logic_W_Pos
      then
         return Std_Logic_X_Pos;
      end if;
      Lb := L = Std_Logic_1_Pos or L = Std_Logic_H_Pos;
      Rb := R = Std_Logic_1_Pos or R = Std_Logic_H_Pos;
      if Lb = Rb then
         return Std_Logic_1_Pos;
      else
         return Std_Logic_0_Pos;
      end if;
   end Eval_Logic_Match_Equality;

   function Eval_Logic_Or (L, R : Iir_Index32) return Iir_Index32
   is
      use Vhdl.Ieee.Std_Logic_1164;
   begin
      if L = Std_Logic_1_Pos or L = Std_Logic_H_Pos
        or R = Std_Logic_1_Pos or R = Std_Logic_H_Pos
      then
         return Std_Logic_1_Pos;
      elsif (L = Std_Logic_0_Pos or L = Std_Logic_L_Pos)
        and (R = Std_Logic_0_Pos or R = Std_Logic_L_Pos)
      then
         return Std_Logic_0_Pos;
      elsif L = Std_Logic_U_Pos or R = Std_Logic_U_Pos then
         return Std_Logic_U_Pos;
      else
         return Std_Logic_X_Pos;
      end if;
   end Eval_Logic_Or;

   function Eval_Logic_Not (X : Iir_Index32) return Iir_Index32
   is
      use Vhdl.Ieee.Std_Logic_1164;
   begin
      if X = Std_Logic_0_Pos or X = Std_Logic_L_Pos then
         return Std_Logic_1_Pos;
      elsif X = Std_Logic_1_Pos or X = Std_Logic_H_Pos then
         return Std_Logic_0_Pos;
      elsif X = Std_Logic_U_Pos then
         return Std_Logic_U_Pos;
      else
         return Std_Logic_X_Pos;
      end if;
   end Eval_Logic_Not;

   function Eval_Logic_Match_Inequality (L, R : Iir_Int32; Loc : Iir)
                                         return Iir_Index32
   is
      E : Iir_Index32;
   begin
      --  Defined as the not operator applied to the equal operator
      E := Eval_Logic_Match_Equality (L, R, Loc);
      return Eval_Logic_Not (E);
   end Eval_Logic_Match_Inequality;

   function Eval_Logic_Match_Less (L, R : Iir_Int32; Loc : Iir)
                                   return Iir_Index32
   is
      use Vhdl.Ieee.Std_Logic_1164;
   begin
      --  LRM19 9.2.3 table
      --  '-' always returns 'X'
      if L = Std_Logic_D_Pos or R = Std_Logic_D_Pos then
         Warning_Msg_Sem
           (Warnid_Analyze_Assert, +Loc,
            "STD_LOGIC_1164: '-' operand for matching ordering operator");
         return Std_Logic_X_Pos;
      end if;

      --  'U' always returns 'U'
      if L = Std_Logic_U_Pos or R = Std_Logic_U_Pos then
         return Std_Logic_U_Pos;
      end if;

      --  Only when R is '1' or 'H' will we ever return '1'
      if R = Std_Logic_1_Pos or R = Std_Logic_H_Pos then
         if L = Std_Logic_0_Pos or L = Std_Logic_L_Pos then
            --  L = [0,L] R = [1,H]
            return Std_Logic_1_Pos;
         elsif L = Std_Logic_1_Pos or L = Std_Logic_H_Pos then
            --  L = [1,H] R = [1,H]
            return Std_Logic_0_Pos;
         else
            --  Everything else is 'X'
            return Std_Logic_X_Pos;
         end if;
      elsif R = Std_Logic_0_Pos or R = Std_Logic_L_Pos then
         --  R = [0,1]
         return Std_Logic_0_Pos;
      else
         --  Everything else is 'X'
         return Std_Logic_X_Pos;
      end if;
   end Eval_Logic_Match_Less;

   function Eval_Logic_Match_Less_Equal (L, R : Iir_Int32; Loc : Iir)
                                         return Iir_Index32
   is
      Less : Iir_Index32;
      Equal : Iir_Index32;
   begin
      --  LRM19 9.2.3
      --  ?<= is defined as (< or =)
      Less := Eval_Logic_Match_Less (L, R, Loc);
      Equal := Eval_Logic_Match_Equality (L, R, Loc);
      return Eval_Logic_Or (Less, Equal);
   end Eval_Logic_Match_Less_Equal;

   function Eval_Logic_Match_Greater (L, R : Iir_Int32; Loc : Iir)
                                      return Iir_Index32
   is
      Le : Iir_Index32;
   begin
      --  LRM19 9.2.3
      --  ?> is defined as not(?<=)
      Le := Eval_Logic_Match_Less_Equal (L, R, Loc);
      return Eval_Logic_Not (Le);
   end Eval_Logic_Match_Greater;

   function Eval_Logic_Match_Greater_Equal (L, R : Iir_Int32; Loc : Iir)
                                            return Iir_Index32
   is
      Less : Iir_Index32;
   begin
      --  LRM19 9.2.3
      --  ?>= is defined as not(?<)
      Less := Eval_Logic_Match_Less (L, R, Loc);
      return Eval_Logic_Not (Less);
   end Eval_Logic_Match_Greater_Equal;

   function Eval_Equality (Left, Right : Iir) return Boolean;

   --  CHOICES is a chain of choice from a record aggregate; FEL is an Flist
   --  whose length is the number of element of the record type.
   --  Fill FEL with the associated expressions from CHOICES, so that it is
   --  easier to deal than the aggregate as elements are ordered.
   procedure Fill_Flist_From_Record_Aggregate (Choices : Iir; Fel : Iir_Flist)
   is
      Pos : Natural;
      Ch : Iir;
      Expr : Iir;
   begin
      Pos := 0;
      Ch := Choices;
      while Ch /= Null_Iir loop
         Expr := Get_Associated_Expr (Ch);
         case Iir_Kinds_Record_Choice (Get_Kind (Ch)) is
            when Iir_Kind_Choice_By_None =>
               Set_Nth_Element (Fel, Pos, Expr);
               Pos := Pos + 1;
            when Iir_Kind_Choice_By_Name =>
               Pos := Natural (Get_Element_Position
                                 (Get_Named_Entity (Get_Choice_Name (Ch))));
               Set_Nth_Element (Fel, Pos, Expr);
            when Iir_Kind_Choice_By_Others =>
               for I in 0 .. Get_Nbr_Elements (Fel) - 1 loop
                  if Get_Nth_Element (Fel, I) = Null_Iir then
                     Set_Nth_Element (Fel, I, Expr);
                  end if;
               end loop;
         end case;
         Ch := Get_Chain (Ch);
      end loop;
   end Fill_Flist_From_Record_Aggregate;

   function Eval_Record_Equality (Left, Right : Iir) return Boolean
   is
      pragma Assert (Get_Kind (Left) = Iir_Kind_Aggregate);
      pragma Assert (Get_Kind (Right) = Iir_Kind_Aggregate);
      Lch, Rch : Iir;
   begin
      Lch := Get_Association_Choices_Chain (Left);
      Rch := Get_Association_Choices_Chain (Right);

      if Get_Kind (Lch) = Iir_Kind_Choice_By_None
        and then Get_Kind (Rch) = Iir_Kind_Choice_By_None
      then
         --  All choices are positionnal.
         while Lch /= Null_Iir loop
            pragma Assert (Rch /= Null_Iir);
            pragma Assert (Get_Kind (Lch) = Iir_Kind_Choice_By_None);
            pragma Assert (Get_Kind (Rch) = Iir_Kind_Choice_By_None);
            if not Eval_Equality (Get_Associated_Expr (Lch),
                                  Get_Associated_Expr (Rch))
            then
               return False;
            end if;
            Lch := Get_Chain (Lch);
            Rch := Get_Chain (Rch);
         end loop;
         pragma Assert (Rch = Null_Iir);
         return True;
      else
         declare
            Els : constant Iir_Flist :=
              Get_Elements_Declaration_List (Get_Type (Left));
            Nels : constant Natural := Get_Nbr_Elements (Els);
            Lel, Rel : Iir_Flist;
            Res : Boolean;
         begin
            Lel := Create_Iir_Flist (Nels);
            Rel := Create_Iir_Flist (Nels);
            Fill_Flist_From_Record_Aggregate (Lch, Lel);
            Fill_Flist_From_Record_Aggregate (Rch, Rel);

            Res := True;
            for I in 0 .. Nels - 1 loop
               if not Eval_Equality (Get_Nth_Element (Lel, I),
                                     Get_Nth_Element (Rel, I))
               then
                  Res := False;
                  exit;
               end if;
            end loop;

            Destroy_Iir_Flist (Lel);
            Destroy_Iir_Flist (Rel);

            return Res;
         end;
      end if;
   end Eval_Record_Equality;

   function Eval_Equality (Left, Right : Iir) return Boolean
   is
      Ltype : constant Iir := Get_Base_Type (Get_Type (Left));
   begin
      pragma Assert
        (Get_Kind (Ltype) = Get_Kind (Get_Base_Type (Get_Type (Right))));

      case Get_Kind (Ltype) is
         when Iir_Kind_Enumeration_Type_Definition =>
            return Get_Enum_Pos (Left) = Get_Enum_Pos (Right);
         when Iir_Kind_Physical_Type_Definition =>
            return Get_Physical_Value (Left) = Get_Physical_Value (Right);
         when Iir_Kind_Integer_Type_Definition =>
            return Get_Value (Left) = Get_Value (Right);
         when Iir_Kind_Floating_Type_Definition =>
            return Get_Fp_Value (Left) = Get_Fp_Value (Right);
         when Iir_Kind_Array_Type_Definition =>
            return Eval_Array_Compare (Left, Right) = Compare_Eq;
         when Iir_Kind_Record_Type_Definition =>
            return Eval_Record_Equality (Left, Right);
         when others =>
            Error_Kind ("eval_equality", Ltype);
      end case;
   end Eval_Equality;

   --  ORIG is either a dyadic operator or a function call.
   function Eval_Dyadic_Operator (Orig : Iir; Imp : Iir; Left, Right : Iir)
                                 return Iir
   is
      pragma Unsuppress (Overflow_Check);
      Func : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      if Is_Overflow_Literal (Left) or else Is_Overflow_Literal (Right) then
         return Build_Overflow (Orig);
      end if;

      case Func is
         when Iir_Predefined_Integer_Plus =>
            return Build_Integer_Check
              (Get_Value (Left) + Get_Value (Right), Orig);
         when Iir_Predefined_Integer_Minus =>
            return Build_Integer_Check
              (Get_Value (Left) - Get_Value (Right), Orig);
         when Iir_Predefined_Integer_Mul =>
            return Build_Integer_Check
              (Get_Value (Left) * Get_Value (Right), Orig);
         when Iir_Predefined_Integer_Div =>
            if Check_Integer_Division_By_Zero (Orig, Right) then
               return Build_Integer_Check
                 (Get_Value (Left) / Get_Value (Right), Orig);
            else
               return Build_Overflow (Orig);
            end if;
         when Iir_Predefined_Integer_Mod =>
            if Check_Integer_Division_By_Zero (Orig, Right) then
               return Build_Integer_Check
                 (Get_Value (Left) mod Get_Value (Right), Orig);
            else
               return Build_Overflow (Orig);
            end if;
         when Iir_Predefined_Integer_Rem =>
            if Check_Integer_Division_By_Zero (Orig, Right) then
               return Build_Integer_Check
                 (Get_Value (Left) rem Get_Value (Right), Orig);
            else
               return Build_Overflow (Orig);
            end if;
         when Iir_Predefined_Integer_Exp =>
            declare
               Exp : Int64;
               Val : Int64;
               Res : Int64;
            begin
               Val := Get_Value (Left);
               --  LRM08 9.2.8 Misellaneous operators
               --  Exponentiation with a negative exponent is only allowed for
               --  a list operand of a floating-point type.
               Exp := Get_Value (Right);
               if Exp < 0 then
                  raise Constraint_Error;
               end if;
               --  LRM08 9.2.8 Misellaneous operators
               --  Exponentiation with an integer exponent is equivalent to
               --  repeated multiplication of the left operand by itself for
               --  a number of times indicated by the absolute value of the
               --  exponent and from left to right; [...]
               --  GHDL: use the standard power-of-2 approach.  This is not
               --  strictly equivalent however.
               Res := 1;
               loop
                  if Exp mod 2 = 1 then
                     Res := Res * Val;
                  end if;
                  Exp := Exp / 2;
                  exit when Exp = 0;
                  Val := Val * Val;
               end loop;
               return Build_Integer_Check (Res, Orig);
            end;

         when Iir_Predefined_Integer_Equality =>
            return Build_Boolean (Get_Value (Left) = Get_Value (Right));
         when Iir_Predefined_Integer_Inequality =>
            return Build_Boolean (Get_Value (Left) /= Get_Value (Right));
         when Iir_Predefined_Integer_Greater_Equal =>
            return Build_Boolean (Get_Value (Left) >= Get_Value (Right));
         when Iir_Predefined_Integer_Greater =>
            return Build_Boolean (Get_Value (Left) > Get_Value (Right));
         when Iir_Predefined_Integer_Less_Equal =>
            return Build_Boolean (Get_Value (Left) <= Get_Value (Right));
         when Iir_Predefined_Integer_Less =>
            return Build_Boolean (Get_Value (Left) < Get_Value (Right));

         when Iir_Predefined_Integer_Minimum =>
            if Get_Value (Left) < Get_Value (Right) then
               return Left;
            else
               return Right;
            end if;
         when Iir_Predefined_Integer_Maximum =>
            if Get_Value (Left) > Get_Value (Right) then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Floating_Equality =>
            return Build_Boolean (Get_Fp_Value (Left) = Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Inequality =>
            return Build_Boolean (Get_Fp_Value (Left) /= Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Greater =>
            return Build_Boolean (Get_Fp_Value (Left) > Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Greater_Equal =>
            return Build_Boolean (Get_Fp_Value (Left) >= Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Less =>
            return Build_Boolean (Get_Fp_Value (Left) < Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Less_Equal =>
            return Build_Boolean (Get_Fp_Value (Left) <= Get_Fp_Value (Right));

