aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/vhdl-evaluation.adb
blob: 52b489816ff49c6c8acf22fbb1feb56a370d0788 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
--  Evaluation of static expressions.
--  Copyright (C) 2002, 2003, 2004, 2005 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GHDL; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.
with Ada.Unchecked_Deallocation;
with Interfaces;
with Vhdl.Scanner;
with Errorout; use Errorout;
with Name_Table; use Name_Table;
with Str_Table;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Std_Package; use Vhdl.Std_Package;
with Flags; use Flags;
with Std_Names;
with Ada.Characters.Handling;
with Grt.Fcvt;

package body Vhdl.Evaluation is
   --  If FORCE is true, always return a literal.
   function Eval_Expr_Keep_Orig (Expr : Iir; Force : Boolean) return Iir;

   function Eval_Enum_To_String (Lit : Iir; Orig : Iir) return Iir;
   function Eval_Integer_Image (Val : Int64; Orig : Iir) return Iir;

   function Eval_Scalar_Compare (Left, Right : Iir) return Compare_Type;

   function Get_Physical_Value (Expr : Iir) return Int64
   is
      pragma Unsuppress (Overflow_Check);
      Kind : constant Iir_Kind := Get_Kind (Expr);
      Unit : Iir;
   begin
      case Kind is
         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal =>
            --  Extract Unit.
            Unit := Get_Physical_Literal
              (Get_Named_Entity (Get_Unit_Name (Expr)));
            pragma Assert (Get_Kind (Unit) = Iir_Kind_Integer_Literal);
            case Kind is
               when Iir_Kind_Physical_Int_Literal =>
                  return Get_Value (Expr) * Get_Value (Unit);
               when Iir_Kind_Physical_Fp_Literal =>
                  return Int64 (Get_Fp_Value (Expr) * Fp64 (Get_Value (Unit)));
               when others =>
                  raise Program_Error;
            end case;
         when Iir_Kind_Integer_Literal =>
            return Get_Value (Expr);
         when Iir_Kind_Unit_Declaration =>
            return Get_Value (Get_Physical_Literal (Expr));
         when others =>
            Error_Kind ("get_physical_value", Expr);
      end case;
   end Get_Physical_Value;

   function Build_Integer (Val : Int64; Origin : Iir)
     return Iir_Integer_Literal
   is
      Res : Iir_Integer_Literal;
   begin
      Res := Create_Iir (Iir_Kind_Integer_Literal);
      Location_Copy (Res, Origin);
      Set_Value (Res, Val);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Integer;

   function Build_Floating (Val : Fp64; Origin : Iir)
                           return Iir_Floating_Point_Literal
   is
      Res : Iir_Floating_Point_Literal;
   begin
      Res := Create_Iir (Iir_Kind_Floating_Point_Literal);
      Location_Copy (Res, Origin);
      Set_Fp_Value (Res, Val);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Floating;

   function Build_Enumeration_Constant (Val : Iir_Index32; Origin : Iir)
     return Iir_Enumeration_Literal
   is
      Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
      Enum_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Enum_Type);
      Lit : constant Iir_Enumeration_Literal :=
        Get_Nth_Element (Enum_List, Integer (Val));
      Res : Iir_Enumeration_Literal;
   begin
      Res := Copy_Enumeration_Literal (Lit);
      Location_Copy (Res, Origin);
      Set_Literal_Origin (Res, Origin);
      return Res;
   end Build_Enumeration_Constant;

   function Build_Physical (Val : Int64; Origin : Iir)
                           return Iir_Integer_Literal
   is
      Res : Iir_Integer_Literal;
   begin
      Res := Create_Iir (Iir_Kind_Integer_Literal);
      Location_Copy (Res, Origin);
      Set_Value (Res, Val);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Physical;

   function Build_Discrete (Val : Int64; Origin : Iir) return Iir is
   begin
      case Get_Kind (Get_Type (Origin)) is
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            return Build_Enumeration_Constant (Iir_Index32 (Val), Origin);
         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            return Build_Integer (Val, Origin);
         when others =>
            Error_Kind ("build_discrete", Get_Type (Origin));
      end case;
   end Build_Discrete;

   function Build_String (Val : String8_Id; Len : Nat32; Origin : Iir)
                         return Iir
   is
      Res : Iir;
   begin
      Res := Create_Iir (Iir_Kind_String_Literal8);
      Location_Copy (Res, Origin);
      Set_String8_Id (Res, Val);
      Set_String_Length (Res, Len);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_String;

   --  Build a simple aggregate composed of EL_LIST from ORIGIN.  STYPE is the
   --  type of the aggregate.  DEF_TYPE should be either Null_Iir or STYPE.  It
   --  is set only when a new subtype has been created for the aggregate.
   function Build_Simple_Aggregate (El_List : Iir_Flist;
                                    Origin : Iir;
                                    Stype : Iir;
                                    Def_Type : Iir := Null_Iir)
                                   return Iir_Simple_Aggregate
   is
      Res : Iir_Simple_Aggregate;
   begin
      Res := Create_Iir (Iir_Kind_Simple_Aggregate);
      Location_Copy (Res, Origin);
      Set_Simple_Aggregate_List (Res, El_List);
      Set_Type (Res, Stype);
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      Set_Literal_Subtype (Res, Def_Type);
      return Res;
   end Build_Simple_Aggregate;

   function Build_Overflow (Origin : Iir; Expr_Type : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Create_Iir (Iir_Kind_Overflow_Literal);
      Location_Copy (Res, Origin);
      Set_Type (Res, Expr_Type);
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Overflow;

   function Build_Overflow (Origin : Iir) return Iir is
   begin
      return Build_Overflow (Origin, Get_Type (Origin));
   end Build_Overflow;

   function Build_Constant (Val : Iir; Origin : Iir) return Iir
   is
      Res : Iir;
   begin
      --  Note: this must work for any literals, because it may be used to
      --  replace a locally static constant by its initial value.
      case Get_Kind (Val) is
         when Iir_Kind_Integer_Literal =>
            Res := Create_Iir (Iir_Kind_Integer_Literal);
            Set_Value (Res, Get_Value (Val));

         when Iir_Kind_Floating_Point_Literal =>
            Res := Create_Iir (Iir_Kind_Floating_Point_Literal);
            Set_Fp_Value (Res, Get_Fp_Value (Val));

         when Iir_Kind_Enumeration_Literal =>
            return Build_Enumeration_Constant
              (Iir_Index32 (Get_Enum_Pos (Val)), Origin);

         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal
           | Iir_Kind_Unit_Declaration =>
            Res := Create_Iir (Iir_Kind_Integer_Literal);
            Set_Value (Res, Get_Physical_Value (Val));

         when Iir_Kind_String_Literal8 =>
            Res := Create_Iir (Iir_Kind_String_Literal8);
            Set_String8_Id (Res, Get_String8_Id (Val));
            Set_String_Length (Res, Get_String_Length (Val));

         when Iir_Kind_Simple_Aggregate =>
            Res := Create_Iir (Iir_Kind_Simple_Aggregate);
            Set_Simple_Aggregate_List (Res, Get_Simple_Aggregate_List (Val));

         when Iir_Kind_Overflow_Literal =>
            Res := Create_Iir (Iir_Kind_Overflow_Literal);

         when others =>
            Error_Kind ("build_constant", Val);
      end case;
      Location_Copy (Res, Origin);
      Set_Type (Res, Get_Type (Origin));
      Set_Literal_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Constant;

   function Copy_Constant (Val : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Build_Constant (Val, Val);
      Set_Literal_Origin (Res, Null_Iir);
      return Res;
   end Copy_Constant;

   --  FIXME: origin ?
   function Build_Boolean (Cond : Boolean) return Iir is
   begin
      if Cond then
         return Boolean_True;
      else
         return Boolean_False;
      end if;
   end Build_Boolean;

   function Build_Enumeration (Val : Iir_Index32; Origin : Iir)
                              return Iir_Enumeration_Literal
   is
      Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
      Enum_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Enum_Type);
   begin
      return Get_Nth_Element (Enum_List, Integer (Val));
   end Build_Enumeration;

   function Build_Enumeration (Val : Boolean; Origin : Iir)
                              return Iir_Enumeration_Literal
   is
      Enum_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
      Enum_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Enum_Type);
   begin
      return Get_Nth_Element (Enum_List, Boolean'Pos (Val));
   end Build_Enumeration;

   function Build_Constant_Range (Range_Expr : Iir; Origin : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Create_Iir (Iir_Kind_Range_Expression);
      Location_Copy (Res, Origin);
      Set_Type (Res, Get_Type (Range_Expr));
      Set_Left_Limit (Res, Get_Left_Limit (Range_Expr));
      Set_Right_Limit (Res, Get_Right_Limit (Range_Expr));
      Set_Direction (Res, Get_Direction (Range_Expr));
      Set_Range_Origin (Res, Origin);
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Build_Constant_Range;

   function Build_Extreme_Value (Is_Pos : Boolean; Origin : Iir) return Iir
   is
      Orig_Type : constant Iir := Get_Base_Type (Get_Type (Origin));
   begin
      case Get_Kind (Orig_Type) is
         when Iir_Kind_Integer_Type_Definition =>
            if Is_Pos then
               return Build_Integer (Int64'Last, Origin);
            else
               return Build_Integer (Int64'First, Origin);
            end if;
         when others =>
            Error_Kind ("build_extreme_value", Orig_Type);
      end case;
   end Build_Extreme_Value;

   --  A_RANGE is a range expression, whose type, location, expr_staticness,
   --  left_limit and direction are set.
   --  Type of A_RANGE must have a range_constraint.
   --  Set the right limit of A_RANGE from LEN.
   procedure Set_Right_Limit_By_Length (A_Range : Iir; Len : Int64)
   is
      A_Type : constant Iir := Get_Type (A_Range);
      Left : constant Iir := Get_Left_Limit (A_Range);
      Right : Iir;
      Pos : Int64;
   begin
      pragma Assert (Get_Expr_Staticness (A_Range) = Locally);

      Pos := Eval_Pos (Left);
      case Get_Direction (A_Range) is
         when Iir_To =>
            Pos := Pos + Len - 1;
         when Iir_Downto =>
            Pos := Pos - Len + 1;
      end case;
      if Len > 0
        and then not Eval_Int_In_Range (Pos, Get_Range_Constraint (A_Type))
      then
         Error_Msg_Sem (+A_Range, "range length is beyond subtype length");
         Right := Left;
      else
         -- FIXME: what about nul range?
         Right := Build_Discrete (Pos, A_Range);
         Set_Literal_Origin (Right, Null_Iir);
         Set_Right_Limit_Expr (A_Range, Right);
      end if;
      Set_Right_Limit (A_Range, Right);
   end Set_Right_Limit_By_Length;

   --  Create a range of type A_TYPE whose length is LEN.
   --  Note: only two nodes are created:
   --  * the range_expression (node returned)
   --  * the right bound
   --  The left bound *IS NOT* created, but points to the left bound of A_TYPE.
   function Create_Range_By_Length
     (A_Type : Iir; Len : Int64; Loc : Location_Type)
     return Iir
   is
      Index_Constraint : Iir;
      Constraint : Iir;
   begin
      --  The left limit must be locally static in order to compute the right
      --  limit.
      pragma Assert (Get_Type_Staticness (A_Type) = Locally);

      Index_Constraint := Get_Range_Constraint (A_Type);
      Constraint := Create_Iir (Iir_Kind_Range_Expression);
      Set_Location (Constraint, Loc);
      Set_Expr_Staticness (Constraint, Locally);
      Set_Type (Constraint, A_Type);
      Set_Left_Limit (Constraint, Get_Left_Limit (Index_Constraint));
      Set_Direction (Constraint, Get_Direction (Index_Constraint));
      Set_Right_Limit_By_Length (Constraint, Len);
      return Constraint;
   end Create_Range_By_Length;

   function Create_Range_Subtype_From_Type (A_Type : Iir; Loc : Location_Type)
                                          return Iir
   is
      Res : Iir;
   begin
      pragma Assert (Get_Type_Staticness (A_Type) = Locally);

      case Get_Kind (A_Type) is
         when Iir_Kind_Enumeration_Type_Definition =>
            Res := Create_Iir (Iir_Kind_Enumeration_Subtype_Definition);
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            Res := Create_Iir (Get_Kind (A_Type));
         when others =>
            Error_Kind ("create_range_subtype_by_length", A_Type);
      end case;
      Set_Location (Res, Loc);
      Set_Base_Type (Res, Get_Base_Type (A_Type));
      Set_Type_Staticness (Res, Locally);

      return Res;
   end Create_Range_Subtype_From_Type;