         when Iir_Predefined_Floating_Minus =>
            return Build_Floating
              (Get_Fp_Value (Left) - Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Floating_Plus =>
            return Build_Floating
              (Get_Fp_Value (Left) + Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Floating_Mul =>
            return Build_Floating
              (Get_Fp_Value (Left) * Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Floating_Div =>
            if Get_Fp_Value (Right) = 0.0 then
               Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                                "right operand of division is 0");
               return Build_Overflow (Orig);
            else
               return Build_Floating
                 (Get_Fp_Value (Left) / Get_Fp_Value (Right), Orig);
            end if;
         when Iir_Predefined_Floating_Exp =>
            declare
               Exp : Int64;
               Res : Fp64;
               Val : Fp64;
            begin
               Res := 1.0;
               Val := Get_Fp_Value (Left);
               --  LRM08 9.2.8 Misellaneous operators
               --  Exponentiation with an integer exponent is equivalent to
               --  repeated multiplication of the left operand by itself for
               --  a number of times indicated by the absolute value of the
               --  exponent and from left to right; [...]
               --  GHDL: use the standard power-of-2 approach.  This is not
               --  strictly equivalent however.
               Exp := abs Get_Value (Right);
               while Exp /= 0 loop
                  if Exp mod 2 = 1 then
                     Res := Res * Val;
                  end if;
                  Exp := Exp / 2;
                  Val := Val * Val;
               end loop;
               --  LRM08 9.2.8 Misellaneous operators
               --  [...] if the exponent is negative then the result is the
               --  reciprocal of that [...]
               if Get_Value (Right) < 0 then
                  Res := 1.0 / Res;
               end if;
               return Build_Floating (Res, Orig);
            end;

         when Iir_Predefined_Floating_Minimum =>
            if Get_Fp_Value (Left) < Get_Fp_Value (Right) then
               return Left;
            else
               return Right;
            end if;
         when Iir_Predefined_Floating_Maximum =>
            if Get_Fp_Value (Left) > Get_Fp_Value (Right) then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Physical_Equality =>
            return Build_Boolean
              (Get_Physical_Value (Left) = Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Inequality =>
            return Build_Boolean
              (Get_Physical_Value (Left) /= Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Greater_Equal =>
            return Build_Boolean
              (Get_Physical_Value (Left) >= Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Greater =>
            return Build_Boolean
              (Get_Physical_Value (Left) > Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Less_Equal =>
            return Build_Boolean
              (Get_Physical_Value (Left) <= Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Less =>
            return Build_Boolean
              (Get_Physical_Value (Left) < Get_Physical_Value (Right));

         when Iir_Predefined_Physical_Physical_Div =>
            return Build_Integer
              (Get_Physical_Value (Left) / Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Physical_Integer_Div =>
            return Build_Physical
              (Get_Physical_Value (Left) / Get_Value (Right), Orig);
         when Iir_Predefined_Physical_Minus =>
            return Build_Physical
              (Get_Physical_Value (Left) - Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Physical_Plus =>
            return Build_Physical
              (Get_Physical_Value (Left) + Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Integer_Physical_Mul =>
            return Build_Physical
              (Get_Value (Left) * Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Physical_Integer_Mul =>
            return Build_Physical
              (Get_Physical_Value (Left) * Get_Value (Right), Orig);
         when Iir_Predefined_Real_Physical_Mul =>
            --  FIXME: overflow??
            return Build_Physical
              (Int64 (Get_Fp_Value (Left)
                          * Fp64 (Get_Physical_Value (Right))), Orig);
         when Iir_Predefined_Physical_Real_Mul =>
            --  FIXME: overflow??
            return Build_Physical
              (Int64 (Fp64 (Get_Physical_Value (Left))
                          * Get_Fp_Value (Right)), Orig);
         when Iir_Predefined_Physical_Real_Div =>
            --  FIXME: overflow??
            return Build_Physical
              (Int64 (Fp64 (Get_Physical_Value (Left))
                          / Get_Fp_Value (Right)), Orig);

         when Iir_Predefined_Physical_Mod =>
            return Build_Physical
              (Get_Physical_Value (Left) mod Get_Value (Right), Orig);
         when Iir_Predefined_Physical_Rem =>
            return Build_Physical
              (Get_Physical_Value (Left) rem Get_Value (Right), Orig);

         when Iir_Predefined_Physical_Minimum =>
            return Build_Physical (Int64'Min (Get_Physical_Value (Left),
                                                  Get_Physical_Value (Right)),
                                   Orig);
         when Iir_Predefined_Physical_Maximum =>
            return Build_Physical (Int64'Max (Get_Physical_Value (Left),
                                                  Get_Physical_Value (Right)),
                                   Orig);

         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Array_Array_Concat
           | Iir_Predefined_Element_Element_Concat =>
            raise Internal_Error;

         when Iir_Predefined_Enum_Equality
           | Iir_Predefined_Bit_Match_Equality =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Inequality
           | Iir_Predefined_Bit_Match_Inequality =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) /= Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Greater_Equal
           | Iir_Predefined_Bit_Match_Greater_Equal =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) >= Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Greater
           | Iir_Predefined_Bit_Match_Greater =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) > Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Less_Equal
           | Iir_Predefined_Bit_Match_Less_Equal =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) <= Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Less
           | Iir_Predefined_Bit_Match_Less =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) < Get_Enum_Pos (Right), Orig);

         when Iir_Predefined_Enum_Minimum =>
            if Get_Enum_Pos (Left) < Get_Enum_Pos (Right) then
               return Left;
            else
               return Right;
            end if;
         when Iir_Predefined_Enum_Maximum =>
            if Get_Enum_Pos (Left) > Get_Enum_Pos (Right) then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Boolean_And
           | Iir_Predefined_Bit_And =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = 1 and Get_Enum_Pos (Right) = 1, Orig);
         when Iir_Predefined_Boolean_Nand
           | Iir_Predefined_Bit_Nand =>
            return Build_Enumeration
              (not (Get_Enum_Pos (Left) = 1 and Get_Enum_Pos (Right) = 1),
               Orig);
         when Iir_Predefined_Boolean_Or
           | Iir_Predefined_Bit_Or =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = 1 or Get_Enum_Pos (Right) = 1, Orig);
         when Iir_Predefined_Boolean_Nor
           | Iir_Predefined_Bit_Nor =>
            return Build_Enumeration
              (not (Get_Enum_Pos (Left) = 1 or Get_Enum_Pos (Right) = 1),
               Orig);
         when Iir_Predefined_Boolean_Xor
           | Iir_Predefined_Bit_Xor =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = 1 xor Get_Enum_Pos (Right) = 1, Orig);
         when Iir_Predefined_Boolean_Xnor
           | Iir_Predefined_Bit_Xnor =>
            return Build_Enumeration
              (not (Get_Enum_Pos (Left) = 1 xor Get_Enum_Pos (Right) = 1),
               Orig);

         when Iir_Predefined_Dyadic_TF_Array_Functions =>
            --  FIXME: only for bit ?
            return Eval_Dyadic_Bit_Array_Operator (Orig, Left, Right, Func);

         when Iir_Predefined_Universal_R_I_Mul =>
            return Build_Floating
              (Get_Fp_Value (Left) * Fp64 (Get_Value (Right)), Orig);
         when Iir_Predefined_Universal_I_R_Mul =>
            return Build_Floating
              (Fp64 (Get_Value (Left)) * Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Universal_R_I_Div =>
            return Build_Floating
              (Get_Fp_Value (Left) / Fp64 (Get_Value (Right)), Orig);

         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            declare
               Left_Aggr : Iir;
               Res : Iir;
            begin
               Left_Aggr := Eval_String_Literal (Left);
               Res := Eval_Shift_Operator (Left_Aggr, Right, Orig, Func);
               Free_Eval_String_Literal (Left_Aggr, Left);
               return Res;
            end;

         when Iir_Predefined_Array_Equality =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) = Compare_Eq);
         when Iir_Predefined_Array_Inequality =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) /= Compare_Eq);
         when Iir_Predefined_Array_Less =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) = Compare_Lt);
         when Iir_Predefined_Array_Less_Equal =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) <= Compare_Eq);
         when Iir_Predefined_Array_Greater =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) = Compare_Gt);
         when Iir_Predefined_Array_Greater_Equal =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) >= Compare_Eq);

         when Iir_Predefined_Record_Equality =>
            return Build_Boolean (Eval_Record_Equality (Left, Right));
         when Iir_Predefined_Record_Inequality =>
            return Build_Boolean (not Eval_Record_Equality (Left, Right));

         when Iir_Predefined_Real_To_String_Format =>
            return Eval_Floating_To_String_Format
              (Get_Fp_Value (Left), Right, Orig);

         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Boolean_Rising_Edge
           | Iir_Predefined_Boolean_Falling_Edge
           | Iir_Predefined_Bit_Not
           | Iir_Predefined_Bit_Rising_Edge
           | Iir_Predefined_Bit_Falling_Edge
           | Iir_Predefined_Integer_Absolute
           | Iir_Predefined_Integer_Identity
           | Iir_Predefined_Integer_Negation
           | Iir_Predefined_Floating_Absolute
           | Iir_Predefined_Floating_Negation
           | Iir_Predefined_Floating_Identity
           | Iir_Predefined_Physical_Absolute
           | Iir_Predefined_Physical_Identity
           | Iir_Predefined_Physical_Negation
           | Iir_Predefined_Error
           | Iir_Predefined_Access_Equality
           | Iir_Predefined_Access_Inequality
           | Iir_Predefined_TF_Array_Not
           | Iir_Predefined_Now_Function
           | Iir_Predefined_Real_Now_Function
           | Iir_Predefined_Frequency_Function
           | Iir_Predefined_Deallocate
           | Iir_Predefined_Write
           | Iir_Predefined_Read
           | Iir_Predefined_Read_Length
           | Iir_Predefined_Flush
           | Iir_Predefined_File_Open
           | Iir_Predefined_File_Open_Status
           | Iir_Predefined_File_Close
           | Iir_Predefined_Endfile
           | Iir_Predefined_Array_Char_To_String
           | Iir_Predefined_Bit_Vector_To_Ostring
           | Iir_Predefined_Bit_Vector_To_Hstring =>
            --  Not binary or never locally static.
            Error_Internal (Orig, "eval_dyadic_operator: " &
                              Iir_Predefined_Functions'Image (Func));

         when Iir_Predefined_Bit_Condition =>
            raise Internal_Error;

         when Iir_Predefined_Array_Minimum
           | Iir_Predefined_Array_Maximum
           | Iir_Predefined_Vector_Minimum
           | Iir_Predefined_Vector_Maximum =>
            raise Internal_Error;

         when Iir_Predefined_Std_Ulogic_Match_Equality =>
            return Build_Enumeration
              (Eval_Logic_Match_Equality (Get_Enum_Pos (Left),
                                          Get_Enum_Pos (Right), Orig),
               Orig);

         when Iir_Predefined_Std_Ulogic_Match_Inequality =>
            return Build_Enumeration
              (Eval_Logic_Match_Inequality (Get_Enum_Pos (Left),
                                            Get_Enum_Pos (Right), Orig),
               Orig);

         when Iir_Predefined_Std_Ulogic_Match_Less =>
            return Build_Enumeration
              (Eval_Logic_Match_Less (Get_Enum_Pos (Left),
                                      Get_Enum_Pos (Right), Orig),
               Orig);

         when Iir_Predefined_Std_Ulogic_Match_Greater =>
            return Build_Enumeration
              (Eval_Logic_Match_Greater (Get_Enum_Pos (Left),
                                         Get_Enum_Pos (Right), Orig),
               Orig);

         when Iir_Predefined_Std_Ulogic_Match_Greater_Equal =>
            return Build_Enumeration
              (Eval_Logic_Match_Greater_Equal (Get_Enum_Pos (Left),
                                               Get_Enum_Pos (Right), Orig),
               Orig);

         when Iir_Predefined_Std_Ulogic_Match_Less_Equal =>
            return Build_Enumeration
              (Eval_Logic_Match_Less_Equal (Get_Enum_Pos (Left),
                                            Get_Enum_Pos (Right), Orig),
               Orig);

         when Iir_Predefined_Real_To_String_Digits =>
            return Eval_Predefined_Call (Orig, Orig, Left, Right);
         when Iir_Predefined_Time_To_String_Unit =>
            --  TODO: to_string with a format parameter
            raise Internal_Error;

         when Iir_Predefined_TF_Array_Element_And
           | Iir_Predefined_TF_Element_Array_And
           | Iir_Predefined_TF_Array_Element_Or
           | Iir_Predefined_TF_Element_Array_Or
           | Iir_Predefined_TF_Array_Element_Nand
           | Iir_Predefined_TF_Element_Array_Nand
           | Iir_Predefined_TF_Array_Element_Nor
           | Iir_Predefined_TF_Element_Array_Nor
           | Iir_Predefined_TF_Array_Element_Xor
           | Iir_Predefined_TF_Element_Array_Xor
           | Iir_Predefined_TF_Array_Element_Xnor
           | Iir_Predefined_TF_Element_Array_Xnor =>
            return Eval_Ieee_Operation (Orig, Imp, Left, Right);

         when Iir_Predefined_TF_Reduction_And
           | Iir_Predefined_TF_Reduction_Or
           | Iir_Predefined_TF_Reduction_Nand
           | Iir_Predefined_TF_Reduction_Nor
           | Iir_Predefined_TF_Reduction_Xor
           | Iir_Predefined_TF_Reduction_Xnor
           | Iir_Predefined_TF_Reduction_Not =>
            --  TODO
            raise Internal_Error;

         when Iir_Predefined_Bit_Array_Match_Equality
           | Iir_Predefined_Bit_Array_Match_Inequality
           | Iir_Predefined_Std_Ulogic_Array_Match_Equality
           | Iir_Predefined_Std_Ulogic_Array_Match_Inequality =>
            return Eval_Ieee_Operation (Orig, Imp, Left, Right);

         when Iir_Predefined_Enum_To_String
           | Iir_Predefined_Integer_To_String
           | Iir_Predefined_Floating_To_String
           | Iir_Predefined_Physical_To_String =>
            --  Not dyadic
            raise Internal_Error;

         when Iir_Predefined_IEEE_Explicit =>
            return Eval_Ieee_Operation (Orig, Imp, Left, Right);

         when Iir_Predefined_None =>
            --  Not static
            raise Internal_Error;
      end case;
   exception
      when Constraint_Error =>
         Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                          "arithmetic overflow in static expression");
         return Build_Overflow (Orig);
   end Eval_Dyadic_Operator;

   --  Get the parameter of an attribute, or 1 if doesn't exist.
   function Eval_Attribute_Parameter_Or_1 (Attr : Iir) return Natural
   is
      Parameter : constant Iir := Get_Parameter (Attr);
   begin
      if Is_Null (Parameter) or else Is_Error (Parameter) then
         return 1;
      else
         return Natural (Get_Value (Parameter));
      end if;
   end Eval_Attribute_Parameter_Or_1;

   --  Evaluate any array attribute, return the type for the prefix.
   function Eval_Array_Attribute (Attr : Iir) return Iir
   is
      Prefix : Iir;
      Prefix_Type : Iir;
      Dim : Natural;
   begin
      Prefix := Get_Prefix (Attr);
      case Get_Kind (Prefix) is
         when Iir_Kinds_Object_Declaration --  FIXME: remove
           | Iir_Kind_Selected_Element
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Slice_Name
           | Iir_Kind_Subtype_Declaration
           | Iir_Kind_Type_Declaration
           | Iir_Kind_Implicit_Dereference
           | Iir_Kind_Function_Call
           | Iir_Kind_Attribute_Value
           | Iir_Kind_Attribute_Name
           | Iir_Kind_Subtype_Attribute
           | Iir_Kind_Element_Attribute =>
            Prefix_Type := Get_Type (Prefix);
         when Iir_Kinds_Subtype_Definition =>
            Prefix_Type := Prefix;
         when Iir_Kinds_Denoting_Name =>
            Prefix_Type := Get_Type (Prefix);
         when others =>
            Error_Kind ("eval_array_attribute", Prefix);
      end case;
      if Get_Kind (Prefix_Type) /= Iir_Kind_Array_Subtype_Definition then
         Error_Kind ("eval_array_attribute(2)", Prefix_Type);
      end if;