   --  Create a subtype of A_TYPE whose length is LEN.
   --  This is used to create subtypes for strings or aggregates.
   function Create_Range_Subtype_By_Length
     (A_Type : Iir; Len : Int64; Loc : Location_Type)
     return Iir
   is
      Res : Iir;
   begin
      Res := Create_Range_Subtype_From_Type (A_Type, Loc);

      Set_Range_Constraint (Res, Create_Range_By_Length (A_Type, Len, Loc));
      return Res;
   end Create_Range_Subtype_By_Length;

   function Create_Unidim_Array_From_Index
     (Base_Type : Iir; Index_Type : Iir; Loc : Iir)
     return Iir_Array_Subtype_Definition
   is
      Res : Iir_Array_Subtype_Definition;
   begin
      Res := Create_Array_Subtype (Base_Type, Get_Location (Loc));
      Set_Nth_Element (Get_Index_Subtype_List (Res), 0, Index_Type);
      Set_Type_Staticness (Res, Min (Get_Type_Staticness (Res),
                                     Get_Type_Staticness (Index_Type)));
      Set_Constraint_State (Res, Fully_Constrained);
      Set_Index_Constraint_Flag (Res, True);
      return Res;
   end Create_Unidim_Array_From_Index;

   function Create_Unidim_Array_By_Length
     (Base_Type : Iir; Len : Int64; Loc : Iir)
     return Iir_Array_Subtype_Definition
   is
      Index_Type : constant Iir := Get_Index_Type (Base_Type, 0);
      N_Index_Type : Iir;
   begin
      N_Index_Type := Create_Range_Subtype_By_Length
        (Index_Type, Len, Get_Location (Loc));
      return Create_Unidim_Array_From_Index (Base_Type, N_Index_Type, Loc);
   end Create_Unidim_Array_By_Length;

   procedure Free_Eval_Static_Expr (Res : Iir; Orig : Iir) is
   begin
      if Res /= Orig and then Get_Literal_Origin (Res) = Orig then
         Free_Iir (Res);
      end if;
   end Free_Eval_Static_Expr;

   --  Free the result RES of Eval_String_Literal called with ORIG, if created.
   procedure Free_Eval_String_Literal (Res : Iir; Orig : Iir)
   is
      L : Iir_Flist;
   begin
      if Res /= Orig then
         L := Get_Simple_Aggregate_List (Res);
         Destroy_Iir_Flist (L);
         Free_Iir (Res);
      end if;
   end Free_Eval_String_Literal;

   function String_Literal8_To_Simple_Aggregate (Str : Iir) return Iir
   is
      Element_Type : constant Iir := Get_Base_Type
        (Get_Element_Subtype (Get_Base_Type (Get_Type (Str))));
      Literal_List : constant Iir_Flist :=
        Get_Enumeration_Literal_List (Element_Type);

      Len : constant Nat32 := Get_String_Length (Str);
      Id : constant String8_Id := Get_String8_Id (Str);

      List : Iir_Flist;
      Lit : Iir;
   begin
      List := Create_Iir_Flist (Natural (Len));

      for I in 1 .. Len loop
         Lit := Get_Nth_Element
           (Literal_List, Natural (Str_Table.Element_String8 (Id, I)));
         Set_Nth_Element (List, Natural (I - 1), Lit);
      end loop;
      return Build_Simple_Aggregate (List, Str, Get_Type (Str));
   end String_Literal8_To_Simple_Aggregate;

   --  Return the offset of EXPR in RNG.  A result of 0 means the left bound,
   --  a result of 1 mean the next element after the left bound.
   --  Assume no overflow.
   function Eval_Pos_In_Range (Rng : Iir; Expr : Iir) return Iir_Index32
   is
      Left_Pos : constant Int64 := Eval_Pos (Get_Left_Limit (Rng));
      Pos : constant Int64 := Eval_Pos (Expr);
   begin
      case Get_Direction (Rng) is
         when Iir_To =>
            return Iir_Index32 (Pos - Left_Pos);
         when Iir_Downto =>
            return Iir_Index32 (Left_Pos - Pos);
      end case;
   end Eval_Pos_In_Range;

   procedure Build_Array_Choices_Vector
     (Vect : out Iir_Array; Choice_Range : Iir; Choices_Chain : Iir)
   is
      pragma Assert (Vect'First = 0);
      pragma Assert (Vect'Length = Eval_Discrete_Range_Length (Choice_Range));
      Assoc : Iir;
      Choice : Iir;
      Cur_Pos : Natural;
   begin
      --  Initialize Vect (to correctly handle 'others').
      Vect := (others => Null_Iir);

      Assoc := Choices_Chain;
      Cur_Pos := 0;
      Choice := Null_Iir;
      while Is_Valid (Assoc) loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Choice := Assoc;
         end if;
         case Iir_Kinds_Array_Choice (Get_Kind (Assoc)) is
            when Iir_Kind_Choice_By_None =>
               Vect (Cur_Pos) := Choice;
               Cur_Pos := Cur_Pos + 1;
            when Iir_Kind_Choice_By_Range =>
               declare
                  Rng : constant Iir := Get_Choice_Range (Assoc);
                  Rng_Start : Iir;
                  Rng_Len : Int64;
               begin
                  if Get_Direction (Rng) = Get_Direction (Choice_Range) then
                     Rng_Start := Get_Left_Limit (Rng);
                  else
                     Rng_Start := Get_Right_Limit (Rng);
                  end if;
                  Cur_Pos := Natural
                    (Eval_Pos_In_Range (Choice_Range, Rng_Start));
                  Rng_Len := Eval_Discrete_Range_Length (Rng);
                  for I in 1 .. Rng_Len loop
                     Vect (Cur_Pos) := Choice;
                     Cur_Pos := Cur_Pos + 1;
                  end loop;
               end;
            when Iir_Kind_Choice_By_Expression =>
               Cur_Pos := Natural
                 (Eval_Pos_In_Range (Choice_Range,
                                     Get_Choice_Expression (Assoc)));
               Vect (Cur_Pos) := Choice;
            when Iir_Kind_Choice_By_Others =>
               for I in Vect'Range loop
                  if Vect (I) = Null_Iir then
                     Vect (I) := Choice;
                  end if;
               end loop;
         end case;
         Assoc := Get_Chain (Assoc);
      end loop;
   end Build_Array_Choices_Vector;

   function Aggregate_To_Simple_Aggregate (Aggr : Iir) return Iir
   is
      Aggr_Type : constant Iir := Get_Type (Aggr);
      Index_Type : constant Iir := Get_Index_Type (Aggr_Type, 0);
      Index_Range : constant Iir := Eval_Static_Range (Index_Type);
      Len : constant Int64 := Eval_Discrete_Range_Length (Index_Range);
      Assocs : constant Iir := Get_Association_Choices_Chain (Aggr);
      Vect : Iir_Array (0 .. Integer (Len - 1));
      List : Iir_Flist;
      Assoc : Iir;
      Expr : Iir;
   begin
      Assoc := Assocs;
      while Is_Valid (Assoc) loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Expr := Get_Associated_Expr (Assoc);
            if Get_Kind (Get_Type (Expr))
              in Iir_Kinds_Scalar_Type_And_Subtype_Definition
            then
               Expr := Eval_Expr_Keep_Orig (Expr, True);
               Set_Associated_Expr (Assoc, Expr);
            end if;
         end if;
         Assoc := Get_Chain (Assoc);
      end loop;

      Build_Array_Choices_Vector (Vect, Index_Range, Assocs);

      List := Create_Iir_Flist (Natural (Len));
      if Len > 0 then
         --  Workaround GNAT GPL2014 compiler bug.
         for I in Vect'Range loop
            Set_Nth_Element (List, I, Get_Associated_Expr (Vect (I)));
         end loop;
      end if;

      return Build_Simple_Aggregate (List, Aggr, Aggr_Type);
   end Aggregate_To_Simple_Aggregate;

   function Eval_String_Literal (Str : Iir) return Iir is
   begin
      case Get_Kind (Str) is
         when Iir_Kind_String_Literal8 =>
            return String_Literal8_To_Simple_Aggregate (Str);

         when Iir_Kind_Aggregate =>
            return Aggregate_To_Simple_Aggregate (Str);

         when Iir_Kind_Simple_Aggregate =>
            return Str;

         when others =>
            Error_Kind ("eval_string_literal", Str);
      end case;
   end Eval_String_Literal;

   function Eval_Monadic_Operator (Orig : Iir; Operand : Iir) return Iir
   is
      pragma Unsuppress (Overflow_Check);
      subtype Iir_Predefined_Vector_Minmax is Iir_Predefined_Functions range
        Iir_Predefined_Vector_Minimum .. Iir_Predefined_Vector_Maximum;

      Func : Iir_Predefined_Functions;
   begin
      if Get_Kind (Operand) = Iir_Kind_Overflow_Literal then
         --  Propagate overflow.
         return Build_Overflow (Orig);
      end if;

      Func := Get_Implicit_Definition (Get_Implementation (Orig));
      case Func is
         when Iir_Predefined_Integer_Negation =>
            return Build_Integer (-Get_Value (Operand), Orig);
         when Iir_Predefined_Integer_Identity =>
            return Build_Integer (Get_Value (Operand), Orig);
         when Iir_Predefined_Integer_Absolute =>
            return Build_Integer (abs Get_Value (Operand), Orig);

         when Iir_Predefined_Floating_Negation =>
            return Build_Floating (-Get_Fp_Value (Operand), Orig);
         when Iir_Predefined_Floating_Identity =>
            return Build_Floating (Get_Fp_Value (Operand), Orig);
         when Iir_Predefined_Floating_Absolute =>
            return Build_Floating (abs Get_Fp_Value (Operand), Orig);

         when Iir_Predefined_Physical_Negation =>
            return Build_Physical (-Get_Physical_Value (Operand), Orig);
         when Iir_Predefined_Physical_Identity =>
            return Build_Physical (Get_Physical_Value (Operand), Orig);
         when Iir_Predefined_Physical_Absolute =>
            return Build_Physical (abs Get_Physical_Value (Operand), Orig);

         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Bit_Not =>
            return Build_Enumeration (Get_Enum_Pos (Operand) = 0, Orig);

         when Iir_Predefined_TF_Array_Not =>
            declare
               Lit_Val : Iir;
               O_List : Iir_Flist;
               R_List : Iir_Flist;
               El : Iir;
               Lit : Iir;
            begin
               Lit_Val := Eval_String_Literal (Operand);
               O_List := Get_Simple_Aggregate_List (Lit_Val);
               R_List := Create_Iir_Flist (Get_Nbr_Elements (O_List));

               for I in Flist_First .. Flist_Last (O_List) loop
                  El := Get_Nth_Element (O_List, I);
                  case Get_Enum_Pos (El) is
                     when 0 =>
                        Lit := Bit_1;
                     when 1 =>
                        Lit := Bit_0;
                     when others =>
                        raise Internal_Error;
                  end case;
                  Set_Nth_Element (R_List, I, Lit);
               end loop;
               Free_Eval_String_Literal (Lit_Val, Operand);
               return Build_Simple_Aggregate
                 (R_List, Orig, Get_Type (Operand));
            end;

         when Iir_Predefined_Enum_To_String =>
            return Eval_Enum_To_String (Operand, Orig);
         when Iir_Predefined_Integer_To_String =>
            return Eval_Integer_Image (Get_Value (Operand), Orig);

         when Iir_Predefined_Array_Char_To_String =>
            --  LRM08 5.7 String representation
            --  - For a given value that is of a one-dimensional array type
            --    whose element type is a character type that contains only
            --    character literals, the string representation has the same
            --    length as the given value.  Each element of the string
            --    representation is the same character literal as the matching
            --    element of the given value.
            declare
               Saggr : Iir;
               Lits : Iir_Flist;
               El : Iir;
               C : Character;
               String_Id : String8_Id;
               Len : Natural;
            begin
               Saggr := Eval_String_Literal (Operand);
               Lits := Get_Simple_Aggregate_List (Saggr);
               Len := Get_Nbr_Elements (Lits);
               String_Id := Str_Table.Create_String8;
               for I in Flist_First .. Flist_Last (Lits) loop
                  El := Get_Nth_Element (Lits, I);
                  C := Get_Character (Get_Identifier (El));
                  Str_Table.Append_String8_Char (C);
               end loop;
               Free_Eval_String_Literal (Saggr, Operand);

               return Build_String (String_Id, Nat32 (Len), Orig);
            end;

         when Iir_Predefined_Vector_Minimum
           | Iir_Predefined_Vector_Maximum =>
            --  LRM08 5.3.2.4 Predefined operations on array types
            declare
               Saggr : Iir;
               Lits : Iir_Flist;
               Res : Iir;
               El : Iir;
               Cmp : Compare_Type;
            begin
               Saggr := Eval_String_Literal (Operand);
               Lits := Get_Simple_Aggregate_List (Saggr);