      Dim := Eval_Attribute_Parameter_Or_1 (Attr);
      return Get_Nth_Element (Get_Index_Subtype_List (Prefix_Type), Dim - 1);
   end Eval_Array_Attribute;

   function Eval_Integer_Image (Val : Int64; Orig : Iir) return Iir
   is
      Img : String (1 .. 24); --  23 is enough, 24 is rounded.
      L : Natural;
      V : Int64;
   begin
      V := Val;
      L := Img'Last;
      loop
         Img (L) := Character'Val (Character'Pos ('0') + abs (V rem 10));
         V := V / 10;
         L := L - 1;
         exit when V = 0;
      end loop;
      if Val < 0 then
         Img (L) := '-';
         L := L - 1;
      end if;
      return Build_String (Img (L + 1 .. Img'Last), Orig);
   end Eval_Integer_Image;

   function Eval_Floating_Image (Val : Fp64; Orig : Iir) return Iir
   is
      --  Sign (1) + digit (1) + dot (1) + digits (15) + 'e' (1) + sign (1)
      --  + exp_digits (4) -> 24.
      Str : String (1 .. 25);
      P : Natural;

      Res : Iir;
   begin
      P := Str'First;

      Grt.Fcvt.Format_Image (Str, P, Interfaces.IEEE_Float_64 (Val));

      Res := Build_String (Str (1 .. P), Orig);
      --  FIXME: this is not correct since the type is *not* constrained.
      Set_Type (Res, Create_Unidim_Array_By_Length
                (Get_Type (Orig), Int64 (P), Orig));
      return Res;
   end Eval_Floating_Image;

   function Eval_Floating_To_String_Format (Val : Fp64; Fmt : Iir; Orig : Iir)
                                           return Iir
   is
      pragma Assert (Get_Kind (Fmt) = Iir_Kind_String_Literal8);
      Fmt_Len : constant Int32 := Get_String_Length (Fmt);
   begin
      if Fmt_Len > 32 then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                          "format parameter too long");
         return Build_Overflow (Orig);
      end if;
      declare
         use Str_Table;
         use Grt.Types;
         use Grt.To_Strings;
         Fmt_Id : constant String8_Id := Get_String8_Id (Fmt);
         Fmt_Str : String (1 .. Natural (Fmt_Len) + 1);

         Res : String_Real_Format;
         Last : Natural;
      begin
         for I in 1 .. Fmt_Len loop
            Fmt_Str (Positive (I)) := Char_String8 (Fmt_Id, I);
         end loop;
         Fmt_Str (Fmt_Str'Last) := ASCII.NUL;

         Grt.To_Strings.To_String
           (Res, Last, Ghdl_F64 (Val), To_Ghdl_C_String (Fmt_Str'Address));

         return Build_String (Res (1 .. Last), Orig);
      end;
   end Eval_Floating_To_String_Format;

   function Eval_Enumeration_Image (Lit : Iir; Orig : Iir) return Iir
   is
      Name : constant String := Image_Identifier (Lit);
   begin
      return Build_String (Name, Orig);
   end Eval_Enumeration_Image;

   function Build_Enumeration_Value (Val : String; Enum, Expr : Iir) return Iir
   is
      List  : constant Iir_Flist := Get_Enumeration_Literal_List (Enum);
      Value : String (Val'range);
      Id : Name_Id;
      Res : Iir;
   begin
      if Val'Length = 3
        and then Val (Val'First) = ''' and then Val (Val'Last) = '''
      then
         --  A single character.
         Id := Get_Identifier (Val (Val'First + 1));
      else
         for I in Val'range loop
            Value (I) := Ada.Characters.Handling.To_Lower (Val (I));
         end loop;
         Id := Get_Identifier (Value);
      end if;
      Res := Find_Name_In_Flist (List, Id);
      if Res /= Null_Iir then
         return Build_Constant (Res, Expr);
      else
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                          "value %i not in enumeration %n", (+Id, +Enum));
         return Build_Overflow (Expr);
      end if;
   end Build_Enumeration_Value;

   function Eval_Physical_Image (Phys, Expr: Iir) return Iir
   is
      --  Reduces to the base unit (e.g. femtoseconds).
      Value : constant String := Int64'Image (Get_Physical_Value (Phys));
      Unit : constant Iir :=
        Get_Primary_Unit (Get_Base_Type (Get_Type (Phys)));
      UnitName : constant String := Image_Identifier (Unit);
      Image_Id : constant String8_Id := Str_Table.Create_String8;
      Length : Nat32 := Value'Length + UnitName'Length + 1;
   begin
      for I in Value'range loop
         -- Suppress the Ada +ve integer'image leading space
         if I > Value'first or else Value (I) /= ' ' then
            Str_Table.Append_String8_Char (Value (I));
         else
            Length := Length - 1;
         end if;
      end loop;
      Str_Table.Append_String8_Char (' ');
      for I in UnitName'range loop
         Str_Table.Append_String8_Char (UnitName (I));
      end loop;

      return Build_String (Image_Id, Length, Expr);
   end Eval_Physical_Image;

   function Build_Physical_Value (Val: String; Phys_Type, Expr: Iir) return Iir
   is
      UnitName : String (Val'range);
      Mult : Int64;
      Sep : Natural;
      Found_Unit : Boolean := false;
      Found_Real : Boolean := false;
      Unit : Iir;
   begin
      -- Separate string into numeric value and make lowercase unit.
      for I in reverse Val'range loop
         UnitName (I) := Ada.Characters.Handling.To_Lower (Val (I));
         if Vhdl.Scanner.Is_Whitespace (Val (I)) and Found_Unit then
            Sep := I;
            exit;
         else
            Found_Unit := true;
         end if;
      end loop;

      -- Unit name  is UnitName(Sep+1..Unit'Last)
      for I in Val'First .. Sep loop
         if Val (I) = '.' then
            Found_Real := true;
         end if;
      end loop;

      -- Chain down the units looking for matching one
      Unit := Get_Primary_Unit (Phys_Type);
      while Unit /= Null_Iir loop
         exit when (UnitName (Sep + 1 .. UnitName'Last)
                      = Image_Identifier (Unit));
         Unit := Get_Chain (Unit);
      end loop;
      if Unit = Null_Iir then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                          "Unit """ & UnitName (Sep + 1 .. UnitName'Last)
                            & """ not in physical type");
         return Build_Overflow (Expr);
      end if;

      Mult := Get_Value (Get_Physical_Literal (Unit));
      if Found_Real then
         return Build_Physical
           (Int64 (Fp64'Value (Val (Val'First .. Sep))
                         * Fp64 (Mult)),
            Expr);
      else
         return Build_Physical
           (Int64'Value (Val (Val'First .. Sep)) * Mult, Expr);
      end if;
   end Build_Physical_Value;

   function Eval_Enum_To_String (Lit : Iir; Orig : Iir) return Iir
   is
      use Str_Table;
      Id : constant Name_Id := Get_Identifier (Lit);
      Image_Id : constant String8_Id := Str_Table.Create_String8;
      Len : Natural;
   begin
      if Get_Base_Type (Get_Type (Lit)) = Character_Type_Definition then
         --  LRM08 5.7 String representations
         --  - For a given value of type CHARACTER, the string representation
         --    contains one element that is the given value.
         Append_String8 (Nat8 (Get_Enum_Pos (Lit)));
         Len := 1;
      elsif Is_Character (Id) then
         --  LRM08 5.7 String representations
         --  - For a given value of an enumeration type other than CHARACTER,
         --    if the value is a character literal, the string representation
         --    contains a single element that is the character literal; [...]
         Append_String8_Char (Get_Character (Id));
         Len := 1;
      else
         --  LRM08 5.7 String representations
         --  - [...] otherwise, the string representation is the sequence of
         --    characters in the identifier that is the given value.
         declare
            Img : constant String := Image (Id);
         begin
            if Img (Img'First) /= '\' then
               Append_String8_String (Img);
               Len := Img'Length;
            else
               declare
                  Skip : Boolean;
                  C : Character;
               begin
                  Len := 0;
                  Skip := False;
                  for I in Img'First + 1 .. Img'Last - 1 loop
                     if Skip then
                        Skip := False;
                     else
                        C := Img (I);
                        Append_String8_Char (C);
                        Skip := C = '\';
                        Len := Len + 1;
                     end if;
                  end loop;
               end;
            end if;
         end;
      end if;
      return Build_String (Image_Id, Nat32 (Len), Orig);
   end Eval_Enum_To_String;

   function Eval_Incdec (Expr : Iir; N : Int64; Origin : Iir) return Iir
   is
      P : Int64;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Integer_Literal =>
            return Build_Integer (Get_Value (Expr) + N, Origin);
         when Iir_Kind_Enumeration_Literal =>
            P := Int64 (Get_Enum_Pos (Expr)) + N;
            if P < 0
              or else (P >= Int64
                         (Get_Nbr_Elements
                            (Get_Enumeration_Literal_List
                               (Get_Base_Type (Get_Type (Expr))))))
            then
               Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                "static constant violates bounds");
               return Build_Overflow (Origin);
            else
               return Build_Enumeration (Iir_Index32 (P), Origin);
            end if;
         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Unit_Declaration =>
            return Build_Physical (Get_Physical_Value (Expr) + N, Origin);
         when others =>
            Error_Kind ("eval_incdec", Expr);
      end case;
   end Eval_Incdec;

   function Convert_Range (Rng : Iir; Res_Type : Iir; Loc : Iir) return Iir
   is
      Res_Btype : Iir;

      function Create_Bound (Val : Iir) return Iir
      is
         R : Iir;
      begin
         R := Create_Iir (Iir_Kind_Integer_Literal);
         Location_Copy (R, Loc);
         Set_Value (R, Get_Value (Val));
         Set_Type (R, Res_Btype);
         Set_Expr_Staticness (R, Locally);
         return R;
      end Create_Bound;

      Res : Iir;
      Lit : Iir;
   begin
      Res_Btype := Get_Base_Type (Res_Type);
      Res := Create_Iir (Iir_Kind_Range_Expression);
      Location_Copy (Res, Loc);
      Set_Type (Res, Res_Btype);
      Lit := Create_Bound (Get_Left_Limit (Rng));
      Set_Left_Limit (Res, Lit);
      Set_Left_Limit_Expr (Res, Lit);
      Lit := Create_Bound (Get_Right_Limit (Rng));
      Set_Right_Limit (Res, Lit);
      Set_Right_Limit_Expr (Res, Lit);
      Set_Direction (Res, Get_Direction (Rng));
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Convert_Range;

   function Eval_Array_Type_Conversion (Conv : Iir; Val : Iir; Orig : Iir)
                                       return Iir
   is
      Conv_Type : constant Iir := Get_Type (Conv);
      Val_Type : constant Iir := Get_Type (Val);
      Conv_Index_Type : constant Iir := Get_Index_Type (Conv_Type, 0);
      Val_Index_Type : constant Iir := Get_Index_Type (Val_Type, 0);
      Index_Type : Iir;
      Res_Type : Iir;
      Res : Iir;
      Rng : Iir;
   begin
      --  The expression is either a simple aggregate or a (bit) string.
      Res := Build_Constant (Val, Orig);
      if Get_Constraint_State (Conv_Type) = Fully_Constrained then
         Set_Type (Res, Conv_Type);
         if not Eval_Is_In_Bound (Val, Conv_Type, True) then
            Warning_Msg_Sem (Warnid_Runtime_Error, +Conv,
                             "non matching length in type conversion");
            return Build_Overflow (Conv);
         end if;
         return Res;
      else
         if Get_Base_Type (Conv_Index_Type) = Get_Base_Type (Val_Index_Type)
         then
            Index_Type := Val_Index_Type;
         else
            --  Convert the index range.
            --  It is an integer type.
            Rng := Convert_Range (Get_Range_Constraint (Val_Index_Type),
                                  Conv_Index_Type, Conv);
            Index_Type := Create_Iir (Iir_Kind_Integer_Subtype_Definition);
            Location_Copy (Index_Type, Conv);
            Set_Range_Constraint (Index_Type, Rng);
            Set_Parent_Type (Index_Type, Conv_Index_Type);
            Set_Type_Staticness (Index_Type, Locally);
         end if;
         Res_Type := Create_Unidim_Array_From_Index
           (Get_Base_Type (Conv_Type), Index_Type, Conv);
         Set_Type (Res, Res_Type);
         Set_Type_Conversion_Subtype (Conv, Res_Type);
         return Res;
      end if;
   end Eval_Array_Type_Conversion;

   function Eval_Type_Conversion (Conv : Iir; Orig : Iir) return Iir
   is
      Expr : constant Iir := Get_Expression (Conv);
      Val : Iir;
      Val_Type : Iir;
      Conv_Type : Iir;
      Res : Iir;
   begin
      Val := Eval_Static_Expr (Expr);
      Val_Type := Get_Base_Type (Get_Type (Val));
      Conv_Type := Get_Base_Type (Get_Type (Conv));
      if Conv_Type = Val_Type then
         Res := Build_Constant (Val, Orig);
      else
         case Get_Kind (Conv_Type) is
            when Iir_Kind_Integer_Type_Definition =>
               case Get_Kind (Val_Type) is
                  when Iir_Kind_Integer_Type_Definition =>
                     Res := Build_Integer (Get_Value (Val), Orig);
                  when Iir_Kind_Floating_Type_Definition =>
                     Res := Build_Integer
                       (Int64 (Get_Fp_Value (Val)), Orig);
                  when others =>
                     Error_Kind ("eval_type_conversion(1)", Val_Type);
               end case;
            when Iir_Kind_Floating_Type_Definition =>
               case Get_Kind (Val_Type) is
                  when Iir_Kind_Integer_Type_Definition =>
                     Res := Build_Floating (Fp64 (Get_Value (Val)), Orig);
                  when Iir_Kind_Floating_Type_Definition =>
                     Res := Build_Floating (Get_Fp_Value (Val), Orig);
                  when others =>
                     Error_Kind ("eval_type_conversion(2)", Val_Type);
               end case;
            when Iir_Kind_Array_Type_Definition =>
               --  Not a scalar, do not check bounds.
               return Eval_Array_Type_Conversion (Conv, Val, Orig);
            when others =>
               Error_Kind ("eval_type_conversion(3)", Conv_Type);
         end case;
      end if;
      if not Eval_Is_In_Bound (Res, Get_Type (Conv), True) then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Conv,
                          "result of conversion out of bounds");
         Free_Eval_Static_Expr (Res, Orig);
         Res := Build_Overflow (Conv);
      end if;
      return Res;
   end Eval_Type_Conversion;

   function Eval_Physical_Literal (Expr : Iir) return Iir
   is
      Val : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Physical_Fp_Literal =>
            Val := Expr;
         when Iir_Kind_Physical_Int_Literal =>
            --  Create a copy even if the literal has the primary unit.  This
            --  is required for ownership rule.
            Val := Expr;
         when Iir_Kind_Unit_Declaration =>
            Val := Expr;
         when Iir_Kinds_Denoting_Name =>
            Val := Get_Named_Entity (Expr);
            pragma Assert (Get_Kind (Val) = Iir_Kind_Unit_Declaration);
         when others =>
            Error_Kind ("eval_physical_literal", Expr);
      end case;
      return Build_Physical (Get_Physical_Value (Val), Expr);
   end Eval_Physical_Literal;

   function Eval_Value_Attribute
     (Value : String; Atype : Iir; Orig : Iir) return Iir
   is
      Base_Type : constant Iir := Get_Base_Type (Atype);
      First, Last : Positive;
   begin
      --  LRM93 14.1 Predefined attributes.
      --  Leading and trailing whitespace are ignored.
      First := Value'First;
      Last := Value'Last;
      while First <= Last loop
         exit when not Vhdl.Scanner.Is_Whitespace (Value (First));
         First := First + 1;
      end loop;
      while Last >= First loop
         exit when not Vhdl.Scanner.Is_Whitespace (Value (Last));
         Last := Last - 1;
      end loop;