               if Get_Nbr_Elements (Lits) = 0 then
                  declare
                     Typ : constant Iir :=
                       Get_Type (Get_Implementation (Orig));
                     Rng : constant Iir := Eval_Static_Range (Typ);
                  begin
                     case Iir_Predefined_Vector_Minmax (Func) is
                        when Iir_Predefined_Vector_Minimum =>
                           Res := Get_High_Limit (Rng);
                        when Iir_Predefined_Vector_Maximum =>
                           Res := Get_Low_Limit (Rng);
                     end case;
                     Res := Eval_Static_Expr (Res);
                  end;
               else
                  Res := Get_Nth_Element (Lits, 0);
                  for I in Flist_First .. Flist_Last (Lits) loop
                     El := Get_Nth_Element (Lits, I);
                     Cmp := Eval_Scalar_Compare (El, Res);
                     case Iir_Predefined_Vector_Minmax (Func) is
                        when Iir_Predefined_Vector_Minimum =>
                           if Cmp <= Compare_Eq then
                              Res := El;
                           end if;
                        when Iir_Predefined_Vector_Maximum =>
                           if Cmp >= Compare_Eq then
                              Res := El;
                           end if;
                     end case;
                  end loop;
               end if;
               Free_Eval_String_Literal (Saggr, Operand);
               return Res;
            end;

         when others =>
            Error_Internal (Orig, "eval_monadic_operator: " &
                            Iir_Predefined_Functions'Image (Func));
      end case;
   exception
      when Constraint_Error =>
         --  Can happen for absolute.
         Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                          "arithmetic overflow in static expression");
         return Build_Overflow (Orig);
   end Eval_Monadic_Operator;

   function Eval_Dyadic_Bit_Array_Operator
     (Expr : Iir;
      Left, Right : Iir;
      Func : Iir_Predefined_Dyadic_TF_Array_Functions)
     return Iir
   is
      use Str_Table;
      L_Str : constant String8_Id := Get_String8_Id (Left);
      R_Str : constant String8_Id := Get_String8_Id (Right);
      Len : Nat32;
      Id : String8_Id;
      Res : Iir;
   begin
      Len := Get_String_Length (Left);
      if Len /= Get_String_Length (Right) then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                          "length of left and right operands mismatch");
         return Build_Overflow (Expr);
      else
         Id := Create_String8;
         case Func is
            when Iir_Predefined_TF_Array_And =>
               for I in 1 .. Len loop
                  case Element_String8 (L_Str, I) is
                     when 0 =>
                        Append_String8 (0);
                     when 1 =>
                        Append_String8 (Element_String8 (R_Str, I));
                     when others =>
                        raise Internal_Error;
                  end case;
               end loop;
            when Iir_Predefined_TF_Array_Nand =>
               for I in 1 .. Len loop
                  case Element_String8 (L_Str, I) is
                     when 0 =>
                        Append_String8 (1);
                     when 1 =>
                        case Element_String8 (R_Str, I) is
                           when 0 =>
                              Append_String8 (1);
                           when 1 =>
                              Append_String8 (0);
                           when others =>
                              raise Internal_Error;
                        end case;
                     when others =>
                        raise Internal_Error;
                  end case;
               end loop;
            when Iir_Predefined_TF_Array_Or =>
               for I in 1 .. Len loop
                  case Element_String8 (L_Str, I) is
                     when 1 =>
                        Append_String8 (1);
                     when 0 =>
                        Append_String8 (Element_String8 (R_Str, I));
                     when others =>
                        raise Internal_Error;
                  end case;
               end loop;
            when Iir_Predefined_TF_Array_Nor =>
               for I in 1 .. Len loop
                  case Element_String8 (L_Str, I) is
                     when 1 =>
                        Append_String8 (0);
                     when 0 =>
                        case Element_String8 (R_Str, I) is
                           when 0 =>
                              Append_String8 (1);
                           when 1 =>
                              Append_String8 (0);
                           when others =>
                              raise Internal_Error;
                        end case;
                     when others =>
                        raise Internal_Error;
                  end case;
               end loop;
            when Iir_Predefined_TF_Array_Xor =>
               for I in 1 .. Len loop
                  case Element_String8 (L_Str, I) is
                     when 1 =>
                        case Element_String8 (R_Str, I) is
                           when 0 =>
                              Append_String8 (1);
                           when 1 =>
                              Append_String8 (0);
                           when others =>
                              raise Internal_Error;
                        end case;
                     when 0 =>
                        Append_String8 (Element_String8 (R_Str, I));
                     when others =>
                        raise Internal_Error;
                  end case;
               end loop;
            when others =>
               Error_Internal (Expr, "eval_dyadic_bit_array_functions: " &
                               Iir_Predefined_Functions'Image (Func));
         end case;
         Res := Build_String (Id, Len, Expr);

         --  The unconstrained type is replaced by the constrained one.
         Set_Type (Res, Get_Type (Left));
         return Res;
      end if;
   end Eval_Dyadic_Bit_Array_Operator;

   --  Return TRUE if VAL /= 0.
   function Check_Integer_Division_By_Zero (Expr : Iir; Val : Iir)
                                           return Boolean
   is
   begin
      if Get_Value (Val) = 0 then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr, "division by 0");
         return False;
      else
         return True;
      end if;
   end Check_Integer_Division_By_Zero;

   function Eval_Shift_Operator
     (Left, Right : Iir; Origin : Iir; Func : Iir_Predefined_Shift_Functions)
     return Iir
   is
      Count : constant Int64 := Get_Value (Right);
      Arr_List : constant Iir_Flist := Get_Simple_Aggregate_List (Left);
      Len : constant Natural := Get_Nbr_Elements (Arr_List);
      Cnt : Natural;
      Res_List : Iir_Flist;
      Dir_Left : Boolean;
      E : Iir;
   begin
      --  LRM93 7.2.3
      --  That is, if R is 0 or if L is a null array, the return value is L.
      if Count = 0 or Len = 0 then
         return Build_Simple_Aggregate (Arr_List, Origin, Get_Type (Left));
      end if;
      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Rol =>
            Dir_Left := True;
         when Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Ror =>
            Dir_Left := False;
      end case;
      if Count < 0 then
         Cnt := Natural (-Count);
         Dir_Left := not Dir_Left;
      else
         Cnt := Natural (Count);
      end if;

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl =>
            declare
               Enum_List : constant Iir_Flist :=
                 Get_Enumeration_Literal_List
                 (Get_Base_Type (Get_Element_Subtype (Get_Type (Left))));
            begin
               E := Get_Nth_Element (Enum_List, 0);
            end;
         when Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               E := Get_Nth_Element (Arr_List, Len - 1);
            else
               E := Get_Nth_Element (Arr_List, 0);
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            Cnt := Cnt mod Len;
            if not Dir_Left then
               Cnt := (Len - Cnt) mod Len;
            end if;
      end case;

      Res_List := Create_Iir_Flist (Len);

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               if Cnt < Len then
                  for I in Cnt .. Len - 1 loop
                     Set_Nth_Element
                       (Res_List, I - Cnt, Get_Nth_Element (Arr_List, I));
                  end loop;
               else
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Set_Nth_Element (Res_List, Len - Cnt + I, E);
               end loop;
            else
               if Cnt > Len then
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Set_Nth_Element (Res_List, I, E);
               end loop;
               for I in Cnt .. Len - 1 loop
                  Set_Nth_Element
                    (Res_List, I, Get_Nth_Element (Arr_List, I - Cnt));
               end loop;
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            for I in 1 .. Len loop
               Set_Nth_Element
                 (Res_List, I - 1, Get_Nth_Element (Arr_List, Cnt));
               Cnt := Cnt + 1;
               if Cnt = Len then
                  Cnt := 0;
               end if;
            end loop;
      end case;
      return Build_Simple_Aggregate (Res_List, Origin, Get_Type (Left));
   end Eval_Shift_Operator;

   --  Note: operands must be locally static.
   function Eval_Concatenation
     (Left, Right : Iir; Orig : Iir; Func : Iir_Predefined_Concat_Functions)
     return Iir
   is
      Res_List : Iir_Flist;
      Res_Len : Natural;
      Res_Type : Iir;
      Origin_Type : Iir;
      Left_Aggr, Right_Aggr : Iir;
      Left_List, Right_List : Iir_Flist;
      Left_Len, Right_Len : Natural;
   begin
      --  Compute length of the result.
      --  Left:
      case Func is
         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Element_Element_Concat =>
            Left_Len := 1;
         when Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Array_Array_Concat =>
            Left_Aggr := Eval_String_Literal (Left);
            Left_List := Get_Simple_Aggregate_List (Left_Aggr);
            Left_Len := Get_Nbr_Elements (Left_List);
      end case;
      --  Right:
      case Func is
         when Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Element_Element_Concat =>
            Right_Len := 1;
         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Array_Array_Concat =>
            Right_Aggr := Eval_String_Literal (Right);
            Right_List := Get_Simple_Aggregate_List (Right_Aggr);
            Right_Len := Get_Nbr_Elements (Right_List);
      end case;

      Res_Len := Left_Len + Right_Len;
      Res_List := Create_Iir_Flist (Res_Len);
      --  Do the concatenation.
      --  Left:
      case Func is
         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Element_Element_Concat =>
            Set_Nth_Element (Res_List, 0, Left);
         when Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Array_Array_Concat =>
            for I in 0 .. Left_Len - 1 loop
               Set_Nth_Element (Res_List, I, Get_Nth_Element (Left_List, I));
            end loop;
            Free_Eval_String_Literal (Left_Aggr, Left);
      end case;
      --  Right:
      case Func is
         when Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Element_Element_Concat =>
            Set_Nth_Element (Res_List, Left_Len, Right);
         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Array_Array_Concat =>
            for I in 0 .. Right_Len - 1 loop
               Set_Nth_Element
                 (Res_List, Left_Len + I, Get_Nth_Element (Right_List, I));
            end loop;
            Free_Eval_String_Literal (Right_Aggr, Right);
      end case;

      --  Compute subtype...
      Origin_Type := Get_Type (Orig);
      Res_Type := Null_Iir;
      if Func = Iir_Predefined_Array_Array_Concat
        and then Left_Len = 0
      then
         if Flags.Vhdl_Std = Vhdl_87 then
            --  LRM87 7.2.3
            --  [...], unless the left operand is a null array, in which case
            --  the result of the concatenation is the right operand.
            Res_Type := Get_Type (Right);
         else
            --  LRM93 7.2.4
            --  If both operands are null arrays, then the result of the
            --  concatenation is the right operand.
            if Get_Nbr_Elements (Right_List) = 0 then
               Res_Type := Get_Type (Right);
            end if;
         end if;
      end if;
      if Res_Type = Null_Iir then
         if Flags.Vhdl_Std = Vhdl_87
           and then (Func = Iir_Predefined_Array_Array_Concat
                     or Func = Iir_Predefined_Array_Element_Concat)
         then
            --  LRM87 7.2.3
            --  The left bound of the result is the left operand, [...]
            --
            --  LRM87 7.2.3
            --  The direction of the result is the direction of the left
            --  operand, [...]
            declare
               Left_Index : constant Iir :=
                 Get_Index_Type (Get_Type (Left), 0);
               Left_Range : constant Iir :=
                 Get_Range_Constraint (Left_Index);
               Ret_Type : constant Iir :=
                 Get_Return_Type (Get_Implementation (Orig));
               A_Range : Iir;
               Index_Type : Iir;
            begin
               A_Range := Create_Iir (Iir_Kind_Range_Expression);
               Set_Type (A_Range, Get_Index_Type (Ret_Type, 0));
               Set_Expr_Staticness (A_Range, Locally);
               Set_Left_Limit (A_Range, Get_Left_Limit (Left_Range));
               Set_Direction (A_Range, Get_Direction (Left_Range));
               Location_Copy (A_Range, Orig);
               Set_Right_Limit_By_Length (A_Range, Int64 (Res_Len));
               Index_Type := Create_Range_Subtype_From_Type
                 (Left_Index, Get_Location (Orig));
               Set_Range_Constraint (Index_Type, A_Range);
               Res_Type := Create_Unidim_Array_From_Index
                 (Origin_Type, Index_Type, Orig);
            end;
         else
            --  LRM93 7.2.4
            --  Otherwise, the direction and bounds of the result are
            --  determined as follows: let S be the index subtype of the base
            --  type of the result.  The direction of the result of the
            --  concatenation is the direction of S, and the left bound of the
            --  result is S'LEFT.
            Res_Type := Create_Unidim_Array_By_Length
              (Origin_Type, Int64 (Res_Len), Orig);
         end if;
      end if;
      --  FIXME: this is not necessarily a string, it may be an aggregate if
      --  element type is not a character type.
      return Build_Simple_Aggregate (Res_List, Orig, Res_Type, Res_Type);
   end Eval_Concatenation;

   function Eval_Scalar_Compare (Left, Right : Iir) return Compare_Type
   is
      Ltype : constant Iir := Get_Base_Type (Get_Type (Left));
   begin
      pragma Assert
        (Get_Kind (Ltype) = Get_Kind (Get_Base_Type (Get_Type (Right))));

      case Get_Kind (Ltype) is
         when Iir_Kind_Enumeration_Type_Definition =>
            declare
               L_Pos : constant Iir_Int32 := Get_Enum_Pos (Left);
               R_Pos : constant Iir_Int32 := Get_Enum_Pos (Right);
            begin
               if L_Pos = R_Pos then
                  return Compare_Eq;
               else
                  if L_Pos < R_Pos then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when Iir_Kind_Physical_Type_Definition =>
            declare
               L_Val : constant Int64 := Get_Physical_Value (Left);
               R_Val : constant Int64 := Get_Physical_Value (Right);
            begin
               if L_Val = R_Val then
                  return Compare_Eq;
               else
                  if L_Val < R_Val then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when Iir_Kind_Integer_Type_Definition =>
            declare
               L_Val : constant Int64 := Get_Value (Left);
               R_Val : constant Int64 := Get_Value (Right);
            begin
               if L_Val = R_Val then
                  return Compare_Eq;
               else
                  if L_Val < R_Val then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when Iir_Kind_Floating_Type_Definition =>
            declare
               L_Val : constant Fp64 := Get_Fp_Value (Left);
               R_Val : constant Fp64 := Get_Fp_Value (Right);
            begin
               if L_Val = R_Val then
                  return Compare_Eq;
               else
                  if L_Val < R_Val then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
            end;
         when others =>
            Error_Kind ("eval_scalar_compare", Ltype);
      end case;
   end Eval_Scalar_Compare;

   function Eval_Array_Compare (Left, Right : Iir) return Compare_Type is
   begin
      if Get_Kind (Left) = Iir_Kind_String_Literal8
        and then Get_Kind (Right) = Iir_Kind_String_Literal8
      then
         --  Common case: both parameters are strings.
         declare
            L_Id : constant String8_Id := Get_String8_Id (Left);
            R_Id : constant String8_Id := Get_String8_Id (Right);
            L_Len : constant Int32 := Get_String_Length (Left);
            R_Len : constant Int32 := Get_String_Length (Right);
            L_El, R_El : Nat8;
            P : Nat32;
         begin
            P := 1;
            while P <= L_Len and P <= R_Len loop
               L_El := Str_Table.Element_String8 (L_Id, P);
               R_El := Str_Table.Element_String8 (R_Id, P);
               if L_El /= R_El then
                  if L_El < R_El then
                     return Compare_Lt;
                  else
                     return Compare_Gt;
                  end if;
               end if;
               P := P + 1;
            end loop;
            if L_Len = R_Len then
               return Compare_Eq;
            elsif L_Len < R_Len then
               return Compare_Lt;
            else
               return Compare_Gt;
            end if;
         end;
      else
         --  General case.
         declare
            Left_Val, Right_Val : Iir;
            R_List, L_List : Iir_Flist;
            R_Len, L_Len : Natural;
            P : Natural;
            Res : Compare_Type;
         begin
            Left_Val := Eval_String_Literal (Left);
            Right_Val := Eval_String_Literal (Right);

            L_List := Get_Simple_Aggregate_List (Left_Val);
            R_List := Get_Simple_Aggregate_List (Right_Val);
            L_Len := Get_Nbr_Elements (L_List);
            R_Len := Get_Nbr_Elements (R_List);

            Res := Compare_Eq;
            P := 0;
            while P < L_Len and P < R_Len loop
               Res := Eval_Scalar_Compare (Get_Nth_Element (L_List, P),
                                             Get_Nth_Element (R_List, P));
               exit when Res /= Compare_Eq;
               P := P + 1;
            end loop;
            if Res = Compare_Eq then
               if L_Len < R_Len then
                  Res := Compare_Lt;
               elsif L_Len > R_Len then
                  Res := Compare_Gt;
               end if;
            end if;

            Free_Eval_Static_Expr (Left_Val, Left);
            Free_Eval_Static_Expr (Right_Val, Right);

            return Res;
         end;
      end if;
   end Eval_Array_Compare;

   --  ORIG is either a dyadic operator or a function call.
   function Eval_Dyadic_Operator (Orig : Iir; Imp : Iir; Left, Right : Iir)
     return Iir
   is
      pragma Unsuppress (Overflow_Check);
      Func : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      if Get_Kind (Left) = Iir_Kind_Overflow_Literal
        or else Get_Kind (Right) = Iir_Kind_Overflow_Literal
      then
         return Build_Overflow (Orig);
      end if;

      case Func is
         when Iir_Predefined_Integer_Plus =>
            return Build_Integer (Get_Value (Left) + Get_Value (Right), Orig);
         when Iir_Predefined_Integer_Minus =>
            return Build_Integer (Get_Value (Left) - Get_Value (Right), Orig);
         when Iir_Predefined_Integer_Mul =>
            return Build_Integer (Get_Value (Left) * Get_Value (Right), Orig);
         when Iir_Predefined_Integer_Div =>
            if Check_Integer_Division_By_Zero (Orig, Right) then
               return Build_Integer
                 (Get_Value (Left) / Get_Value (Right), Orig);
            else
               return Build_Overflow (Orig);
            end if;
         when Iir_Predefined_Integer_Mod =>
            if Check_Integer_Division_By_Zero (Orig, Right) then
               return Build_Integer
                 (Get_Value (Left) mod Get_Value (Right), Orig);
            else
               return Build_Overflow (Orig);
            end if;
         when Iir_Predefined_Integer_Rem =>
            if Check_Integer_Division_By_Zero (Orig, Right) then
               return Build_Integer
                 (Get_Value (Left) rem Get_Value (Right), Orig);
            else
               return Build_Overflow (Orig);
            end if;
         when Iir_Predefined_Integer_Exp =>
            return Build_Integer
              (Get_Value (Left) ** Integer (Get_Value (Right)), Orig);

         when Iir_Predefined_Integer_Equality =>
            return Build_Boolean (Get_Value (Left) = Get_Value (Right));
         when Iir_Predefined_Integer_Inequality =>
            return Build_Boolean (Get_Value (Left) /= Get_Value (Right));
         when Iir_Predefined_Integer_Greater_Equal =>
            return Build_Boolean (Get_Value (Left) >= Get_Value (Right));
         when Iir_Predefined_Integer_Greater =>
            return Build_Boolean (Get_Value (Left) > Get_Value (Right));
         when Iir_Predefined_Integer_Less_Equal =>
            return Build_Boolean (Get_Value (Left) <= Get_Value (Right));
         when Iir_Predefined_Integer_Less =>
            return Build_Boolean (Get_Value (Left) < Get_Value (Right));

         when Iir_Predefined_Integer_Minimum =>
            if Get_Value (Left) < Get_Value (Right) then
               return Left;
            else
               return Right;
            end if;
         when Iir_Predefined_Integer_Maximum =>
            if Get_Value (Left) > Get_Value (Right) then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Floating_Equality =>
            return Build_Boolean (Get_Fp_Value (Left) = Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Inequality =>
            return Build_Boolean (Get_Fp_Value (Left) /= Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Greater =>
            return Build_Boolean (Get_Fp_Value (Left) > Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Greater_Equal =>
            return Build_Boolean (Get_Fp_Value (Left) >= Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Less =>
            return Build_Boolean (Get_Fp_Value (Left) < Get_Fp_Value (Right));
         when Iir_Predefined_Floating_Less_Equal =>
            return Build_Boolean (Get_Fp_Value (Left) <= Get_Fp_Value (Right));

         when Iir_Predefined_Floating_Minus =>
            return Build_Floating
              (Get_Fp_Value (Left) - Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Floating_Plus =>
            return Build_Floating
              (Get_Fp_Value (Left) + Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Floating_Mul =>
            return Build_Floating
              (Get_Fp_Value (Left) * Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Floating_Div =>
            if Get_Fp_Value (Right) = 0.0 then
               Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                                "right operand of division is 0");
               return Build_Overflow (Orig);
            else
               return Build_Floating
                 (Get_Fp_Value (Left) / Get_Fp_Value (Right), Orig);
            end if;
         when Iir_Predefined_Floating_Exp =>
            declare
               Exp : Int64;
               Res : Fp64;
               Val : Fp64;
            begin
               Res := 1.0;
               Val := Get_Fp_Value (Left);
               --  LRM08 9.2.8 Misellaneous operators
               --  Exponentiation with an integer exponent is equivalent to
               --  repeated multiplication of the left operand by itself for
               --  a number of times indicated by the absolute value of the
               --  exponent and from left to right; [...]
               --  GHDL: use the standard power-of-2 approach.  This is not
               --  strictly equivalent however.
               Exp := abs Get_Value (Right);
               while Exp /= 0 loop
                  if Exp mod 2 = 1 then
                     Res := Res * Val;
                  end if;
                  Exp := Exp / 2;
                  Val := Val * Val;
               end loop;
               --  LRM08 9.2.8 Misellaneous operators
               --  [...] if the exponent is negative then the result is the
               --  reciprocal of that [...]
               if Get_Value (Right) < 0 then
                  Res := 1.0 / Res;
               end if;
               return Build_Floating (Res, Orig);
            end;

         when Iir_Predefined_Floating_Minimum =>
            if Get_Fp_Value (Left) < Get_Fp_Value (Right) then
               return Left;
            else
               return Right;
            end if;
         when Iir_Predefined_Floating_Maximum =>
            if Get_Fp_Value (Left) > Get_Fp_Value (Right) then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Physical_Equality =>
            return Build_Boolean
              (Get_Physical_Value (Left) = Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Inequality =>
            return Build_Boolean
              (Get_Physical_Value (Left) /= Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Greater_Equal =>
            return Build_Boolean
              (Get_Physical_Value (Left) >= Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Greater =>
            return Build_Boolean
              (Get_Physical_Value (Left) > Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Less_Equal =>
            return Build_Boolean
              (Get_Physical_Value (Left) <= Get_Physical_Value (Right));
         when Iir_Predefined_Physical_Less =>
            return Build_Boolean
              (Get_Physical_Value (Left) < Get_Physical_Value (Right));

         when Iir_Predefined_Physical_Physical_Div =>
            return Build_Integer
              (Get_Physical_Value (Left) / Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Physical_Integer_Div =>
            return Build_Physical
              (Get_Physical_Value (Left) / Get_Value (Right), Orig);
         when Iir_Predefined_Physical_Minus =>
            return Build_Physical
              (Get_Physical_Value (Left) - Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Physical_Plus =>
            return Build_Physical
              (Get_Physical_Value (Left) + Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Integer_Physical_Mul =>
            return Build_Physical
              (Get_Value (Left) * Get_Physical_Value (Right), Orig);
         when Iir_Predefined_Physical_Integer_Mul =>
            return Build_Physical
              (Get_Physical_Value (Left) * Get_Value (Right), Orig);
         when Iir_Predefined_Real_Physical_Mul =>
            --  FIXME: overflow??
            return Build_Physical
              (Int64 (Get_Fp_Value (Left)
                          * Fp64 (Get_Physical_Value (Right))), Orig);
         when Iir_Predefined_Physical_Real_Mul =>
            --  FIXME: overflow??
            return Build_Physical
              (Int64 (Fp64 (Get_Physical_Value (Left))
                          * Get_Fp_Value (Right)), Orig);
         when Iir_Predefined_Physical_Real_Div =>
            --  FIXME: overflow??
            return Build_Physical
              (Int64 (Fp64 (Get_Physical_Value (Left))
                          / Get_Fp_Value (Right)), Orig);

         when Iir_Predefined_Physical_Minimum =>
            return Build_Physical (Int64'Min (Get_Physical_Value (Left),
                                                  Get_Physical_Value (Right)),
                                   Orig);
         when Iir_Predefined_Physical_Maximum =>
            return Build_Physical (Int64'Max (Get_Physical_Value (Left),
                                                  Get_Physical_Value (Right)),
                                   Orig);

         when Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Array_Array_Concat
           | Iir_Predefined_Element_Element_Concat =>
            return Eval_Concatenation (Left, Right, Orig, Func);