      --  TODO: do not use 'value, use the same function as the scanner.
      declare
         Value1 : String renames Value (First .. Last);
      begin
         case Get_Kind (Base_Type) is
            when Iir_Kind_Integer_Type_Definition =>
               declare
                  use Grt.To_Strings;
                  use Grt.Types;
                  use Grt.Vhdl_Types;
                  Res : Value_I64_Result;
               begin
                  Res := Value_I64 (To_Std_String_Basep (Value1'Address),
                                    Value1'Length, 0);
                  if Res.Status = Value_Ok then
                     return Build_Discrete (Int64 (Res.Val), Orig);
                  else
                     Warning_Msg_Sem
                       (Warnid_Runtime_Error, +Get_Parameter (Orig),
                        "incorrect parameter for value attribute");
                     return Build_Overflow (Orig);
                  end if;
               end;
            when Iir_Kind_Enumeration_Type_Definition =>
               return Build_Enumeration_Value (Value1, Base_Type, Orig);
            when Iir_Kind_Floating_Type_Definition =>
               return Build_Floating (Fp64'Value (Value1), Orig);
            when Iir_Kind_Physical_Type_Definition =>
               return Build_Physical_Value (Value1, Base_Type, Orig);
            when others =>
               Error_Kind ("eval_value_attribute", Base_Type);
         end case;
      end;
   end Eval_Value_Attribute;

   --  Be sure that all expressions within an aggregate have been evaluated.
   procedure Eval_Aggregate (Aggr : Iir)
   is
      Assoc : Iir;
      Expr : Iir;
   begin
      Assoc := Get_Association_Choices_Chain (Aggr);
      while Is_Valid (Assoc) loop
         case Iir_Kinds_Choice (Get_Kind (Assoc)) is
            when Iir_Kind_Choice_By_None =>
               null;
            when Iir_Kind_Choice_By_Name =>
               null;
            when Iir_Kind_Choice_By_Range =>
               Set_Choice_Range
                 (Assoc, Eval_Range (Get_Choice_Range (Assoc)));
            when Iir_Kind_Choice_By_Expression =>
               Set_Choice_Expression
                 (Assoc, Eval_Expr (Get_Choice_Expression (Assoc)));
            when Iir_Kind_Choice_By_Others =>
               null;
         end case;
         if not Get_Same_Alternative_Flag (Assoc) then
            Expr := Get_Associated_Expr (Assoc);
         end if;
         if Get_Kind (Expr) = Iir_Kind_Aggregate then
            Eval_Aggregate (Expr);
         end if;
         Assoc := Get_Chain (Assoc);
      end loop;
   end Eval_Aggregate;

   function Eval_Selected_Element (Expr : Iir) return Iir
   is
      Selected_El : constant Iir := Get_Named_Entity (Expr);
      El_Pos : constant Iir_Index32 := Get_Element_Position (Selected_El);
      Expr_Prefix : constant Iir := Get_Prefix (Expr);
      Prefix : Iir;
      Cur_Pos : Iir_Index32;
      Assoc : Iir;
      Assoc_Expr : Iir;
      Res : Iir;
   begin
      Prefix := Eval_Static_Expr (Expr_Prefix);
      if Is_Overflow_Literal (Prefix) then
         Free_Eval_Static_Expr (Prefix, Expr_Prefix);
         return Build_Overflow (Expr, Get_Type (Expr));
      end if;

      pragma Assert (Get_Kind (Prefix) = Iir_Kind_Aggregate);
      Assoc := Get_Association_Choices_Chain (Prefix);
      Cur_Pos := 0;
      Assoc_Expr := Null_Iir;
      loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Assoc_Expr := Assoc;
         end if;
         case Iir_Kinds_Record_Choice (Get_Kind (Assoc)) is
            when Iir_Kind_Choice_By_None =>
               exit when Cur_Pos = El_Pos;
               Cur_Pos := Cur_Pos + 1;
            when Iir_Kind_Choice_By_Name =>
               declare
                  Choice : constant Iir := Get_Choice_Name (Assoc);
               begin
                  exit when Get_Element_Position (Get_Named_Entity (Choice))
                    = El_Pos;
               end;
            when Iir_Kind_Choice_By_Others =>
               exit;
         end case;
         Assoc := Get_Chain (Assoc);
      end loop;

      --  Eval element and save it.
      Res := Eval_Expr_Keep_Orig (Get_Associated_Expr (Assoc_Expr), True);
      Set_Associated_Expr (Assoc_Expr, Res);
      return Res;
   end Eval_Selected_Element;

   function Eval_Indexed_Aggregate (Prefix : Iir; Expr : Iir) return Iir
   is
      Indexes : constant Iir_Flist := Get_Index_List (Expr);
      Prefix_Type : constant Iir := Get_Type (Prefix);
      Indexes_Type : constant Iir_Flist :=
        Get_Index_Subtype_List (Prefix_Type);
      Idx : Iir;
      Assoc : Iir;
      Assoc_Expr : Iir;
      Aggr_Bounds : Iir;
      Aggr : Iir;
      Cur_Pos : Int64;
      Res : Iir;
   begin
      Aggr := Prefix;

      for Dim in Flist_First .. Flist_Last (Indexes) loop
         Idx := Get_Nth_Element (Indexes, Dim);

         --  Find Idx in choices.
         Assoc := Get_Association_Choices_Chain (Aggr);
         Aggr_Bounds := Eval_Static_Range
           (Get_Nth_Element (Indexes_Type, Dim));
         Cur_Pos := Eval_Pos (Eval_Discrete_Range_Left (Aggr_Bounds));
         Assoc_Expr := Null_Iir;
         loop
            if not Get_Same_Alternative_Flag (Assoc) then
               Assoc_Expr := Assoc;
            end if;
            case Get_Kind (Assoc) is
               when Iir_Kind_Choice_By_None =>
                  exit when Cur_Pos = Eval_Pos (Idx);
                  case Get_Direction (Aggr_Bounds) is
                     when Dir_To =>
                        Cur_Pos := Cur_Pos + 1;
                     when Dir_Downto =>
                        Cur_Pos := Cur_Pos - 1;
                  end case;
               when Iir_Kind_Choice_By_Expression =>
                  exit when Eval_Is_Eq (Get_Choice_Expression (Assoc), Idx);
               when Iir_Kind_Choice_By_Range =>
                  declare
                     Rng : Iir;
                  begin
                     Rng := Get_Choice_Range (Assoc);
                     Rng := Eval_Static_Range (Rng);
                     exit when Eval_Int_In_Range (Eval_Pos (Idx), Rng);
                  end;
               when Iir_Kind_Choice_By_Others =>
                  exit;
               when others =>
                  raise Internal_Error;
            end case;
            Assoc := Get_Chain (Assoc);
         end loop;
         Aggr := Get_Associated_Expr (Assoc_Expr);
      end loop;

      --  Eval element and save it.
      Res := Eval_Expr_Keep_Orig (Aggr, True);
      Set_Associated_Expr (Assoc_Expr, Res);

      return Res;
   end Eval_Indexed_Aggregate;

   function Eval_Indexed_String_Literal8 (Str : Iir; Expr : Iir) return Iir
   is
      Str_Type : constant Iir := Get_Type (Str);

      Index_Type : constant Iir := Get_Index_Type (Str_Type, 0);
      Index_Range : constant Iir := Eval_Static_Range (Index_Type);

      Indexes : constant Iir_Flist := Get_Index_List (Expr);

      Id : constant String8_Id := Get_String8_Id (Str);

      Idx : Iir;
      Pos : Iir_Index32;
   begin
      Idx := Eval_Static_Expr (Get_Nth_Element (Indexes, 0));
      Pos := Eval_Pos_In_Range (Index_Range, Idx);

      return Build_Enumeration_Constant
        (Iir_Index32 (Str_Table.Element_String8 (Id, Int32 (Pos + 1))), Expr);
   end Eval_Indexed_String_Literal8;

   function Eval_Indexed_Simple_Aggregate (Aggr : Iir; Expr : Iir) return Iir
   is
      Aggr_Type : constant Iir := Get_Type (Aggr);

      Index_Type : constant Iir := Get_Index_Type (Aggr_Type, 0);
      Index_Range : constant Iir := Eval_Static_Range (Index_Type);

      Indexes : constant Iir_Flist := Get_Index_List (Expr);

      Idx : Iir;
      Pos : Iir_Index32;
      El : Iir;
   begin
      Idx := Eval_Static_Expr (Get_Nth_Element (Indexes, 0));
      Set_Nth_Element (Indexes, 0, Idx);
      Pos := Eval_Pos_In_Range (Index_Range, Idx);

      El := Get_Nth_Element (Get_Simple_Aggregate_List (Aggr), Natural (Pos));
      return Build_Constant (El, Expr);
   end Eval_Indexed_Simple_Aggregate;

   function Eval_Indexed_Name (Expr : Iir) return Iir
   is
      Prefix : Iir;
   begin
      Prefix := Get_Prefix (Expr);
      Prefix := Eval_Static_Expr (Prefix);

      declare
         Prefix_Type : constant Iir := Get_Type (Prefix);
         Indexes_Type : constant Iir_Flist :=
           Get_Index_Subtype_List (Prefix_Type);
         Indexes_List : constant Iir_Flist := Get_Index_List (Expr);
         Prefix_Index : Iir;
         Index : Iir;
      begin
         for I in Flist_First .. Flist_Last (Indexes_Type) loop
            Prefix_Index := Get_Nth_Element (Indexes_Type, I);

            --  Eval index.
            Index := Get_Nth_Element (Indexes_List, I);
            Index := Eval_Static_Expr (Index);
            Set_Nth_Element (Indexes_List, I, Index);

            --  Return overflow if out of range.
            if not Eval_Is_In_Bound (Index, Prefix_Index) then
               return Build_Overflow (Expr, Get_Type (Expr));
            end if;
         end loop;
      end;

      case Get_Kind (Prefix) is
         when Iir_Kind_Aggregate =>
            return Eval_Indexed_Aggregate (Prefix, Expr);
         when Iir_Kind_String_Literal8 =>
            return Eval_Indexed_String_Literal8 (Prefix, Expr);
         when Iir_Kind_Simple_Aggregate =>
            return Eval_Indexed_Simple_Aggregate (Prefix, Expr);
         when Iir_Kind_Overflow_Literal =>
            return Build_Overflow (Expr, Get_Type (Expr));
         when others =>
            Error_Kind ("eval_indexed_name", Prefix);
      end case;
   end Eval_Indexed_Name;

   function Eval_Indexed_Aggregate_By_Offset
     (Aggr : Iir; Off : Iir_Index32; Dim : Natural := 0) return Iir
   is
      Prefix_Type : constant Iir := Get_Type (Aggr);
      Indexes_Type : constant Iir_Flist :=
        Get_Index_Subtype_List (Prefix_Type);
      Assoc : Iir;
      Assoc_Expr : Iir;
      Assoc_Len : Iir_Index32;
      Aggr_Bounds : Iir;
      Cur_Off : Iir_Index32;
      Res : Iir;
      Left_Pos : Int64;
      Assoc_Pos : Int64;
   begin
      Aggr_Bounds := Eval_Static_Range (Get_Nth_Element (Indexes_Type, Dim));
      Left_Pos := Eval_Pos (Eval_Discrete_Range_Left (Aggr_Bounds));

      Cur_Off := 0;
      Assoc := Get_Association_Choices_Chain (Aggr);
      Assoc_Expr := Null_Iir;
      while Assoc /= Null_Iir loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Assoc_Expr := Assoc;
         end if;
         case Get_Kind (Assoc) is
            when Iir_Kind_Choice_By_None =>
               if Get_Element_Type_Flag (Assoc) then
                  if Off = Cur_Off then
                     return Get_Associated_Expr (Assoc);
                  end if;
                  Assoc_Len := 1;
               else
                  Res := Get_Associated_Expr (Assoc);
                  Assoc_Len := Iir_Index32
                    (Eval_Discrete_Range_Length
                       (Get_Index_Type (Get_Type (Res), 0)));
                  if Off >= Cur_Off and then Off < Cur_Off + Assoc_Len then
                     return Eval_Indexed_Name_By_Offset (Res, Off - Cur_Off);
                  end if;
               end if;
               Cur_Off := Cur_Off + Assoc_Len;
            when Iir_Kind_Choice_By_Expression =>
               Assoc_Pos := Eval_Pos (Get_Choice_Expression (Assoc));
               case Get_Direction (Aggr_Bounds) is
                  when Dir_To =>
                     Cur_Off := Iir_Index32 (Assoc_Pos - Left_Pos);
                  when Dir_Downto =>
                     Cur_Off := Iir_Index32 (Left_Pos - Assoc_Pos);
               end case;
               if Cur_Off = Off then
                  return Get_Associated_Expr (Assoc);
               end if;
            when Iir_Kind_Choice_By_Range =>
               declare
                  Rng : Iir;
                  Left : Int64;
                  Right : Int64;
                  Hi, Lo : Int64;
                  Lo_Off, Hi_Off : Iir_Index32;
               begin
                  Rng := Eval_Range (Get_Choice_Range (Assoc));
                  Set_Choice_Range (Assoc, Rng);

                  Left := Eval_Pos (Get_Left_Limit (Rng));
                  Right := Eval_Pos (Get_Right_Limit (Rng));
                  case Get_Direction (Rng) is
                     when Dir_To =>
                        Lo := Left;
                        Hi := Right;
                     when Dir_Downto =>
                        Lo := Right;
                        Hi := Left;
                  end case;
                  case Get_Direction (Aggr_Bounds) is
                     when Dir_To =>
                        Lo_Off := Iir_Index32 (Lo - Left_Pos);
                        Hi_Off := Iir_Index32 (Hi - Left_Pos);
                     when Dir_Downto =>
                        Lo_Off := Iir_Index32 (Left_Pos - Lo);
                        Hi_Off := Iir_Index32 (Left_Pos - Hi);
                  end case;
                  if Off >= Lo_Off and then Off <= Hi_Off then
                     Res := Get_Associated_Expr (Assoc);
                     if Get_Element_Type_Flag (Assoc) then
                        return Res;
                     else
                        return Eval_Indexed_Name_By_Offset
                          (Res, Off - Lo_Off);
                     end if;
                  end if;
               end;
            when Iir_Kind_Choice_By_Others =>
               return Get_Associated_Expr (Assoc_Expr);
            when others =>
               raise Internal_Error;
         end case;
         Assoc := Get_Chain (Assoc);
      end loop;
      raise Internal_Error;
   end Eval_Indexed_Aggregate_By_Offset;

   function Eval_Indexed_Name_By_Offset (Prefix : Iir; Off : Iir_Index32)
                                        return Iir
   is
   begin
      case Get_Kind (Prefix) is
         when Iir_Kinds_Denoting_Name =>
            return Eval_Indexed_Name_By_Offset
              (Get_Named_Entity (Prefix), Off);
         when Iir_Kind_Constant_Declaration =>
            return Eval_Indexed_Name_By_Offset
              (Get_Default_Value (Prefix), Off);
         when Iir_Kind_Aggregate =>
            return Eval_Indexed_Aggregate_By_Offset (Prefix, Off);
         when Iir_Kind_String_Literal8 =>
            declare
               Id : constant String8_Id := Get_String8_Id (Prefix);
               El_Type : constant Iir :=
                 Get_Element_Subtype (Get_Type (Prefix));
               Enums : constant Iir_Flist :=
                 Get_Enumeration_Literal_List (Get_Base_Type (El_Type));
               Lit : Pos32;
            begin
               Lit := Str_Table.Element_String8 (Id, Int32 (Off + 1));
               return Get_Nth_Element (Enums, Natural (Lit));
            end;
         when Iir_Kind_Simple_Aggregate =>
            return Get_Nth_Element (Get_Simple_Aggregate_List (Prefix),
                                    Natural (Off));
         when others =>
            Error_Kind ("eval_indexed_name_by_offset", Prefix);
      end case;
   end Eval_Indexed_Name_By_Offset;

   function Eval_Static_Expr_Orig (Expr: Iir; Orig : Iir) return Iir
   is
      Res : Iir;
      Val : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kinds_Denoting_Name =>
            return Eval_Static_Expr_Orig (Get_Named_Entity (Expr), Orig);

         when Iir_Kind_Integer_Literal
           | Iir_Kind_Enumeration_Literal
           | Iir_Kind_Floating_Point_Literal
           | Iir_Kind_String_Literal8
           | Iir_Kind_Overflow_Literal
           | Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal =>
            return Expr;
         when Iir_Kind_Constant_Declaration =>
            Val := Eval_Static_Expr_Orig (Get_Default_Value (Expr), Orig);
            --  Type of the expression should be type of the constant
            --  declaration at least in case of array subtype.
            --  If the constant is declared as an unconstrained array, get type
            --  from the default value.
            --  FIXME: handle this during semantisation of the declaration:
            --    add an implicit subtype conversion node ?
            --  FIXME: this currently creates a node at each evalation.
            if Get_Kind (Get_Type (Val)) = Iir_Kind_Array_Type_Definition then
               Res := Build_Constant (Val, Orig);
               Set_Type (Res, Get_Type (Val));
               return Res;
            else
               return Val;
            end if;
         when Iir_Kind_Object_Alias_Declaration =>
            return Eval_Static_Expr_Orig (Get_Name (Expr), Orig);
         when Iir_Kind_Unit_Declaration =>
            return Get_Physical_Literal (Expr);
         when Iir_Kind_Simple_Aggregate =>
            return Expr;
         when Iir_Kind_Aggregate =>
            Eval_Aggregate (Expr);
            return Expr;

         when Iir_Kind_Selected_Element =>
            return Eval_Selected_Element (Expr);
         when Iir_Kind_Indexed_Name =>
            return Eval_Indexed_Name (Expr);

         when Iir_Kind_Parenthesis_Expression =>
            return Eval_Static_Expr_Orig (Get_Expression (Expr), Orig);
         when Iir_Kind_Qualified_Expression =>
            return Eval_Static_Expr_Orig (Get_Expression (Expr), Orig);
         when Iir_Kind_Type_Conversion =>
            return Eval_Type_Conversion (Expr, Orig);

         when Iir_Kinds_Monadic_Operator =>
            declare
               Operand : constant Iir := Get_Operand (Expr);
               Operand_Val : Iir;
               Res : Iir;
            begin
               Operand_Val := Eval_Static_Expr_Orig (Operand, Orig);
               Res := Eval_Monadic_Operator (Expr, Operand_Val);
               Free_Eval_Static_Expr (Operand_Val, Operand);
               return Res;
            end;
         when Iir_Kinds_Dyadic_Operator =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Left : constant Iir := Get_Left (Expr);
               Right : constant Iir := Get_Right (Expr);
               Left_Val, Right_Val : Iir;
               Res : Iir;
            begin
               if (Get_Implicit_Definition (Imp)
                     in Iir_Predefined_Concat_Functions)
               then
                  return Eval_Concatenation ((1 => Expr));
               else
                  Left_Val := Eval_Static_Expr_Orig (Left, Left);
                  Right_Val := Eval_Static_Expr_Orig (Right, Right);

                  Res := Eval_Dyadic_Operator (Expr, Imp, Left_Val, Right_Val);

                  Free_Eval_Static_Expr (Left_Val, Left);
                  Free_Eval_Static_Expr (Right_Val, Right);

                  return Res;
               end if;
            end;

         when Iir_Kind_Attribute_Name =>
            --  An attribute name designates an attribute value.
            declare
               Attr_Expr : constant Iir :=
                 Get_Attribute_Name_Expression (Expr);
               Val : Iir;
            begin
               Val := Eval_Static_Expr_Orig (Attr_Expr, Attr_Expr);
               --  FIXME: see constant_declaration.
               --  Currently, this avoids weird nodes, such as a string literal
               --  whose type is an unconstrained array type.
               Res := Build_Constant (Val, Expr);
               Set_Type (Res, Get_Type (Val));
               return Res;
            end;

         when Iir_Kind_Pos_Attribute =>
            declare
               Param : constant Iir := Get_Parameter (Expr);
               Val : Iir;
               Res : Iir;
            begin
               Val := Eval_Static_Expr_Orig (Param, Param);
               --  FIXME: check bounds, handle overflow.
               Res := Build_Integer (Eval_Pos (Val), Expr);
               Free_Eval_Static_Expr (Val, Param);
               return Res;
            end;
         when Iir_Kind_Val_Attribute =>
            declare
               Expr_Type : constant Iir := Get_Type (Expr);
               Val_Expr : Iir;
               Val : Int64;
            begin
               Val_Expr := Eval_Static_Expr (Get_Parameter (Expr));
               Val := Eval_Pos (Val_Expr);
               --  Note: the type of 'val is a base type.
               --  FIXME: handle VHDL93 restrictions.
               if Get_Kind (Expr_Type) = Iir_Kind_Enumeration_Type_Definition
                 and then
                 not Eval_Int_In_Range (Val, Get_Range_Constraint (Expr_Type))
               then
                  Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                   "static argument out of the type range");
                  return Build_Overflow (Expr);
               end if;
               if Get_Kind (Get_Base_Type (Get_Type (Expr)))
                 = Iir_Kind_Physical_Type_Definition
               then
                  return Build_Physical (Val, Expr);
               else
                  return Build_Discrete (Val, Expr);
               end if;
            end;
         when Iir_Kind_Image_Attribute =>
            declare
               Param : Iir;
               Param_Type : Iir;
            begin
               Param := Get_Parameter (Expr);
               Param := Eval_Static_Expr (Param);
               Set_Parameter (Expr, Param);

               --  Special case for overflow.
               if not Eval_Is_In_Bound (Param, Get_Type (Get_Prefix (Expr)))
               then
                  return Build_Overflow (Expr);
               end if;

               Param_Type := Get_Base_Type (Get_Type (Param));
               case Get_Kind (Param_Type) is
                  when Iir_Kind_Integer_Type_Definition =>
                     return Eval_Integer_Image (Get_Value (Param), Expr);
                  when Iir_Kind_Floating_Type_Definition =>
                     return Eval_Floating_Image (Get_Fp_Value (Param), Expr);
                  when Iir_Kind_Enumeration_Type_Definition =>
                     return Eval_Enumeration_Image (Param, Expr);
                  when Iir_Kind_Physical_Type_Definition =>
                     return Eval_Physical_Image (Param, Expr);
                  when others =>
                     Error_Kind ("eval_static_expr('image)", Param);
               end case;
            end;
         when Iir_Kind_Value_Attribute =>
            declare
               Param : Iir;
            begin
               Param := Get_Parameter (Expr);
               Param := Eval_Static_Expr (Param);
               Set_Parameter (Expr, Param);
               if Get_Kind (Param) /= Iir_Kind_String_Literal8 then
                  --  FIXME: Isn't it an implementation restriction.
                  Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                   "'value argument not a string");
                  return Build_Overflow (Expr);
               else
                  return Eval_Value_Attribute
                    (Image_String_Lit (Param), Get_Type (Expr), Expr);
               end if;
            end;

         when Iir_Kind_Left_Type_Attribute =>
            declare
               L, R : Iir;
               Dir : Direction_Type;
            begin
               Eval_Range_Bounds (Get_Prefix (Expr), Dir, L, R);
               return Eval_Static_Expr (L);
            end;
         when Iir_Kind_Right_Type_Attribute =>
            declare
               L, R : Iir;
               Dir : Direction_Type;
            begin
               Eval_Range_Bounds (Get_Prefix (Expr), Dir, L, R);
               return Eval_Static_Expr (R);
            end;
         when Iir_Kind_High_Type_Attribute =>
            declare
               L, R, Res : Iir;
               Dir : Direction_Type;
            begin
               Eval_Range_Bounds (Get_Prefix (Expr), Dir, L, R);
               case Dir is
                  when Dir_To =>
                     Res := R;
                  when Dir_Downto =>
                     Res := L;
               end case;
               return Eval_Static_Expr (Res);
            end;
         when Iir_Kind_Low_Type_Attribute =>
            declare
               L, R, Res : Iir;
               Dir : Direction_Type;
            begin
               Eval_Range_Bounds (Get_Prefix (Expr), Dir, L, R);
               case Dir is
                  when Dir_To =>
                     Res := L;
                  when Dir_Downto =>
                     Res := R;
               end case;
               return Eval_Static_Expr (Res);
            end;
         when Iir_Kind_Ascending_Type_Attribute =>
            declare
               L, R : Iir;
               Dir : Direction_Type;
            begin
               Eval_Range_Bounds (Get_Prefix (Expr), Dir, L, R);
               return Build_Boolean (Dir = Dir_To);
            end;
         when Iir_Kind_Length_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Build_Discrete (Eval_Discrete_Type_Length (Index), Expr);
            end;
         when Iir_Kind_Left_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_Left_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_Right_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_Right_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_Low_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_Low_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_High_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_High_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_Ascending_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Build_Boolean
                 (Get_Direction (Get_Range_Constraint (Index)) = Dir_To);
            end;

         when Iir_Kind_Pred_Attribute =>
            Res := Eval_Incdec
              (Eval_Static_Expr (Get_Parameter (Expr)), -1, Expr);
            Eval_Check_Bound (Res, Get_Type (Get_Prefix (Expr)));
            return Res;
         when Iir_Kind_Succ_Attribute =>
            Res := Eval_Incdec
              (Eval_Static_Expr (Get_Parameter (Expr)), +1, Expr);
            Eval_Check_Bound (Res, Get_Type (Get_Prefix (Expr)));
            return Res;
         when Iir_Kind_Leftof_Attribute
           | Iir_Kind_Rightof_Attribute =>
            declare
               Rng : Iir;
               N : Int64;
               Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr));
               Res : Iir;
            begin
               Rng := Eval_Static_Range (Prefix_Type);
               case Get_Direction (Rng) is
                  when Dir_To =>
                     N := 1;
                  when Dir_Downto =>
                     N := -1;
               end case;
               case Get_Kind (Expr) is
                  when Iir_Kind_Leftof_Attribute =>
                     N := -N;
                  when Iir_Kind_Rightof_Attribute =>
                     null;
                  when others =>
                     raise Internal_Error;
               end case;
               Res := Eval_Incdec
                 (Eval_Static_Expr (Get_Parameter (Expr)), N, Expr);
               Eval_Check_Bound (Res, Prefix_Type);
               return Res;
            end;

         when Iir_Kind_Simple_Name_Attribute =>
            declare
               use Str_Table;
               Img : constant String :=
                 Image (Get_Simple_Name_Identifier (Expr));
               Id : String8_Id;
            begin
               Id := Create_String8;
               for I in Img'Range loop
                  Append_String8_Char (Img (I));
               end loop;
               return Build_String (Id, Nat32 (Img'Length), Expr);
            end;

         when Iir_Kind_Null_Literal =>
            return Expr;

         when Iir_Kind_Function_Call =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Def : constant Iir_Predefined_Functions :=
                 Get_Implicit_Definition (Imp);
               Inter : Iir;
               Left, Right : Iir;
            begin
               if Def in Iir_Predefined_Concat_Functions then
                  return Eval_Concatenation ((1 => Expr));
               end if;

               Inter := Get_Interface_Declaration_Chain (Imp);
               Left := Get_Parameter_Association_Chain (Expr);
               Right := Get_Chain (Left);
               Inter := Get_Chain (Inter);

               if Def in Iir_Predefined_IEEE_Explicit then
                  --  Note: what about association by name ?
                  pragma Assert
                    (Get_Kind (Left)
                       = Iir_Kind_Association_Element_By_Expression);
                  Left := Eval_Static_Expr (Get_Actual (Left));
                  if Right /= Null_Node then
                     pragma Assert
                       (Get_Kind (Right)
                          = Iir_Kind_Association_Element_By_Expression);
                     Right := Eval_Static_Expr (Get_Actual (Right));
                  elsif Inter /= Null_Node then
                     Right := Get_Default_Value (Inter);
                  end if;
                  return Eval_Ieee_Operation (Expr, Imp, Left, Right);
               end if;