         when Iir_Predefined_Enum_Equality
           | Iir_Predefined_Bit_Match_Equality =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Inequality
           | Iir_Predefined_Bit_Match_Inequality =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) /= Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Greater_Equal
           | Iir_Predefined_Bit_Match_Greater_Equal =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) >= Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Greater
           | Iir_Predefined_Bit_Match_Greater =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) > Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Less_Equal
           | Iir_Predefined_Bit_Match_Less_Equal =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) <= Get_Enum_Pos (Right), Orig);
         when Iir_Predefined_Enum_Less
           | Iir_Predefined_Bit_Match_Less =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) < Get_Enum_Pos (Right), Orig);

         when Iir_Predefined_Enum_Minimum =>
            if Get_Enum_Pos (Left) < Get_Enum_Pos (Right) then
               return Left;
            else
               return Right;
            end if;
         when Iir_Predefined_Enum_Maximum =>
            if Get_Enum_Pos (Left) > Get_Enum_Pos (Right) then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Boolean_And
           | Iir_Predefined_Bit_And =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = 1 and Get_Enum_Pos (Right) = 1, Orig);
         when Iir_Predefined_Boolean_Nand
           | Iir_Predefined_Bit_Nand =>
            return Build_Enumeration
              (not (Get_Enum_Pos (Left) = 1 and Get_Enum_Pos (Right) = 1),
               Orig);
         when Iir_Predefined_Boolean_Or
           | Iir_Predefined_Bit_Or =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = 1 or Get_Enum_Pos (Right) = 1, Orig);
         when Iir_Predefined_Boolean_Nor
           | Iir_Predefined_Bit_Nor =>
            return Build_Enumeration
              (not (Get_Enum_Pos (Left) = 1 or Get_Enum_Pos (Right) = 1),
               Orig);
         when Iir_Predefined_Boolean_Xor
           | Iir_Predefined_Bit_Xor =>
            return Build_Enumeration
              (Get_Enum_Pos (Left) = 1 xor Get_Enum_Pos (Right) = 1, Orig);
         when Iir_Predefined_Boolean_Xnor
           | Iir_Predefined_Bit_Xnor =>
            return Build_Enumeration
              (not (Get_Enum_Pos (Left) = 1 xor Get_Enum_Pos (Right) = 1),
               Orig);

         when Iir_Predefined_Dyadic_TF_Array_Functions =>
            --  FIXME: only for bit ?
            return Eval_Dyadic_Bit_Array_Operator (Orig, Left, Right, Func);

         when Iir_Predefined_Universal_R_I_Mul =>
            return Build_Floating
              (Get_Fp_Value (Left) * Fp64 (Get_Value (Right)), Orig);
         when Iir_Predefined_Universal_I_R_Mul =>
            return Build_Floating
              (Fp64 (Get_Value (Left)) * Get_Fp_Value (Right), Orig);
         when Iir_Predefined_Universal_R_I_Div =>
            return Build_Floating
              (Get_Fp_Value (Left) / Fp64 (Get_Value (Right)), Orig);

         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            declare
               Left_Aggr : Iir;
               Res : Iir;
            begin
               Left_Aggr := Eval_String_Literal (Left);
               Res := Eval_Shift_Operator (Left_Aggr, Right, Orig, Func);
               Free_Eval_String_Literal (Left_Aggr, Left);
               return Res;
            end;

         when Iir_Predefined_Array_Equality =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) = Compare_Eq);
         when Iir_Predefined_Array_Inequality =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) /= Compare_Eq);
         when Iir_Predefined_Array_Less =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) = Compare_Lt);
         when Iir_Predefined_Array_Less_Equal =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) <= Compare_Eq);
         when Iir_Predefined_Array_Greater =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) = Compare_Gt);
         when Iir_Predefined_Array_Greater_Equal =>
            return Build_Boolean
              (Eval_Array_Compare (Left, Right) >= Compare_Eq);

         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Boolean_Rising_Edge
           | Iir_Predefined_Boolean_Falling_Edge
           | Iir_Predefined_Bit_Not
           | Iir_Predefined_Bit_Rising_Edge
           | Iir_Predefined_Bit_Falling_Edge
           | Iir_Predefined_Integer_Absolute
           | Iir_Predefined_Integer_Identity
           | Iir_Predefined_Integer_Negation
           | Iir_Predefined_Floating_Absolute
           | Iir_Predefined_Floating_Negation
           | Iir_Predefined_Floating_Identity
           | Iir_Predefined_Physical_Absolute
           | Iir_Predefined_Physical_Identity
           | Iir_Predefined_Physical_Negation
           | Iir_Predefined_Error
           | Iir_Predefined_Record_Equality
           | Iir_Predefined_Record_Inequality
           | Iir_Predefined_Access_Equality
           | Iir_Predefined_Access_Inequality
           | Iir_Predefined_TF_Array_Not
           | Iir_Predefined_Now_Function
           | Iir_Predefined_Deallocate
           | Iir_Predefined_Write
           | Iir_Predefined_Read
           | Iir_Predefined_Read_Length
           | Iir_Predefined_Flush
           | Iir_Predefined_File_Open
           | Iir_Predefined_File_Open_Status
           | Iir_Predefined_File_Close
           | Iir_Predefined_Endfile
           | Iir_Predefined_Array_Char_To_String
           | Iir_Predefined_Bit_Vector_To_Ostring
           | Iir_Predefined_Bit_Vector_To_Hstring =>
            --  Not binary or never locally static.
            Error_Internal (Orig, "eval_dyadic_operator: " &
                              Iir_Predefined_Functions'Image (Func));

         when Iir_Predefined_Bit_Condition =>
            raise Internal_Error;

         when Iir_Predefined_Array_Minimum
           | Iir_Predefined_Array_Maximum
           | Iir_Predefined_Vector_Minimum
           | Iir_Predefined_Vector_Maximum =>
            raise Internal_Error;

         when Iir_Predefined_Std_Ulogic_Match_Equality
           | Iir_Predefined_Std_Ulogic_Match_Inequality
           | Iir_Predefined_Std_Ulogic_Match_Less
           | Iir_Predefined_Std_Ulogic_Match_Less_Equal
           | Iir_Predefined_Std_Ulogic_Match_Greater
           | Iir_Predefined_Std_Ulogic_Match_Greater_Equal =>
            -- TODO
            raise Internal_Error;

         when Iir_Predefined_Enum_To_String
           | Iir_Predefined_Integer_To_String
           | Iir_Predefined_Floating_To_String
           | Iir_Predefined_Real_To_String_Digits
           | Iir_Predefined_Real_To_String_Format
           | Iir_Predefined_Physical_To_String
           | Iir_Predefined_Time_To_String_Unit =>
            --  TODO
            raise Internal_Error;

         when Iir_Predefined_TF_Array_Element_And
           | Iir_Predefined_TF_Element_Array_And
           | Iir_Predefined_TF_Array_Element_Or
           | Iir_Predefined_TF_Element_Array_Or
           | Iir_Predefined_TF_Array_Element_Nand
           | Iir_Predefined_TF_Element_Array_Nand
           | Iir_Predefined_TF_Array_Element_Nor
           | Iir_Predefined_TF_Element_Array_Nor
           | Iir_Predefined_TF_Array_Element_Xor
           | Iir_Predefined_TF_Element_Array_Xor
           | Iir_Predefined_TF_Array_Element_Xnor
           | Iir_Predefined_TF_Element_Array_Xnor =>
            --  TODO
            raise Internal_Error;

         when Iir_Predefined_TF_Reduction_And
           | Iir_Predefined_TF_Reduction_Or
           | Iir_Predefined_TF_Reduction_Nand
           | Iir_Predefined_TF_Reduction_Nor
           | Iir_Predefined_TF_Reduction_Xor
           | Iir_Predefined_TF_Reduction_Xnor
           | Iir_Predefined_TF_Reduction_Not =>
            --  TODO
            raise Internal_Error;

         when Iir_Predefined_Bit_Array_Match_Equality
           | Iir_Predefined_Bit_Array_Match_Inequality
           | Iir_Predefined_Std_Ulogic_Array_Match_Equality
           | Iir_Predefined_Std_Ulogic_Array_Match_Inequality =>
            --  TODO
            raise Internal_Error;

         when Iir_Predefined_Explicit =>
            raise Internal_Error;
      end case;
   exception
      when Constraint_Error =>
         Warning_Msg_Sem (Warnid_Runtime_Error, +Orig,
                          "arithmetic overflow in static expression");
         return Build_Overflow (Orig);
   end Eval_Dyadic_Operator;

   --  Get the parameter of an attribute, or 1 if doesn't exist.
   function Eval_Attribute_Parameter_Or_1 (Attr : Iir) return Natural
   is
      Parameter : constant Iir := Get_Parameter (Attr);
   begin
      if Is_Null (Parameter) or else Is_Error (Parameter) then
         return 1;
      else
         return Natural (Get_Value (Parameter));
      end if;
   end Eval_Attribute_Parameter_Or_1;

   --  Evaluate any array attribute, return the type for the prefix.
   function Eval_Array_Attribute (Attr : Iir) return Iir
   is
      Prefix : Iir;
      Prefix_Type : Iir;
      Dim : Natural;
   begin
      Prefix := Get_Prefix (Attr);
      case Get_Kind (Prefix) is
         when Iir_Kinds_Object_Declaration --  FIXME: remove
           | Iir_Kind_Selected_Element
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Slice_Name
           | Iir_Kind_Subtype_Declaration
           | Iir_Kind_Type_Declaration
           | Iir_Kind_Implicit_Dereference
           | Iir_Kind_Function_Call
           | Iir_Kind_Attribute_Value
           | Iir_Kind_Attribute_Name
           | Iir_Kind_Subtype_Attribute =>
            Prefix_Type := Get_Type (Prefix);
         when Iir_Kinds_Subtype_Definition =>
            Prefix_Type := Prefix;
         when Iir_Kinds_Denoting_Name =>
            Prefix_Type := Get_Type (Prefix);
         when others =>
            Error_Kind ("eval_array_attribute", Prefix);
      end case;
      if Get_Kind (Prefix_Type) /= Iir_Kind_Array_Subtype_Definition then
         Error_Kind ("eval_array_attribute(2)", Prefix_Type);
      end if;

      Dim := Eval_Attribute_Parameter_Or_1 (Attr);
      return Get_Nth_Element (Get_Index_Subtype_List (Prefix_Type), Dim - 1);
   end Eval_Array_Attribute;

   function Eval_Integer_Image (Val : Int64; Orig : Iir) return Iir
   is
      use Str_Table;
      Img : String (1 .. 24); --  23 is enough, 24 is rounded.
      L : Natural;
      V : Int64;
      Id : String8_Id;
   begin
      V := Val;
      L := Img'Last;
      loop
         Img (L) := Character'Val (Character'Pos ('0') + abs (V rem 10));
         V := V / 10;
         L := L - 1;
         exit when V = 0;
      end loop;
      if Val < 0 then
         Img (L) := '-';
         L := L - 1;
      end if;
      Id := Create_String8;
      for I in L + 1 .. Img'Last loop
         Append_String8_Char (Img (I));
      end loop;
      return Build_String (Id, Nat32 (Img'Last - L), Orig);
   end Eval_Integer_Image;

   function Eval_Floating_Image (Val : Fp64; Orig : Iir) return Iir
   is
      use Str_Table;
      Id : String8_Id;

      --  Sign (1) + digit (1) + dot (1) + digits (15) + 'e' (1) + sign (1)
      --  + exp_digits (4) -> 24.
      Str : String (1 .. 25);
      P : Natural;

      Res : Iir;
   begin
      P := Str'First;

      Grt.Fcvt.Format_Image (Str, P, Interfaces.IEEE_Float_64 (Val));

      Id := Create_String8;
      for I in 1 .. P loop
         Append_String8_Char (Str (I));
      end loop;
      Res := Build_String (Id, Int32 (P), Orig);
      --  FIXME: this is not correct since the type is *not* constrained.
      Set_Type (Res, Create_Unidim_Array_By_Length
                (Get_Type (Orig), Int64 (P), Orig));
      return Res;
   end Eval_Floating_Image;

   function Eval_Enumeration_Image (Lit : Iir; Orig : Iir) return Iir
   is
      use Str_Table;
      Name : constant String := Image_Identifier (Lit);
      Image_Id : constant String8_Id := Str_Table.Create_String8;
   begin
      Append_String8_String (Name);
      return Build_String (Image_Id, Name'Length, Orig);
   end Eval_Enumeration_Image;

   function Build_Enumeration_Value (Val : String; Enum, Expr : Iir) return Iir
   is
      List  : constant Iir_Flist := Get_Enumeration_Literal_List (Enum);
      Value : String (Val'range);
      Id : Name_Id;
      Res : Iir;
   begin
      if Val'Length = 3
        and then Val (Val'First) = ''' and then Val (Val'Last) = '''
      then
         --  A single character.
         Id := Get_Identifier (Val (Val'First + 1));
      else
         for I in Val'range loop
            Value (I) := Ada.Characters.Handling.To_Lower (Val (I));
         end loop;
         Id := Get_Identifier (Value);
      end if;
      Res := Find_Name_In_Flist (List, Id);
      if Res /= Null_Iir then
         return Build_Constant (Res, Expr);
      else
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                          "value %i not in enumeration %n", (+Id, +Enum));
         return Build_Overflow (Expr);
      end if;
   end Build_Enumeration_Value;

   function Eval_Physical_Image (Phys, Expr: Iir) return Iir
   is
      --  Reduces to the base unit (e.g. femtoseconds).
      Value : constant String := Int64'Image (Get_Physical_Value (Phys));
      Unit : constant Iir :=
        Get_Primary_Unit (Get_Base_Type (Get_Type (Phys)));
      UnitName : constant String := Image_Identifier (Unit);
      Image_Id : constant String8_Id := Str_Table.Create_String8;
      Length : Nat32 := Value'Length + UnitName'Length + 1;
   begin
      for I in Value'range loop
         -- Suppress the Ada +ve integer'image leading space
         if I > Value'first or else Value (I) /= ' ' then
            Str_Table.Append_String8_Char (Value (I));
         else
            Length := Length - 1;
         end if;
      end loop;
      Str_Table.Append_String8_Char (' ');
      for I in UnitName'range loop
         Str_Table.Append_String8_Char (UnitName (I));
      end loop;

      return Build_String (Image_Id, Length, Expr);
   end Eval_Physical_Image;

   function Build_Physical_Value (Val: String; Phys_Type, Expr: Iir) return Iir
   is
      UnitName : String (Val'range);
      Mult : Int64;
      Sep : Natural;
      Found_Unit : Boolean := false;
      Found_Real : Boolean := false;
      Unit : Iir;
   begin
      -- Separate string into numeric value and make lowercase unit.
      for I in reverse Val'range loop
         UnitName (I) := Ada.Characters.Handling.To_Lower (Val (I));
         if Vhdl.Scanner.Is_Whitespace (Val (I)) and Found_Unit then
            Sep := I;
            exit;
         else
            Found_Unit := true;
         end if;
      end loop;

      -- Unit name  is UnitName(Sep+1..Unit'Last)
      for I in Val'First .. Sep loop
         if Val (I) = '.' then
            Found_Real := true;
         end if;
      end loop;

      -- Chain down the units looking for matching one
      Unit := Get_Primary_Unit (Phys_Type);
      while Unit /= Null_Iir loop
         exit when (UnitName (Sep + 1 .. UnitName'Last)
                      = Image_Identifier (Unit));
         Unit := Get_Chain (Unit);
      end loop;
      if Unit = Null_Iir then
         Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                          "Unit """ & UnitName (Sep + 1 .. UnitName'Last)
                            & """ not in physical type");
         return Build_Overflow (Expr);
      end if;

      Mult := Get_Value (Get_Physical_Literal (Unit));
      if Found_Real then
         return Build_Physical
           (Int64 (Fp64'Value (Val (Val'First .. Sep))
                         * Fp64 (Mult)),
            Expr);
      else
         return Build_Physical
           (Int64'Value (Val (Val'First .. Sep)) * Mult, Expr);
      end if;
   end Build_Physical_Value;

   function Eval_Enum_To_String (Lit : Iir; Orig : Iir) return Iir
   is
      use Str_Table;
      Id : constant Name_Id := Get_Identifier (Lit);
      Image_Id : constant String8_Id := Str_Table.Create_String8;
      Len : Natural;
   begin
      if Get_Base_Type (Get_Type (Lit)) = Character_Type_Definition then
         --  LRM08 5.7 String representations
         --  - For a given value of type CHARACTER, the string representation
         --    contains one element that is the given value.
         Append_String8 (Nat8 (Get_Enum_Pos (Lit)));
         Len := 1;
      elsif Is_Character (Id) then
         --  LRM08 5.7 String representations
         --  - For a given value of an enumeration type other than CHARACTER,
         --    if the value is a character literal, the string representation
         --    contains a single element that is the character literal; [...]
         Append_String8_Char (Get_Character (Id));
         Len := 1;
      else
         --  LRM08 5.7 String representations
         --  - [...] otherwise, the string representation is the sequence of
         --    characters in the identifier that is the given value.
         declare
            Img : constant String := Image (Id);
         begin
            if Img (Img'First) /= '\' then
               Append_String8_String (Img);
               Len := Img'Length;
            else
               declare
                  Skip : Boolean;
                  C : Character;
               begin
                  Len := 0;
                  Skip := False;
                  for I in Img'First + 1 .. Img'Last - 1 loop
                     if Skip then
                        Skip := False;
                     else
                        C := Img (I);
                        Append_String8_Char (C);
                        Skip := C = '\';
                        Len := Len + 1;
                     end if;
                  end loop;
               end;
            end if;
         end;
      end if;
      return Build_String (Image_Id, Nat32 (Len), Orig);
   end Eval_Enum_To_String;

   function Eval_Incdec (Expr : Iir; N : Int64; Origin : Iir) return Iir
   is
      P : Int64;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Integer_Literal =>
            return Build_Integer (Get_Value (Expr) + N, Origin);
         when Iir_Kind_Enumeration_Literal =>
            P := Int64 (Get_Enum_Pos (Expr)) + N;
            if P < 0
              or else (P >= Int64
                         (Get_Nbr_Elements
                            (Get_Enumeration_Literal_List
                               (Get_Base_Type (Get_Type (Expr))))))
            then
               Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                "static constant violates bounds");
               return Build_Overflow (Origin);
            else
               return Build_Enumeration (Iir_Index32 (P), Origin);
            end if;
         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Unit_Declaration =>
            return Build_Physical (Get_Physical_Value (Expr) + N, Origin);
         when others =>
            Error_Kind ("eval_incdec", Expr);
      end case;
   end Eval_Incdec;

   function Convert_Range (Rng : Iir; Res_Type : Iir; Loc : Iir) return Iir
   is
      Res_Btype : Iir;

      function Create_Bound (Val : Iir) return Iir
      is
         R : Iir;
      begin
         R := Create_Iir (Iir_Kind_Integer_Literal);
         Location_Copy (R, Loc);
         Set_Value (R, Get_Value (Val));
         Set_Type (R, Res_Btype);
         Set_Expr_Staticness (R, Locally);
         return R;
      end Create_Bound;

      Res : Iir;
      Lit : Iir;
   begin
      Res_Btype := Get_Base_Type (Res_Type);
      Res := Create_Iir (Iir_Kind_Range_Expression);
      Location_Copy (Res, Loc);
      Set_Type (Res, Res_Btype);
      Lit := Create_Bound (Get_Left_Limit (Rng));
      Set_Left_Limit (Res, Lit);
      Set_Left_Limit_Expr (Res, Lit);
      Lit := Create_Bound (Get_Right_Limit (Rng));
      Set_Right_Limit (Res, Lit);
      Set_Right_Limit_Expr (Res, Lit);
      Set_Direction (Res, Get_Direction (Rng));
      Set_Expr_Staticness (Res, Locally);
      return Res;
   end Convert_Range;

   function Eval_Array_Type_Conversion (Conv : Iir; Val : Iir) return Iir
   is
      Conv_Type : constant Iir := Get_Type (Conv);
      Val_Type : constant Iir := Get_Type (Val);
      Conv_Index_Type : constant Iir := Get_Index_Type (Conv_Type, 0);
      Val_Index_Type : constant Iir := Get_Index_Type (Val_Type, 0);
      Index_Type : Iir;
      Res_Type : Iir;
      Res : Iir;
      Rng : Iir;
   begin
      --  The expression is either a simple aggregate or a (bit) string.
      Res := Build_Constant (Val, Conv);
      if Get_Constraint_State (Conv_Type) = Fully_Constrained then
         Set_Type (Res, Conv_Type);
         if not Eval_Is_In_Bound (Val, Conv_Type) then
            Warning_Msg_Sem (Warnid_Runtime_Error, +Conv,
                             "non matching length in type conversion");
            return Build_Overflow (Conv);
         end if;
         return Res;
      else
         if Get_Base_Type (Conv_Index_Type) = Get_Base_Type (Val_Index_Type)
         then
            Index_Type := Val_Index_Type;
         else
            --  Convert the index range.
            --  It is an integer type.
            Rng := Convert_Range (Get_Range_Constraint (Val_Index_Type),
                                  Conv_Index_Type, Conv);
            Index_Type := Create_Iir (Iir_Kind_Integer_Subtype_Definition);
            Location_Copy (Index_Type, Conv);
            Set_Range_Constraint (Index_Type, Rng);
            Set_Base_Type (Index_Type, Get_Base_Type (Conv_Index_Type));
            Set_Type_Staticness (Index_Type, Locally);
         end if;
         Res_Type := Create_Unidim_Array_From_Index
           (Get_Base_Type (Conv_Type), Index_Type, Conv);
         Set_Type (Res, Res_Type);
         Set_Type_Conversion_Subtype (Conv, Res_Type);
         return Res;
      end if;
   end Eval_Array_Type_Conversion;

   function Eval_Type_Conversion (Conv : Iir) return Iir
   is
      Expr : constant Iir := Get_Expression (Conv);
      Val : Iir;
      Val_Type : Iir;
      Conv_Type : Iir;
      Res : Iir;
   begin
      Val := Eval_Static_Expr (Expr);
      Val_Type := Get_Base_Type (Get_Type (Val));
      Conv_Type := Get_Base_Type (Get_Type (Conv));
      if Conv_Type = Val_Type then
         Res := Build_Constant (Val, Conv);
      else
         case Get_Kind (Conv_Type) is
            when Iir_Kind_Integer_Type_Definition =>
               case Get_Kind (Val_Type) is
                  when Iir_Kind_Integer_Type_Definition =>
                     Res := Build_Integer (Get_Value (Val), Conv);
                  when Iir_Kind_Floating_Type_Definition =>
                     Res := Build_Integer
                       (Int64 (Get_Fp_Value (Val)), Conv);
                  when others =>
                     Error_Kind ("eval_type_conversion(1)", Val_Type);
               end case;
            when Iir_Kind_Floating_Type_Definition =>
               case Get_Kind (Val_Type) is
                  when Iir_Kind_Integer_Type_Definition =>
                     Res := Build_Floating (Fp64 (Get_Value (Val)), Conv);
                  when Iir_Kind_Floating_Type_Definition =>
                     Res := Build_Floating (Get_Fp_Value (Val), Conv);
                  when others =>
                     Error_Kind ("eval_type_conversion(2)", Val_Type);
               end case;
            when Iir_Kind_Array_Type_Definition =>
               --  Not a scalar, do not check bounds.
               return Eval_Array_Type_Conversion (Conv, Val);
            when others =>
               Error_Kind ("eval_type_conversion(3)", Conv_Type);
         end case;
      end if;
      if not Eval_Is_In_Bound (Res, Get_Type (Conv)) then
         if Get_Kind (Res) /= Iir_Kind_Overflow_Literal then
            Warning_Msg_Sem (Warnid_Runtime_Error, +Conv,
                             "result of conversion out of bounds");
            Free_Eval_Static_Expr (Res, Conv);
            Res := Build_Overflow (Conv);
         end if;
      end if;
      return Res;
   end Eval_Type_Conversion;

   function Eval_Physical_Literal (Expr : Iir) return Iir
   is
      Val : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Physical_Fp_Literal =>
            Val := Expr;
         when Iir_Kind_Physical_Int_Literal =>
            --  Create a copy even if the literal has the primary unit.  This
            --  is required for ownership rule.
            Val := Expr;
         when Iir_Kind_Unit_Declaration =>
            Val := Expr;
         when Iir_Kinds_Denoting_Name =>
            Val := Get_Named_Entity (Expr);
            pragma Assert (Get_Kind (Val) = Iir_Kind_Unit_Declaration);
         when others =>
            Error_Kind ("eval_physical_literal", Expr);
      end case;
      return Build_Physical (Get_Physical_Value (Val), Expr);
   end Eval_Physical_Literal;

   function Eval_Value_Attribute
     (Value : String; Atype : Iir; Orig : Iir) return Iir
   is
      Base_Type : constant Iir := Get_Base_Type (Atype);
      First, Last : Positive;
   begin
      --  LRM93 14.1 Predefined attributes.
      --  Leading and trailing whitespace are ignored.
      First := Value'First;
      Last := Value'Last;
      while First <= Last loop
         exit when not Vhdl.Scanner.Is_Whitespace (Value (First));
         First := First + 1;
      end loop;
      while Last >= First loop
         exit when not Vhdl.Scanner.Is_Whitespace (Value (Last));
         Last := Last - 1;
      end loop;

      declare
         Value1 : String renames Value (First .. Last);
      begin
         case Get_Kind (Base_Type) is
            when Iir_Kind_Integer_Type_Definition =>
               return Build_Discrete (Int64'Value (Value1), Orig);
            when Iir_Kind_Enumeration_Type_Definition =>
               return Build_Enumeration_Value (Value1, Base_Type, Orig);
            when Iir_Kind_Floating_Type_Definition =>
               return Build_Floating (Fp64'value (Value1), Orig);
            when Iir_Kind_Physical_Type_Definition =>
               return Build_Physical_Value (Value1, Base_Type, Orig);
            when others =>
               Error_Kind ("eval_value_attribute", Base_Type);
         end case;
      end;
   end Eval_Value_Attribute;