               --  Note: no association by name as the interfaces are
               --  anonymous.
               Left := Eval_Static_Expr (Get_Actual (Left));
               if Right = Null_Iir then
                  return Eval_Monadic_Operator (Expr, Left);
               else
                  Right := Eval_Static_Expr (Get_Actual (Right));
                  return Eval_Dyadic_Operator (Expr, Imp, Left, Right);
               end if;
            end;

         when Iir_Kind_Error =>
            return Expr;
         when others =>
            Error_Kind ("eval_static_expr_orig", Expr);
      end case;
   end Eval_Static_Expr_Orig;

   function Eval_Static_Expr (Expr: Iir) return Iir is
   begin
      return Eval_Static_Expr_Orig (Expr, Expr);
   end Eval_Static_Expr;

   --  If FORCE is true, always return a literal.
   function Eval_Expr_Keep_Orig (Expr : Iir; Force : Boolean) return Iir
   is
      Res : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kinds_Denoting_Name =>
            declare
               Val : constant Iir := Get_Named_Entity (Expr);
            begin
               Res := Eval_Static_Expr (Val);
               if Force
                 or else
                 (Res /= Val and then Get_Literal_Origin (Res) /= Val)
               then
                  --  A literal was created.
                  return Build_Constant (Res, Expr);
               else
                  --  No evaluation (the named entity was already a literal).
                  --  (Maybe it is just a copy and we can free it).
                  Free_Eval_Static_Expr (Res, Val);
                  return Expr;
               end if;
            end;
         when others =>
            Res := Eval_Static_Expr (Expr);
            if Res /= Expr and then Get_Literal_Origin (Res) /= Expr then
               --  Need to build a constant if the result is a different
               --  literal not tied to EXPR.
               return Build_Constant (Res, Expr);
            else
               return Res;
            end if;
      end case;
   end Eval_Expr_Keep_Orig;

   function Eval_Expr (Expr: Iir) return Iir is
   begin
      if Get_Expr_Staticness (Expr) /= Locally then
         Error_Msg_Sem (+Expr, "expression must be locally static");
         return Expr;
      else
         return Eval_Expr_Keep_Orig (Expr, False);
      end if;
   end Eval_Expr;

   --  Subroutine of Can_Eval_Composite_Value.  Return True iff EXPR is
   --  considered as a small composite.
   function Is_Small_Composite_Value (Expr : Iir) return Boolean
   is
      Expr_Type : constant Iir := Get_Type (Expr);
      Indexes : Iir_Flist;
      Len : Int64;
   begin
      --  Consider only arrays.  Records are never composite.
      if Get_Kind (Expr_Type) /= Iir_Kind_Array_Subtype_Definition then
         return False;
      end if;

      --  Element must be scalar.
      if Get_Kind (Get_Element_Subtype (Expr_Type))
        not in Iir_Kinds_Scalar_Type_And_Subtype_Definition
      then
         return False;
      end if;

      Indexes := Get_Index_Subtype_List (Expr_Type);

      --  Multi-dimensional arrays aren't considered as small.
      if Get_Nbr_Elements (Indexes) /= 1 then
         return False;
      end if;

      Len := Eval_Discrete_Type_Length (Get_Nth_Element (Indexes, 0));
      return Len <= 128;
   end Is_Small_Composite_Value;

   function Can_Eval_Composite_Value (Expr : Iir; Top : Boolean := False)
                                     return Boolean;

   --  Return True if EXPR should be evaluated.
   function Can_Eval_Value (Expr : Iir; Top : Boolean) return Boolean is
   begin
      --  Always evaluate scalar values.
      if Get_Kind (Get_Type (Expr))
        in Iir_Kinds_Scalar_Type_And_Subtype_Definition
      then
         return True;
      end if;
      return Can_Eval_Composite_Value (Expr, Top);
   end Can_Eval_Value;

   --  For composite values.
   --  Evaluating a composite value is a trade-off: it can simplify the
   --  generated code if the value is small enough, or it can be a bad idea if
   --  the value is very large.  It is very easy to create large static
   --  composite values (like: bit_vector'(1 to 10**4 => '0'))
   function Can_Eval_Composite_Value (Expr : Iir; Top : Boolean := False)
                                     return Boolean
   is
      --  We are only considering static values.
      pragma Assert (Get_Expr_Staticness (Expr) = Locally);

      --  We are only considering composite types.
      pragma Assert (Get_Kind (Get_Type (Expr))
                       not in Iir_Kinds_Scalar_Type_And_Subtype_Definition);
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Type_Conversion
           | Iir_Kind_Qualified_Expression =>
            --  Not yet handled.
            return False;
         when Iir_Kinds_Denoting_Name =>
            return Can_Eval_Composite_Value (Get_Named_Entity (Expr), Top);
         when Iir_Kind_Constant_Declaration =>
            --  Pass through names only for small values.
            if Top or else not Is_Small_Composite_Value (Expr) then
               return False;
            else
               return Can_Eval_Composite_Value (Get_Default_Value (Expr));
            end if;
         when Iir_Kind_Attribute_Name =>
            if Top or else not Is_Small_Composite_Value (Expr) then
               return False;
            else
               return Can_Eval_Composite_Value
                 (Get_Attribute_Name_Expression (Expr));
            end if;
         when Iir_Kinds_Dyadic_Operator =>
            --  Concatenation can increase the size.
            --  Others (rol, ror...) don't.
            return Can_Eval_Value (Get_Left (Expr), False)
              and then Can_Eval_Value (Get_Right (Expr), False);
         when Iir_Kinds_Monadic_Operator =>
            --  For not.
            return Can_Eval_Composite_Value (Get_Operand (Expr));
         when Iir_Kind_Aggregate =>
            return Is_Small_Composite_Value (Expr);
         when Iir_Kinds_Literal
           | Iir_Kind_Enumeration_Literal
           | Iir_Kind_Simple_Aggregate
           | Iir_Kind_Image_Attribute
           | Iir_Kind_Simple_Name_Attribute =>
            return True;
         when Iir_Kind_Overflow_Literal =>
            return True;
         when Iir_Kind_Function_Call =>
            --  Either using post-fixed notation or implicit functions like
            --  to_string.
            --  Cannot be a user function (won't be locally static).
            declare
               Assoc : Iir;
               Assoc_Expr : Iir;
            begin
               Assoc := Get_Parameter_Association_Chain (Expr);
               while Is_Valid (Assoc) loop
                  case Iir_Kinds_Association_Element_Parameters
                    (Get_Kind (Assoc))
                  is
                     when Iir_Kind_Association_Element_By_Expression
                        | Iir_Kind_Association_Element_By_Name =>
                        Assoc_Expr := Get_Actual (Assoc);
                        if not Can_Eval_Value (Assoc_Expr, False) then
                           return False;
                        end if;
                     when Iir_Kind_Association_Element_Open =>
                        null;
                     when Iir_Kind_Association_Element_By_Individual =>
                        return False;
                  end case;
                  Assoc := Get_Chain (Assoc);
               end loop;
               return True;
            end;

         when others =>
            --  Be safe, don't crash on unhandled expression.
            --  Error_Kind ("can_eval_composite_value", Expr);
            return False;
      end case;
   end Can_Eval_Composite_Value;

   function Eval_Expr_If_Static (Expr : Iir) return Iir is
   begin
      if Expr /= Null_Iir and then Get_Expr_Staticness (Expr) = Locally then
         --  Evaluate only when there is a positive effect.
         if Can_Eval_Value (Expr, True) then
            return Eval_Expr_Keep_Orig (Expr, False);
         else
            return Expr;
         end if;
      else
         return Expr;
      end if;
   end Eval_Expr_If_Static;

   function Eval_Expr_Check (Expr : Iir; Sub_Type : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Eval_Expr_Keep_Orig (Expr, False);
      Eval_Check_Bound (Res, Sub_Type);
      return Res;
   end Eval_Expr_Check;

   function Eval_Expr_Check_If_Static (Expr : Iir; Atype : Iir) return Iir
   is
      Res : Iir;
   begin
      if Expr /= Null_Iir and then Get_Expr_Staticness (Expr) = Locally then
         --  Expression is static and can be evaluated.  Don't try to
         --  evaluate non-scalar expressions, that may create too large data.
         if Get_Kind (Atype) in Iir_Kinds_Scalar_Type_And_Subtype_Definition
         then
            Res := Eval_Expr_Keep_Orig (Expr, False);
         else
            Res := Expr;
         end if;

         if Res /= Null_Iir
           and then Get_Type_Staticness (Atype) = Locally
           and then Get_Kind (Atype) in Iir_Kinds_Range_Type_Definition
         then
            --  Check bounds (as this can be done).
            if not Eval_Check_Bound (Res, Atype) then
               Res := Build_Overflow (Res, Atype);
            end if;
         end if;

         return Res;
      else
         return Expr;
      end if;
   end Eval_Expr_Check_If_Static;

   function Null_Int_Range
     (Dir : Direction_Type; L, R : Int64) return Boolean is
   begin
      case Dir is
         when Dir_To =>
            return L > R;
         when Dir_Downto =>
            return L < R;
      end case;
   end Null_Int_Range;

   function Int_In_Range (Val : Int64;
                          Dir : Direction_Type; L, R : Int64) return Boolean is
   begin
      case Dir is
         when Dir_To =>
            return Val >= L and then Val <= R;
         when Dir_Downto =>
            return Val <= L and then Val >= R;
      end case;
   end Int_In_Range;

   function Null_Fp_Range
     (Dir : Direction_Type; L, R : Fp64) return Boolean is
   begin
      case Dir is
         when Dir_To =>
            return L > R;
         when Dir_Downto =>
            return L < R;
      end case;
   end Null_Fp_Range;

   function Fp_In_Range (Val : Fp64;
                         Dir : Direction_Type; L, R : Fp64) return Boolean is
   begin
      case Dir is
         when Dir_To =>
            return Val >= L and then Val <= R;
         when Dir_Downto =>
            return Val <= L and then Val >= R;
      end case;
   end Fp_In_Range;

   function Eval_Int_In_Range (Val : Int64; Bound : Iir) return Boolean
   is
      L, R : Iir;
   begin
      case Get_Kind (Bound) is
         when Iir_Kind_Range_Expression =>
            L := Get_Left_Limit (Bound);
            R := Get_Right_Limit (Bound);
            if Get_Kind (L) = Iir_Kind_Overflow_Literal
              or else Get_Kind (R) = Iir_Kind_Overflow_Literal
            then
               return True;
            end if;
            return Int_In_Range
              (Val, Get_Direction (Bound), Eval_Pos (L), Eval_Pos (R));
         when others =>
            Error_Kind ("eval_int_in_range", Bound);
      end case;
      return True;
   end Eval_Int_In_Range;

   function Eval_Phys_In_Range (Val : Int64; Bound : Iir) return Boolean
   is
      Left, Right : Int64;
   begin
      case Get_Kind (Bound) is
         when Iir_Kind_Range_Expression =>
            case Get_Kind (Get_Type (Get_Left_Limit (Bound))) is
               when Iir_Kind_Integer_Type_Definition
                 | Iir_Kind_Integer_Subtype_Definition =>
                  Left := Get_Value (Get_Left_Limit (Bound));
                  Right := Get_Value (Get_Right_Limit (Bound));
               when Iir_Kind_Physical_Type_Definition
                 | Iir_Kind_Physical_Subtype_Definition =>
                  Left := Get_Physical_Value (Get_Left_Limit (Bound));
                  Right := Get_Physical_Value (Get_Right_Limit (Bound));
               when others =>
                  Error_Kind ("eval_phys_in_range(1)", Get_Type (Bound));
            end case;
            return Int_In_Range (Val, Get_Direction (Bound), Left, Right);
         when others =>
            Error_Kind ("eval_phys_in_range", Bound);
      end case;
      return True;
   end Eval_Phys_In_Range;

   function Eval_Fp_In_Range (Val : Fp64; Bound : Iir) return Boolean
   is
      L, R : Fp64;
   begin
      case Get_Kind (Bound) is
         when Iir_Kind_Range_Expression =>
            L := Get_Fp_Value (Get_Left_Limit (Bound));
            R := Get_Fp_Value (Get_Right_Limit (Bound));
            return Fp_In_Range (Val, Get_Direction (Bound), L, R);
         when others =>
            Error_Kind ("eval_fp_in_range", Bound);
      end case;
      return True;
   end Eval_Fp_In_Range;

   function Eval_In_Range (Val : Iir; Dir : Direction_Type; L, R : Iir)
                          return Boolean
   is
      Vtype : constant Iir := Get_Type (Val);
   begin
      case Iir_Kinds_Scalar_Type_And_Subtype_Definition (Get_Kind (Vtype)) is
         when Iir_Kind_Floating_Subtype_Definition
           | Iir_Kind_Floating_Type_Definition =>
            return Fp_In_Range
              (Get_Fp_Value (Val), Dir, Get_Fp_Value (L), Get_Fp_Value (R));
         when Iir_Kinds_Discrete_Type_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            return Int_In_Range
              (Eval_Pos (Val), Dir, Eval_Pos (L), Eval_Pos (R));
      end case;
   end Eval_In_Range;

   --  Return FALSE if literal EXPR is not in SUB_TYPE bounds.
   function Eval_Is_In_Bound
     (Expr : Iir; Sub_Type : Iir; Overflow : Boolean := False) return Boolean
   is
      Type_Range : Iir;
      Val : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Simple_Name
           | Iir_Kind_Character_Literal
           | Iir_Kind_Selected_Name
           | Iir_Kind_Parenthesis_Name =>
            Val := Get_Named_Entity (Expr);
         when others =>
            Val := Expr;
      end case;

      case Get_Kind (Val) is
         when Iir_Kind_Error =>
            --  Ignore errors.
            return True;
         when Iir_Kind_Overflow_Literal =>
            return Overflow;
         when others =>
            null;
      end case;

      case Get_Kind (Sub_Type) is
         when Iir_Kind_Integer_Subtype_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Int_In_Range (Get_Value (Val), Type_Range);

         when Iir_Kind_Floating_Subtype_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Fp_In_Range (Get_Fp_Value (Val), Type_Range);

         when Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            --  A check is required for an enumeration type definition for
            --  'val attribute.
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Int_In_Range
              (Int64 (Get_Enum_Pos (Val)), Type_Range);

         when Iir_Kind_Physical_Subtype_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Phys_In_Range (Get_Physical_Value (Val), Type_Range);

         when Iir_Kind_Base_Attribute =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            return Eval_Is_In_Bound (Val, Get_Type (Sub_Type));

         when Iir_Kind_Array_Subtype_Definition =>
            declare
               Val_Type : constant Iir := Get_Type (Val);
            begin
               if Is_Null (Val_Type) then
                  --  Punt on errors.
                  return True;
               end if;

               if Get_Constraint_State (Sub_Type) /= Fully_Constrained
                 or else
                 Get_Kind (Val_Type) /= Iir_Kind_Array_Subtype_Definition
                 or else
                 Get_Constraint_State (Val_Type) /= Fully_Constrained
               then
                  --  Cannot say no.
                  return True;
               end if;
               declare
                  E_Indexes : constant Iir_Flist :=
                    Get_Index_Subtype_List (Val_Type);
                  T_Indexes : constant Iir_Flist :=
                    Get_Index_Subtype_List (Sub_Type);
                  E_El : Iir;
                  T_El : Iir;
               begin
                  for I in Flist_First .. Flist_Last (E_Indexes) loop
                     E_El := Get_Index_Type (E_Indexes, I);
                     T_El := Get_Index_Type (T_Indexes, I);

                     if Get_Type_Staticness (E_El) = Locally
                       and then Get_Type_Staticness (T_El) = Locally
                       and then (Eval_Discrete_Type_Length (E_El)
                                   /= Eval_Discrete_Type_Length (T_El))
                     then
                        return False;
                     end if;
                  end loop;
                  return True;
               end;
            end;

         when Iir_Kind_Access_Type_Definition
           | Iir_Kind_Access_Subtype_Definition =>
            return True;

         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            --  FIXME: do it.
            return True;

         when Iir_Kind_File_Type_Definition
           | Iir_Kind_File_Subtype_Definition =>
            return True;

         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Floating_Type_Definition =>
            return True;

         when Iir_Kind_Interface_Type_Definition
           | Iir_Kind_Protected_Type_Declaration =>
            return True;

         when Iir_Kind_Foreign_Vector_Type_Definition =>
            return True;

         when Iir_Kind_Error =>
            return True;

         when others =>
            Error_Kind ("eval_is_in_bound", Sub_Type);
      end case;
   end Eval_Is_In_Bound;

   function Eval_Check_Bound (Expr : Iir; Sub_Type : Iir) return Boolean is
   begin
      --  Note: use True not to repeat a message in case of overflow.
      if Eval_Is_In_Bound (Expr, Sub_Type, True) then
         return True;
      end if;

      Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                       "static expression violates bounds");
      return False;
   end Eval_Check_Bound;

   procedure Eval_Check_Bound (Expr : Iir; Sub_Type : Iir)
   is
      Res : Boolean;
   begin
      Res := Eval_Check_Bound (Expr, Sub_Type);
      pragma Unreferenced (Res);
   end Eval_Check_Bound;

   function Is_Null_Range (Dir : Direction_Type; L_Expr, R_Expr : Iir)
                          return Boolean
   is
      Ltype : constant Iir := Get_Type (L_Expr);
   begin
      case Iir_Kinds_Scalar_Type_And_Subtype_Definition (Get_Kind (Ltype)) is
         when Iir_Kinds_Discrete_Type_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            return Null_Int_Range (Dir, Eval_Pos (L_Expr), Eval_Pos (R_Expr));
         when Iir_Kind_Floating_Subtype_Definition
           | Iir_Kind_Floating_Type_Definition =>
            return Null_Fp_Range
              (Dir, Get_Fp_Value (L_Expr), Get_Fp_Value (R_Expr));
      end case;
   end Is_Null_Range;

   function Eval_Discrete_Range_Length (Constraint : Iir) return Int64
   is
      --  We don't want to deal with very large ranges here.
      pragma Suppress (Overflow_Check);
      Left_Expr : constant Iir := Get_Left_Limit (Constraint);
      Right_Expr : constant Iir := Get_Right_Limit (Constraint);
      Res : Int64;
      Left, Right : Int64;
   begin
      if Is_Overflow_Literal (Left_Expr)
        or else Is_Overflow_Literal (Right_Expr)
      then
         return -1;
      end if;

      Left := Eval_Pos (Left_Expr);
      Right := Eval_Pos (Right_Expr);
      case Get_Direction (Constraint) is
         when Dir_To =>
            if Right < Left then
               --  Null range.
               return 0;
            else
               Res := Right - Left + 1;
            end if;
         when Dir_Downto =>
            if Left < Right then
               --  Null range
               return 0;
            else
               Res := Left - Right + 1;
            end if;
      end case;
      return Res;
   end Eval_Discrete_Range_Length;

   function Eval_Discrete_Type_Length (Sub_Type : Iir) return Int64
   is
   begin
      case Get_Kind (Sub_Type) is
         when Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            return Eval_Discrete_Range_Length
              (Get_Range_Constraint (Sub_Type));
         when others =>
            Error_Kind ("eval_discrete_type_length", Sub_Type);
      end case;
   end Eval_Discrete_Type_Length;

   function Eval_Is_Null_Discrete_Range (Rng : Iir) return Boolean
   is
      Left, Right : Int64;
   begin
      Left := Eval_Pos (Get_Left_Limit (Rng));
      Right := Eval_Pos (Get_Right_Limit (Rng));
      return Null_Int_Range (Get_Direction (Rng), Left, Right);
   end Eval_Is_Null_Discrete_Range;

   function Eval_Pos (Expr : Iir) return Int64 is
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Integer_Literal =>
            return Get_Value (Expr);
         when Iir_Kind_Enumeration_Literal =>
            return Int64 (Get_Enum_Pos (Expr));
         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal
           | Iir_Kind_Unit_Declaration =>
            return Get_Physical_Value (Expr);
         when Iir_Kinds_Denoting_Name =>
            return Eval_Pos (Get_Named_Entity (Expr));
         when others =>
            Error_Kind ("eval_pos", Expr);
      end case;
   end Eval_Pos;

   procedure Eval_Range_Bounds (Rng : Iir;
                                Dir : out Direction_Type;
                                Left, Right : out Iir)
   is
      Expr : Iir;
   begin
      Expr := Rng;
      loop
         case Get_Kind (Expr) is
            when Iir_Kind_Range_Expression =>
               Dir := Get_Direction (Expr);
               Left := Get_Left_Limit (Expr);
               Right := Get_Right_Limit (Expr);
               return;

            when Iir_Kind_Range_Array_Attribute
              | Iir_Kind_Reverse_Range_Array_Attribute =>
               declare
                  Orig : constant Iir := Expr;
                  Indexes_List : Iir_Flist;
                  Prefix : Iir;
                  Dim : Natural;
               begin
                  Prefix := Get_Prefix (Expr);
                  if Get_Kind (Prefix) /= Iir_Kind_Array_Subtype_Definition
                  then
                     --  If the prefix is not a subtype, it's an object.
                     --  Get its type.
                     Prefix := Get_Type (Prefix);
                  end if;
                  if Get_Kind (Prefix) /= Iir_Kind_Array_Subtype_Definition
                  then
                     --  Unconstrained object.
                     raise Internal_Error;
                  end if;
                  Indexes_List := Get_Index_Subtype_List (Prefix);
                  Dim := Eval_Attribute_Parameter_Or_1 (Expr);
                  if Dim < 1
                    or else Dim > Get_Nbr_Elements (Indexes_List)
                  then
                     --  Avoid cascaded errors.
                     Dim := 1;
                  end if;
                  Expr := Get_Nth_Element (Indexes_List, Dim - 1);

                  --  For reverse, recurse and reverse.
                  if Get_Kind (Orig) = Iir_Kind_Reverse_Range_Array_Attribute
                  then
                     declare
                        R_Dir : Direction_Type;
                        R_Left, R_Right : Iir;
                     begin
                        Eval_Range_Bounds (Expr, R_Dir, R_Left, R_Right);
                        case R_Dir is
                           when Dir_To =>
                              Dir := Dir_Downto;
                           when Dir_Downto =>
                              Dir := Dir_To;
                        end case;
                        Left := R_Right;
                        Right := R_Left;
                        return;
                     end;
                  end if;

                  --  For normal, just recurse.
               end;

            when Iir_Kind_Integer_Subtype_Definition
              | Iir_Kind_Floating_Subtype_Definition
              | Iir_Kind_Enumeration_Type_Definition
              | Iir_Kind_Enumeration_Subtype_Definition
              | Iir_Kind_Physical_Subtype_Definition =>
               Expr := Get_Range_Constraint (Expr);

            when Iir_Kind_Subtype_Declaration
              | Iir_Kind_Base_Attribute
              | Iir_Kind_Subtype_Attribute
              | Iir_Kind_Element_Attribute =>
               Expr := Get_Type (Expr);
            when Iir_Kind_Type_Declaration =>
               Expr := Get_Type_Definition (Expr);
            when Iir_Kind_Simple_Name
              | Iir_Kind_Selected_Name =>
               Expr := Get_Named_Entity (Expr);
            when others =>
               Error_Kind ("eval_range_bounds", Expr);
         end case;
      end loop;
   end Eval_Range_Bounds;

   function Eval_Range (Arange : Iir) return Iir
   is
      L, R : Iir;
      Dir : Direction_Type;
      Res : Iir;
   begin
      if Get_Kind (Arange) = Iir_Kind_Range_Expression then
         --  Range expressions are always evaluated by
         --  sem_simple_range_expression.
         return Arange;
      end if;

      --  ARANGE is a range attribute or a type mark.
      Eval_Range_Bounds (Arange, Dir, L, R);

      L := Eval_Static_Expr (L);
      R := Eval_Static_Expr (R);

      Res := Create_Iir (Iir_Kind_Range_Expression);
      Location_Copy (Res, Arange);
      Set_Range_Origin (Res, Arange);

      case Get_Kind (Arange) is
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            Set_Type (Res, Get_Parent_Type (Arange));
         when others =>
            Set_Type (Res, Get_Type (Arange));
      end case;
      Set_Left_Limit (Res, L);
      Set_Right_Limit (Res, R);
      Set_Direction (Res, Dir);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Eval_Range;

   --  Return a range expression or a range attribute.
   function Eval_Static_Range_Prefix (Rng : Iir) return Iir
   is
      Expr : Iir;
      Kind : Iir_Kind;
   begin
      Expr := Rng;
      loop
         Kind := Get_Kind (Expr);
         case Kind is
            when Iir_Kind_Range_Expression
               | Iir_Kind_Range_Array_Attribute
               | Iir_Kind_Reverse_Range_Array_Attribute =>
               return Expr;
            when Iir_Kind_Integer_Subtype_Definition
              | Iir_Kind_Floating_Subtype_Definition
              | Iir_Kind_Enumeration_Type_Definition
              | Iir_Kind_Enumeration_Subtype_Definition
              | Iir_Kind_Physical_Subtype_Definition =>
               Expr := Get_Range_Constraint (Expr);
            when Iir_Kind_Subtype_Declaration
              | Iir_Kind_Base_Attribute
              | Iir_Kind_Subtype_Attribute
              | Iir_Kind_Element_Attribute =>
               Expr := Get_Type (Expr);
            when Iir_Kind_Type_Declaration =>
               Expr := Get_Type_Definition (Expr);
            when Iir_Kind_Simple_Name
              | Iir_Kind_Selected_Name =>
               Expr := Get_Named_Entity (Expr);
            when others =>
               Error_Kind ("eval_static_range", Expr);
         end case;
      end loop;
   end Eval_Static_Range_Prefix;

   function Eval_Static_Range (Rng : Iir) return Iir
   is
      Expr : Iir;
   begin
      Expr := Eval_Static_Range_Prefix (Rng);
      if Get_Expr_Staticness (Expr) /= Locally then
         return Null_Iir;
      end if;
      return Eval_Range (Expr);
   end Eval_Static_Range;

   --  Check range expression A_RANGE.
   procedure Eval_Check_Range_In_Bound (A_Range : Iir;
                                        Sub_Type : Iir;
                                        Dir_Ok : out Boolean;
                                        Left_Ok : out Boolean;
                                        Right_Ok : out Boolean)
   is
      Type_Range : constant Iir := Get_Range_Constraint (Sub_Type);
      L_Expr, R_Expr : Iir;
      Dir : Direction_Type;
   begin
      Eval_Range_Bounds (A_Range, Dir, L_Expr, R_Expr);
      Dir_Ok := Get_Direction (Type_Range) = Dir;

      Left_Ok := True;
      Right_Ok := True;

      --  In case of overflow, assume ok.
      if Is_Overflow_Literal (L_Expr)
        or else Is_Overflow_Literal (R_Expr)
      then
         return;
      end if;

      case Get_Kind (Sub_Type) is
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Physical_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            declare
               L, R : Int64;
            begin
               --  Check for null range.
               L := Eval_Pos (L_Expr);
               R := Eval_Pos (R_Expr);
               if Null_Int_Range (Dir, L, R) then
                  return;
               end if;
               Left_Ok := Eval_Int_In_Range (L, Type_Range);
               Right_Ok := Eval_Int_In_Range (R, Type_Range);
            end;
         when Iir_Kind_Floating_Subtype_Definition =>
            declare
               L, R : Fp64;
            begin
               --  Check for null range.
               L := Get_Fp_Value (L_Expr);
               R := Get_Fp_Value (R_Expr);
               if Null_Fp_Range (Dir, L, R) then
                  return;
               end if;
               Left_Ok := Eval_Fp_In_Range (L, Type_Range);
               Right_Ok := Eval_Fp_In_Range (R, Type_Range);
            end;
         when others =>
            Error_Kind ("eval_check_range_in_bound", Sub_Type);
      end case;
   end Eval_Check_Range_In_Bound;

   function Eval_Is_Range_In_Bound
     (A_Range : Iir; Sub_Type : Iir; Any_Dir : Boolean) return Boolean
   is
      L_Ok, R_Ok, Dir_Ok : Boolean;
   begin
      Eval_Check_Range_In_Bound (A_Range, Sub_Type, Dir_Ok, L_Ok, R_Ok);
      if not Any_Dir and then not Dir_Ok then
         return True;
      end if;

      return L_Ok and R_Ok;
   end Eval_Is_Range_In_Bound;

   procedure Eval_Check_Range
     (A_Range : Iir; Sub_Type : Iir; Any_Dir : Boolean) is
   begin
      if not Eval_Is_Range_In_Bound (A_Range, Sub_Type, Any_Dir) then
         Warning_Msg_Sem (Warnid_Runtime_Error, +A_Range,
                          "static range violates bounds");
      end if;
   end Eval_Check_Range;

   procedure Check_Range_Compatibility (Inner : Iir; Outer : Iir)
   is
      pragma Assert (Get_Kind (Inner) = Iir_Kind_Range_Expression);
      pragma Assert (Get_Expr_Staticness (Inner) = Locally);
      I_Dir : constant Direction_Type := Get_Direction (Inner);
      I_L : constant Iir := Get_Left_Limit (Inner);
      I_R : constant Iir := Get_Right_Limit (Inner);
      O_L, O_R : Iir;
      O_Dir : Direction_Type;
      B : Iir;
   begin
      Eval_Range_Bounds (Outer, O_Dir, O_L, O_R);

      --  Avoid cascade error in case of overflow.
      if Is_Overflow_Literal (I_L)
        or else Is_Overflow_Literal (I_R)
        or else Is_Overflow_Literal (O_L)
        or else Is_Overflow_Literal (O_R)
      then
         return;
      end if;