   --  Be sure that all expressions within an aggregate have been evaluated.
   procedure Eval_Aggregate (Aggr : Iir)
   is
      Assoc : Iir;
      Expr : Iir;
   begin
      Assoc := Get_Association_Choices_Chain (Aggr);
      while Is_Valid (Assoc) loop
         case Iir_Kinds_Choice (Get_Kind (Assoc)) is
            when Iir_Kind_Choice_By_None =>
               null;
            when Iir_Kind_Choice_By_Name =>
               null;
            when Iir_Kind_Choice_By_Range =>
               Set_Choice_Range
                 (Assoc, Eval_Range (Get_Choice_Range (Assoc)));
            when Iir_Kind_Choice_By_Expression =>
               Set_Choice_Expression
                 (Assoc, Eval_Expr (Get_Choice_Expression (Assoc)));
            when Iir_Kind_Choice_By_Others =>
               null;
         end case;
         if not Get_Same_Alternative_Flag (Assoc) then
            Expr := Get_Associated_Expr (Assoc);
         end if;
         if Get_Kind (Expr) = Iir_Kind_Aggregate then
            Eval_Aggregate (Expr);
         end if;
         Assoc := Get_Chain (Assoc);
      end loop;
   end Eval_Aggregate;

   function Eval_Selected_Element (Expr : Iir) return Iir
   is
      Selected_El : constant Iir := Get_Named_Entity (Expr);
      El_Pos : constant Iir_Index32 := Get_Element_Position (Selected_El);
      Prefix : Iir;
      Cur_Pos : Iir_Index32;
      Assoc : Iir;
      Assoc_Expr : Iir;
      Res : Iir;
   begin
      Prefix := Get_Prefix (Expr);
      Prefix := Eval_Static_Expr (Prefix);
      if Get_Kind (Prefix) = Iir_Kind_Overflow_Literal then
         return Build_Overflow (Expr, Get_Type (Expr));
      end if;

      pragma Assert (Get_Kind (Prefix) = Iir_Kind_Aggregate);
      Assoc := Get_Association_Choices_Chain (Prefix);
      Cur_Pos := 0;
      Assoc_Expr := Null_Iir;
      loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Assoc_Expr := Assoc;
         end if;
         case Iir_Kinds_Record_Choice (Get_Kind (Assoc)) is
            when Iir_Kind_Choice_By_None =>
               exit when Cur_Pos = El_Pos;
               Cur_Pos := Cur_Pos + 1;
            when Iir_Kind_Choice_By_Name =>
               declare
                  Choice : constant Iir := Get_Choice_Name (Assoc);
               begin
                  exit when Get_Element_Position (Get_Named_Entity (Choice))
                    = El_Pos;
               end;
            when Iir_Kind_Choice_By_Others =>
               exit;
         end case;
         Assoc := Get_Chain (Assoc);
      end loop;

      --  Eval element and save it.
      Res := Eval_Expr_Keep_Orig (Get_Associated_Expr (Assoc_Expr), True);
      Set_Associated_Expr (Assoc_Expr, Res);
      return Res;
   end Eval_Selected_Element;

   function Eval_Indexed_Aggregate (Prefix : Iir; Expr : Iir) return Iir
   is
      Indexes : constant Iir_Flist := Get_Index_List (Expr);
      Prefix_Type : constant Iir := Get_Type (Prefix);
      Indexes_Type : constant Iir_Flist :=
        Get_Index_Subtype_List (Prefix_Type);
      Idx : Iir;
      Assoc : Iir;
      Assoc_Expr : Iir;
      Aggr_Bounds : Iir;
      Aggr : Iir;
      Cur_Pos : Int64;
      Res : Iir;
   begin
      Aggr := Prefix;

      for Dim in Flist_First .. Flist_Last (Indexes) loop
         Idx := Get_Nth_Element (Indexes, Dim);

         --  Find Idx in choices.
         Assoc := Get_Association_Choices_Chain (Aggr);
         Aggr_Bounds := Eval_Static_Range
           (Get_Nth_Element (Indexes_Type, Dim));
         Cur_Pos := Eval_Pos (Eval_Discrete_Range_Left (Aggr_Bounds));
         Assoc_Expr := Null_Iir;
         loop
            if not Get_Same_Alternative_Flag (Assoc) then
               Assoc_Expr := Assoc;
            end if;
            case Get_Kind (Assoc) is
               when Iir_Kind_Choice_By_None =>
                  exit when Cur_Pos = Eval_Pos (Idx);
                  case Get_Direction (Aggr_Bounds) is
                     when Iir_To =>
                        Cur_Pos := Cur_Pos + 1;
                     when Iir_Downto =>
                        Cur_Pos := Cur_Pos - 1;
                  end case;
               when Iir_Kind_Choice_By_Expression =>
                  exit when Eval_Is_Eq (Get_Choice_Expression (Assoc), Idx);
               when Iir_Kind_Choice_By_Range =>
                  exit when Eval_Is_In_Bound (Idx, Get_Choice_Range (Assoc));
               when Iir_Kind_Choice_By_Others =>
                  exit;
               when others =>
                  raise Internal_Error;
            end case;
            Assoc := Get_Chain (Assoc);
         end loop;
         Aggr := Get_Associated_Expr (Assoc_Expr);
      end loop;

      --  Eval element and save it.
      Res := Eval_Expr_Keep_Orig (Aggr, True);
      Set_Associated_Expr (Assoc_Expr, Res);

      return Res;
   end Eval_Indexed_Aggregate;

   function Eval_Indexed_String_Literal8 (Str : Iir; Expr : Iir) return Iir
   is
      Str_Type : constant Iir := Get_Type (Str);

      Index_Type : constant Iir := Get_Index_Type (Str_Type, 0);
      Index_Range : constant Iir := Eval_Static_Range (Index_Type);

      Indexes : constant Iir_Flist := Get_Index_List (Expr);

      Id : constant String8_Id := Get_String8_Id (Str);

      Idx : Iir;
      Pos : Iir_Index32;
   begin
      Idx := Eval_Static_Expr (Get_Nth_Element (Indexes, 0));
      Pos := Eval_Pos_In_Range (Index_Range, Idx);

      return Build_Enumeration_Constant
        (Iir_Index32 (Str_Table.Element_String8 (Id, Int32 (Pos + 1))), Expr);
   end Eval_Indexed_String_Literal8;

   function Eval_Indexed_Simple_Aggregate (Aggr : Iir; Expr : Iir) return Iir
   is
      Aggr_Type : constant Iir := Get_Type (Aggr);

      Index_Type : constant Iir := Get_Index_Type (Aggr_Type, 0);
      Index_Range : constant Iir := Eval_Static_Range (Index_Type);

      Indexes : constant Iir_Flist := Get_Index_List (Expr);

      Idx : Iir;
      Pos : Iir_Index32;
      El : Iir;
   begin
      Idx := Eval_Static_Expr (Get_Nth_Element (Indexes, 0));
      Set_Nth_Element (Indexes, 0, Idx);
      Pos := Eval_Pos_In_Range (Index_Range, Idx);

      El := Get_Nth_Element (Get_Simple_Aggregate_List (Aggr), Natural (Pos));
      return Build_Constant (El, Expr);
   end Eval_Indexed_Simple_Aggregate;

   function Eval_Indexed_Name (Expr : Iir) return Iir
   is
      Prefix : Iir;
   begin
      Prefix := Get_Prefix (Expr);
      Prefix := Eval_Static_Expr (Prefix);

      declare
         Prefix_Type : constant Iir := Get_Type (Prefix);
         Indexes_Type : constant Iir_Flist :=
           Get_Index_Subtype_List (Prefix_Type);
         Indexes_List : constant Iir_Flist := Get_Index_List (Expr);
         Prefix_Index : Iir;
         Index : Iir;
      begin
         for I in Flist_First .. Flist_Last (Indexes_Type) loop
            Prefix_Index := Get_Nth_Element (Indexes_Type, I);

            --  Eval index.
            Index := Get_Nth_Element (Indexes_List, I);
            Index := Eval_Static_Expr (Index);
            Set_Nth_Element (Indexes_List, I, Index);

            --  Return overflow if out of range.
            if Get_Kind (Index) = Iir_Kind_Overflow_Literal
              or else not Eval_Is_In_Bound (Index, Prefix_Index)
            then
               return Build_Overflow (Expr, Get_Type (Expr));
            end if;
         end loop;
      end;

      case Get_Kind (Prefix) is
         when Iir_Kind_Aggregate =>
            return Eval_Indexed_Aggregate (Prefix, Expr);
         when Iir_Kind_String_Literal8 =>
            return Eval_Indexed_String_Literal8 (Prefix, Expr);
         when Iir_Kind_Simple_Aggregate =>
            return Eval_Indexed_Simple_Aggregate (Prefix, Expr);
         when Iir_Kind_Overflow_Literal =>
            return Build_Overflow (Expr, Get_Type (Expr));
         when others =>
            Error_Kind ("eval_indexed_name", Prefix);
      end case;
   end Eval_Indexed_Name;

   function Eval_Indexed_Aggregate_By_Offset
     (Aggr : Iir; Off : Iir_Index32; Dim : Natural := 0) return Iir
   is
      Prefix_Type : constant Iir := Get_Type (Aggr);
      Indexes_Type : constant Iir_Flist :=
        Get_Index_Subtype_List (Prefix_Type);
      Assoc : Iir;
      Assoc_Expr : Iir;
      Assoc_Len : Iir_Index32;
      Aggr_Bounds : Iir;
      Cur_Off : Iir_Index32;
      Res : Iir;
      Left_Pos : Int64;
      Assoc_Pos : Int64;
   begin
      Aggr_Bounds := Eval_Static_Range (Get_Nth_Element (Indexes_Type, Dim));
      Left_Pos := Eval_Pos (Eval_Discrete_Range_Left (Aggr_Bounds));

      Cur_Off := 0;
      Assoc := Get_Association_Choices_Chain (Aggr);
      Assoc_Expr := Null_Iir;
      while Assoc /= Null_Iir loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Assoc_Expr := Assoc;
         end if;
         case Get_Kind (Assoc) is
            when Iir_Kind_Choice_By_None =>
               if Get_Element_Type_Flag (Assoc) then
                  if Off = Cur_Off then
                     return Get_Associated_Expr (Assoc);
                  end if;
                  Assoc_Len := 1;
               else
                  Res := Get_Associated_Expr (Assoc);
                  Assoc_Len := Iir_Index32
                    (Eval_Discrete_Range_Length
                       (Get_Index_Type (Get_Type (Res), 0)));
                  if Off >= Cur_Off and then Off < Cur_Off + Assoc_Len then
                     return Eval_Indexed_Name_By_Offset (Res, Off - Cur_Off);
                  end if;
               end if;
               Cur_Off := Cur_Off + Assoc_Len;
            when Iir_Kind_Choice_By_Expression =>
               Assoc_Pos := Eval_Pos (Get_Choice_Expression (Assoc));
               case Get_Direction (Aggr_Bounds) is
                  when Iir_To =>
                     Cur_Off := Iir_Index32 (Assoc_Pos - Left_Pos);
                  when Iir_Downto =>
                     Cur_Off := Iir_Index32 (Left_Pos - Assoc_Pos);
               end case;
               if Cur_Off = Off then
                  return Get_Associated_Expr (Assoc);
               end if;
            when Iir_Kind_Choice_By_Range =>
               declare
                  Rng : Iir;
                  Left : Int64;
                  Right : Int64;
                  Hi, Lo : Int64;
                  Lo_Off, Hi_Off : Iir_Index32;
               begin
                  Rng := Eval_Range (Get_Choice_Range (Assoc));
                  Set_Choice_Range (Assoc, Rng);