      --  LRM08 5.2 Scalar types
      --  A range constraint is compatible with a subtype if each bound of the
      --  range belongs to the subtype or if the range constraint defines a
      --  null range.
      --
      --  GHDL: Bounds of a null range don't have to be within the limits.
      if Is_Null_Range (I_Dir, I_L, I_R) then
         return;
      end if;
      if Is_Null_Range (O_Dir, O_L, O_R) then
         Error_Msg_Sem (+Inner, "range incompatible with null-range");
         return;
      end if;

      if not Eval_In_Range (I_L, O_Dir, O_L, O_R) then
         --  Improve location of the message.
         B := Get_Left_Limit_Expr (Inner);
         if B = Null_Node then
            B := Inner;
         end if;
         Warning_Msg_Sem (Warnid_Runtime_Error, +B,
                          "left bound incompatible with range");
         B := Build_Overflow (I_L, Get_Type (Inner));
         if Get_Left_Limit_Expr (Inner) = Null_Iir then
            Set_Literal_Origin (B, Null_Iir);
         end if;
         Set_Left_Limit_Expr (Inner, B);
         Set_Left_Limit (Inner, B);
         Set_Expr_Staticness (Inner, None);
      end if;
      if not Eval_In_Range (I_R, O_Dir, O_L, O_R) then
         --  Improve location of the message.
         B := Get_Right_Limit_Expr (Inner);
         if B = Null_Node then
            B := Inner;
         end if;
         Warning_Msg_Sem (Warnid_Runtime_Error, +B,
                          "right bound incompatible with range");
         B := Build_Overflow (I_R, Get_Type (Inner));
         if Get_Right_Limit_Expr (Inner) = Null_Iir then
            Set_Literal_Origin (B, Null_Iir);
         end if;
         Set_Right_Limit_Expr (Inner, B);
         Set_Right_Limit (Inner, B);
         Set_Expr_Staticness (Inner, None);
      end if;
   end Check_Range_Compatibility;

   procedure Check_Discrete_Range_Compatibility (Inner : Iir; Outer : Iir) is
   begin
      case Get_Kind (Inner) is
         when Iir_Kind_Range_Expression =>
            Check_Range_Compatibility (Inner, Outer);
         when Iir_Kinds_Discrete_Type_Definition =>
            Check_Discrete_Range_Compatibility
              (Get_Range_Constraint (Inner), Outer);
         when others =>
            --  Can this happen ? As INNER is locally static it should have
            --  been transformed into a range.
            Error_Kind ("check_discrete_range_compatibility", Inner);
      end case;
   end Check_Discrete_Range_Compatibility;

   function Eval_Range_If_Static (Arange : Iir) return Iir is
   begin
      if Get_Expr_Staticness (Arange) /= Locally then
         return Arange;
      else
         return Eval_Range (Arange);
      end if;
   end Eval_Range_If_Static;

   --  Return the range constraint of a discrete range.
   function Eval_Discrete_Range_Expression (Constraint : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Eval_Static_Range (Constraint);
      if Res = Null_Iir then
         Error_Kind ("eval_discrete_range_expression", Constraint);
      else
         return Res;
      end if;
   end Eval_Discrete_Range_Expression;

   function Eval_Discrete_Range_Left (Constraint : Iir) return Iir
   is
      Range_Expr : Iir;
   begin
      Range_Expr := Eval_Discrete_Range_Expression (Constraint);
      return Get_Left_Limit (Range_Expr);
   end Eval_Discrete_Range_Left;

   function Eval_Is_Eq (L, R : Iir) return Boolean
   is
      Expr_Type : constant Iir := Get_Type (L);
   begin
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            return Eval_Pos (L) = Eval_Pos (R);
         when Iir_Kind_Floating_Subtype_Definition
           | Iir_Kind_Floating_Type_Definition =>
            return Get_Fp_Value (L) = Get_Fp_Value (R);
         when others =>
            Error_Kind ("eval_is_eq", Expr_Type);
      end case;
   end Eval_Is_Eq;

   function Eval_Operator_Symbol_Name (Id : Name_Id) return String is
   begin
      return '"' & Image (Id) & '"';
   end Eval_Operator_Symbol_Name;

   function Eval_Simple_Name (Id : Name_Id) return String is
   begin
      --  LRM 14.1
      --  E'SIMPLE_NAME
      --    Result: [...] but with apostrophes (in the case of a character
      --            literal)
      if Is_Character (Id) then
         return ''' & Get_Character (Id) & ''';
      end if;
      case Id is
         when Std_Names.Name_Word_Operators
           | Std_Names.Name_First_Operator .. Std_Names.Name_Last_Operator =>
            return Eval_Operator_Symbol_Name (Id);
         when Std_Names.Name_Xnor
           | Std_Names.Name_Shift_Operators =>
            if Flags.Vhdl_Std > Vhdl_87 then
               return Eval_Operator_Symbol_Name (Id);
            end if;
         when others =>
            null;
      end case;
      return Image (Id);
   end Eval_Simple_Name;

   package body String_Utils is
      --  Fill Res from EL.  This is used to speed up Lt and Eq operations.
      function Get_Str_Info (Expr : Iir) return Str_Info is
      begin
         case Get_Kind (Expr) is
            when Iir_Kind_Simple_Aggregate =>
               declare
                  List : constant Iir_Flist :=
                    Get_Simple_Aggregate_List (Expr);
               begin
                  return Str_Info'(Is_String => False,
                                   Len => Nat32 (Get_Nbr_Elements (List)),
                                   List => List);
               end;
            when Iir_Kind_String_Literal8 =>
               return Str_Info'(Is_String => True,
                                Len => Get_String_Length (Expr),
                                Id => Get_String8_Id (Expr));
            when others =>
               Error_Kind ("string_utils.get_info", Expr);
         end case;
      end Get_Str_Info;

      --  Return the position of element IDX of STR.
      function Get_Pos (Str : Str_Info; Idx : Nat32) return Iir_Int32
      is
         S : Iir;
         P : Nat32;
      begin
         case Str.Is_String is
            when False =>
               S := Get_Nth_Element (Str.List, Natural (Idx));
               return Get_Enum_Pos (S);
            when True =>
               P := Str_Table.Element_String8 (Str.Id, Idx + 1);
               return Iir_Int32 (P);
         end case;
      end Get_Pos;
   end String_Utils;

   function Compare_String_Literals (L, R : Iir) return Compare_Type
   is
      use String_Utils;
      L_Info : constant Str_Info := Get_Str_Info (L);
      R_Info : constant Str_Info := Get_Str_Info (R);
      L_Pos, R_Pos : Iir_Int32;
   begin
      if L_Info.Len /= R_Info.Len then
         raise Internal_Error;
      end if;

      for I in 0 .. L_Info.Len - 1 loop
         L_Pos := Get_Pos (L_Info, I);
         R_Pos := Get_Pos (R_Info, I);
         if L_Pos /= R_Pos then
            if L_Pos < R_Pos then
               return Compare_Lt;
            else
               return Compare_Gt;
            end if;
         end if;
      end loop;
      return Compare_Eq;
   end Compare_String_Literals;

   function Get_Path_Instance_Name_Suffix (Attr : Iir)
                                          return Path_Instance_Name_Type
   is
      --  Current path for name attributes.
      Path_Str : String_Acc := null;
      Path_Maxlen : Natural := 0;
      Path_Len : Natural;
      Path_Instance : Iir;

      procedure Deallocate is new Ada.Unchecked_Deallocation
        (Name => String_Acc, Object => String);

      procedure Path_Reset is
      begin
         Path_Len := 0;
         Path_Instance := Null_Iir;
         if Path_Maxlen = 0 then
            Path_Maxlen := 256;
            Path_Str := new String (1 .. Path_Maxlen);
         end if;
      end Path_Reset;

      procedure Path_Add (Str : String)
      is
         N_Len : Natural;
         N_Path : String_Acc;
      begin
         N_Len := Path_Maxlen;
         loop
            exit when Path_Len + Str'Length <= N_Len;
            N_Len := N_Len * 2;
         end loop;
         if N_Len /= Path_Maxlen then
            N_Path := new String (1 .. N_Len);
            N_Path (1 .. Path_Len) := Path_Str (1 .. Path_Len);
            Deallocate (Path_Str);
            Path_Str := N_Path;
            Path_Maxlen := N_Len;
         end if;
         Path_Str (Path_Len + 1 .. Path_Len + Str'Length) := Str;
         Path_Len := Path_Len + Str'Length;
      end Path_Add;

      procedure Path_Add_Type_Name (Atype : Iir)
      is
         Mark : Iir;
      begin
         if Get_Kind (Atype) in Iir_Kinds_Denoting_Name then
            Mark := Atype;
         else
            Mark := Get_Subtype_Type_Mark (Atype);
         end if;
         Path_Add (Image (Get_Identifier (Mark)));
      end Path_Add_Type_Name;

      procedure Path_Add_Signature (Subprg : Iir)
      is
         Inter : Iir;
         Inter_Type, Prev_Type : Iir;
      begin
         Path_Add ("[");
         Prev_Type := Null_Iir;
         Inter := Get_Interface_Declaration_Chain (Subprg);
         while Inter /= Null_Iir loop
            Inter_Type := Get_Subtype_Indication (Inter);
            if Inter_Type = Null_Iir then
               Inter_Type := Prev_Type;
            end if;
            Path_Add_Type_Name (Inter_Type);
            Prev_Type := Inter_Type;

            Inter := Get_Chain (Inter);
            if Inter /= Null_Iir then
               Path_Add (",");
            end if;
         end loop;

         case Get_Kind (Subprg) is
            when Iir_Kind_Function_Declaration =>
               Path_Add (" return ");
               Path_Add_Type_Name (Get_Return_Type_Mark (Subprg));
            when others =>
               null;
         end case;
         Path_Add ("]");
      end Path_Add_Signature;

      procedure Path_Add_Name (N : Iir)
      is
         Img : constant String := Eval_Simple_Name (Get_Identifier (N));
      begin
         if Img (Img'First) /= 'P' then
            --  Skip anonymous processes.
            Path_Add (Img);
         end if;
      end Path_Add_Name;

      procedure Path_Add_Element (El : Iir; Is_Instance : Boolean) is
      begin
         --  LRM 14.1
         --  E'INSTANCE_NAME
         --    There is one full path instance element for each component
         --    instantiation, block statement, generate statemenent, process
         --    statement, or subprogram body in the design hierarchy between
         --    the top design entity and the named entity denoted by the
         --    prefix.
         --
         --  E'PATH_NAME
         --    There is one path instance element for each component
         --    instantiation, block statement, generate statement, process
         --    statement, or subprogram body in the design hierarchy between
         --    the root design entity and the named entity denoted by the
         --    prefix.
         case Get_Kind (El) is
            when Iir_Kind_Library_Declaration =>
               Path_Add (":");
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Package_Declaration
              | Iir_Kind_Package_Body
              | Iir_Kind_Package_Instantiation_Declaration =>
               if Is_Nested_Package (El) then
                  Path_Add_Element (Get_Parent (El), Is_Instance);
               else
                  Path_Add_Element
                    (Get_Library (Get_Design_File (Get_Design_Unit (El))),
                     Is_Instance);
               end if;
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Entity_Declaration =>
               Path_Instance := El;
            when Iir_Kind_Architecture_Body =>
               Path_Instance := El;
            when Iir_Kind_Design_Unit =>
               Path_Add_Element (Get_Library_Unit (El), Is_Instance);
            when Iir_Kind_Sensitized_Process_Statement
              | Iir_Kind_Process_Statement
              | Iir_Kind_Block_Statement
              | Iir_Kind_Protected_Type_Body =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Protected_Type_Declaration =>
               declare
                  Decl : constant Iir := Get_Type_Declarator (El);
               begin
                  Path_Add_Element (Get_Parent (Decl), Is_Instance);
                  Path_Add_Name (Decl);
                  Path_Add (":");
               end;
            when Iir_Kind_Function_Declaration
              | Iir_Kind_Procedure_Declaration =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
               Path_Add_Name (El);
               if Flags.Vhdl_Std >= Vhdl_02 then
                  --  Add signature.
                  Path_Add_Signature (El);
               end if;
               Path_Add (":");
            when Iir_Kind_Procedure_Body =>
               Path_Add_Element (Get_Subprogram_Specification (El),
                                 Is_Instance);
            when Iir_Kind_For_Generate_Statement =>
               Path_Instance := El;
            when Iir_Kind_If_Generate_Statement =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Generate_Statement_Body =>
               declare
                  Parent : constant Iir := Get_Parent (El);
               begin
                  if Get_Kind (Parent) = Iir_Kind_For_Generate_Statement then
                     Path_Instance := El;
                  else
                     Path_Add_Element (Parent, Is_Instance);
                  end if;
               end;
            when Iir_Kinds_Sequential_Statement =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
            when others =>
               Error_Kind ("path_add_element", El);
         end case;
      end Path_Add_Element;

      Prefix : constant Iir := Get_Named_Entity (Get_Prefix (Attr));
      Is_Instance : constant Boolean :=
        Get_Kind (Attr) = Iir_Kind_Instance_Name_Attribute;
   begin
      Path_Reset;

      --  LRM 14.1
      --  E'PATH_NAME
      --    The local item name in E'PATH_NAME equals E'SIMPLE_NAME, unless
      --    E denotes a library, package, subprogram or label. In this
      --    latter case, the package based path or instance based path,
      --    as appropriate, will not contain a local item name.
      --
      --  E'INSTANCE_NAME
      --    The local item name in E'INSTANCE_NAME equals E'SIMPLE_NAME,
      --    unless E denotes a library, package, subprogram, or label.  In
      --    this latter case, the package based path or full instance based
      --    path, as appropriate, will not contain a local item name.
      case Get_Kind (Prefix) is
         when Iir_Kind_Constant_Declaration
           | Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Iterator_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Interface_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_File_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_Type_Declaration
           | Iir_Kind_Subtype_Declaration =>
            Path_Add_Element (Get_Parent (Prefix), Is_Instance);
            Path_Add_Name (Prefix);
         when Iir_Kind_Library_Declaration
           | Iir_Kinds_Library_Unit
           | Iir_Kind_Function_Declaration
           | Iir_Kind_Procedure_Declaration
           | Iir_Kinds_Concurrent_Statement
           | Iir_Kinds_Sequential_Statement =>
            Path_Add_Element (Prefix, Is_Instance);
         when others =>
            Error_Kind ("get_path_instance_name_suffix", Prefix);
      end case;

      declare
         Result : constant Path_Instance_Name_Type :=
           (Len => Path_Len,
            Path_Instance => Path_Instance,
            Suffix => Path_Str (1 .. Path_Len));
      begin
         Deallocate (Path_Str);
         return Result;
      end;
   end Get_Path_Instance_Name_Suffix;

end Vhdl.Evaluation;