                  Left := Eval_Pos (Get_Left_Limit (Rng));
                  Right := Eval_Pos (Get_Right_Limit (Rng));
                  case Get_Direction (Rng) is
                     when Iir_To =>
                        Lo := Left;
                        Hi := Right;
                     when Iir_Downto =>
                        Lo := Right;
                        Hi := Left;
                  end case;
                  case Get_Direction (Aggr_Bounds) is
                     when Iir_To =>
                        Lo_Off := Iir_Index32 (Lo - Left_Pos);
                        Hi_Off := Iir_Index32 (Hi - Left_Pos);
                     when Iir_Downto =>
                        Lo_Off := Iir_Index32 (Left_Pos - Lo);
                        Hi_Off := Iir_Index32 (Left_Pos - Hi);
                  end case;
                  if Off >= Lo_Off and then Off <= Hi_Off then
                     Res := Get_Associated_Expr (Assoc);
                     if Get_Element_Type_Flag (Assoc) then
                        return Res;
                     else
                        return Eval_Indexed_Name_By_Offset
                          (Res, Off - Lo_Off);
                     end if;
                  end if;
               end;
            when Iir_Kind_Choice_By_Others =>
               return Get_Associated_Expr (Assoc_Expr);
            when others =>
               raise Internal_Error;
         end case;
         Assoc := Get_Chain (Assoc);
      end loop;
      raise Internal_Error;
   end Eval_Indexed_Aggregate_By_Offset;

   function Eval_Indexed_Name_By_Offset (Prefix : Iir; Off : Iir_Index32)
                                        return Iir
   is
   begin
      case Get_Kind (Prefix) is
         when Iir_Kind_Aggregate =>
            return Eval_Indexed_Aggregate_By_Offset (Prefix, Off);
         when Iir_Kind_String_Literal8 =>
            declare
               Id : constant String8_Id := Get_String8_Id (Prefix);
               El_Type : constant Iir :=
                 Get_Element_Subtype (Get_Type (Prefix));
               Enums : constant Iir_Flist :=
                 Get_Enumeration_Literal_List (El_Type);
               Lit : Pos32;
            begin
               Lit := Str_Table.Element_String8 (Id, Int32 (Off + 1));
               return Get_Nth_Element (Enums, Natural (Lit));
            end;
         when Iir_Kind_Simple_Aggregate =>
            return Get_Nth_Element (Get_Simple_Aggregate_List (Prefix),
                                    Natural (Off));
         when others =>
            Error_Kind ("eval_indexed_name_by_offset", Prefix);
      end case;
   end Eval_Indexed_Name_By_Offset;

   function Eval_Static_Expr (Expr: Iir) return Iir
   is
      Res : Iir;
      Val : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kinds_Denoting_Name =>
            return Eval_Static_Expr (Get_Named_Entity (Expr));

         when Iir_Kind_Integer_Literal
           | Iir_Kind_Enumeration_Literal
           | Iir_Kind_Floating_Point_Literal
           | Iir_Kind_String_Literal8
           | Iir_Kind_Overflow_Literal
           | Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal =>
            return Expr;
         when Iir_Kind_Constant_Declaration =>
            Val := Eval_Static_Expr (Get_Default_Value (Expr));
            --  Type of the expression should be type of the constant
            --  declaration at least in case of array subtype.
            --  If the constant is declared as an unconstrained array, get type
            --  from the default value.
            --  FIXME: handle this during semantisation of the declaration:
            --    add an implicit subtype conversion node ?
            --  FIXME: this currently creates a node at each evalation.
            if Get_Kind (Get_Type (Val)) = Iir_Kind_Array_Type_Definition then
               Res := Build_Constant (Val, Expr);
               Set_Type (Res, Get_Type (Val));
               return Res;
            else
               return Val;
            end if;
         when Iir_Kind_Object_Alias_Declaration =>
            return Eval_Static_Expr (Get_Name (Expr));
         when Iir_Kind_Unit_Declaration =>
            return Get_Physical_Literal (Expr);
         when Iir_Kind_Simple_Aggregate =>
            return Expr;
         when Iir_Kind_Aggregate =>
            Eval_Aggregate (Expr);
            return Expr;

         when Iir_Kind_Selected_Element =>
            return Eval_Selected_Element (Expr);
         when Iir_Kind_Indexed_Name =>
            return Eval_Indexed_Name (Expr);

         when Iir_Kind_Parenthesis_Expression =>
            return Eval_Static_Expr (Get_Expression (Expr));
         when Iir_Kind_Qualified_Expression =>
            return Eval_Static_Expr (Get_Expression (Expr));
         when Iir_Kind_Type_Conversion =>
            return Eval_Type_Conversion (Expr);

         when Iir_Kinds_Monadic_Operator =>
            declare
               Operand : Iir;
            begin
               Operand := Eval_Static_Expr (Get_Operand (Expr));
               return Eval_Monadic_Operator (Expr, Operand);
            end;
         when Iir_Kinds_Dyadic_Operator =>
            declare
               Left : constant Iir := Get_Left (Expr);
               Right : constant Iir := Get_Right (Expr);
               Left_Val, Right_Val : Iir;
               Res : Iir;
            begin
               Left_Val := Eval_Static_Expr (Left);
               Right_Val := Eval_Static_Expr (Right);

               Res := Eval_Dyadic_Operator
                 (Expr, Get_Implementation (Expr), Left_Val, Right_Val);

               Free_Eval_Static_Expr (Left_Val, Left);
               Free_Eval_Static_Expr (Right_Val, Right);

               return Res;
            end;

         when Iir_Kind_Attribute_Name =>
            --  An attribute name designates an attribute value.
            declare
               Attr_Expr : constant Iir :=
                 Get_Attribute_Name_Expression (Expr);
               Val : Iir;
            begin
               Val := Eval_Static_Expr (Attr_Expr);
               --  FIXME: see constant_declaration.
               --  Currently, this avoids weird nodes, such as a string literal
               --  whose type is an unconstrained array type.
               Res := Build_Constant (Val, Expr);
               Set_Type (Res, Get_Type (Val));
               return Res;
            end;

         when Iir_Kind_Pos_Attribute =>
            declare
               Param : constant Iir := Get_Parameter (Expr);
               Val : Iir;
               Res : Iir;
            begin
               Val := Eval_Static_Expr (Param);
               --  FIXME: check bounds, handle overflow.
               Res := Build_Integer (Eval_Pos (Val), Expr);
               Free_Eval_Static_Expr (Val, Param);
               return Res;
            end;
         when Iir_Kind_Val_Attribute =>
            declare
               Expr_Type : constant Iir := Get_Type (Expr);
               Val_Expr : Iir;
               Val : Int64;
            begin
               Val_Expr := Eval_Static_Expr (Get_Parameter (Expr));
               Val := Eval_Pos (Val_Expr);
               --  Note: the type of 'val is a base type.
               --  FIXME: handle VHDL93 restrictions.
               if Get_Kind (Expr_Type) = Iir_Kind_Enumeration_Type_Definition
                 and then
                 not Eval_Int_In_Range (Val, Get_Range_Constraint (Expr_Type))
               then
                  Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                   "static argument out of the type range");
                  return Build_Overflow (Expr);
               end if;
               if Get_Kind (Get_Base_Type (Get_Type (Expr)))
                 = Iir_Kind_Physical_Type_Definition
               then
                  return Build_Physical (Val, Expr);
               else
                  return Build_Discrete (Val, Expr);
               end if;
            end;
         when Iir_Kind_Image_Attribute =>
            declare
               Param : Iir;
               Param_Type : Iir;
            begin
               Param := Get_Parameter (Expr);
               Param := Eval_Static_Expr (Param);
               Eval_Check_Bound (Param, Get_Type (Get_Prefix (Expr)));
               Set_Parameter (Expr, Param);

               --  Special case for overflow.
               if Get_Kind (Param) = Iir_Kind_Overflow_Literal then
                  return Build_Overflow (Expr);
               end if;

               Param_Type := Get_Base_Type (Get_Type (Param));
               case Get_Kind (Param_Type) is
                  when Iir_Kind_Integer_Type_Definition =>
                     return Eval_Integer_Image (Get_Value (Param), Expr);
                  when Iir_Kind_Floating_Type_Definition =>
                     return Eval_Floating_Image (Get_Fp_Value (Param), Expr);
                  when Iir_Kind_Enumeration_Type_Definition =>
                     return Eval_Enumeration_Image (Param, Expr);
                  when Iir_Kind_Physical_Type_Definition =>
                     return Eval_Physical_Image (Param, Expr);
                  when others =>
                     Error_Kind ("eval_static_expr('image)", Param);
               end case;
            end;
         when Iir_Kind_Value_Attribute =>
            declare
               Param : Iir;
            begin
               Param := Get_Parameter (Expr);
               Param := Eval_Static_Expr (Param);
               Set_Parameter (Expr, Param);
               if Get_Kind (Param) /= Iir_Kind_String_Literal8 then
                  --  FIXME: Isn't it an implementation restriction.
                  Warning_Msg_Sem (Warnid_Runtime_Error, +Expr,
                                   "'value argument not a string");
                  return Build_Overflow (Expr);
               else
                  return Eval_Value_Attribute
                    (Image_String_Lit (Param), Get_Type (Expr), Expr);
               end if;
            end;

         when Iir_Kind_Left_Type_Attribute =>
            return Eval_Static_Expr
              (Get_Left_Limit (Eval_Static_Range (Get_Prefix (Expr))));
         when Iir_Kind_Right_Type_Attribute =>
            return Eval_Static_Expr
              (Get_Right_Limit (Eval_Static_Range (Get_Prefix (Expr))));
         when Iir_Kind_High_Type_Attribute =>
            return Eval_Static_Expr
              (Get_High_Limit (Eval_Static_Range (Get_Prefix (Expr))));
         when Iir_Kind_Low_Type_Attribute =>
            return Eval_Static_Expr
              (Get_Low_Limit (Eval_Static_Range (Get_Prefix (Expr))));
         when Iir_Kind_Ascending_Type_Attribute =>
            return Build_Boolean
              (Get_Direction (Eval_Static_Range (Get_Prefix (Expr))) = Iir_To);

         when Iir_Kind_Length_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Build_Discrete (Eval_Discrete_Type_Length (Index), Expr);
            end;
         when Iir_Kind_Left_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_Left_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_Right_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_Right_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_Low_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_Low_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_High_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Eval_Static_Expr
                 (Get_High_Limit (Get_Range_Constraint (Index)));
            end;
         when Iir_Kind_Ascending_Array_Attribute =>
            declare
               Index : Iir;
            begin
               Index := Eval_Array_Attribute (Expr);
               return Build_Boolean
                 (Get_Direction (Get_Range_Constraint (Index)) = Iir_To);
            end;

         when Iir_Kind_Pred_Attribute =>
            Res := Eval_Incdec
              (Eval_Static_Expr (Get_Parameter (Expr)), -1, Expr);
            Eval_Check_Bound (Res, Get_Type (Get_Prefix (Expr)));
            return Res;
         when Iir_Kind_Succ_Attribute =>
            Res := Eval_Incdec
              (Eval_Static_Expr (Get_Parameter (Expr)), +1, Expr);
            Eval_Check_Bound (Res, Get_Type (Get_Prefix (Expr)));
            return Res;
         when Iir_Kind_Leftof_Attribute
           | Iir_Kind_Rightof_Attribute =>
            declare
               Rng : Iir;
               N : Int64;
               Prefix_Type : constant Iir := Get_Type (Get_Prefix (Expr));
               Res : Iir;
            begin
               Rng := Eval_Static_Range (Prefix_Type);
               case Get_Direction (Rng) is
                  when Iir_To =>
                     N := 1;
                  when Iir_Downto =>
                     N := -1;
               end case;
               case Get_Kind (Expr) is
                  when Iir_Kind_Leftof_Attribute =>
                     N := -N;
                  when Iir_Kind_Rightof_Attribute =>
                     null;
                  when others =>
                     raise Internal_Error;
               end case;
               Res := Eval_Incdec
                 (Eval_Static_Expr (Get_Parameter (Expr)), N, Expr);
               Eval_Check_Bound (Res, Prefix_Type);
               return Res;
            end;

         when Iir_Kind_Simple_Name_Attribute =>
            declare
               use Str_Table;
               Img : constant String :=
                 Image (Get_Simple_Name_Identifier (Expr));
               Id : String8_Id;
            begin
               Id := Create_String8;
               for I in Img'Range loop
                  Append_String8_Char (Img (I));
               end loop;
               return Build_String (Id, Nat32 (Img'Length), Expr);
            end;

         when Iir_Kind_Null_Literal =>
            return Expr;

         when Iir_Kind_Function_Call =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Left, Right : Iir;
            begin
               --  Note: there can't be association by name.
               Left := Get_Parameter_Association_Chain (Expr);
               Right := Get_Chain (Left);

               Left := Eval_Static_Expr (Get_Actual (Left));
               if Right = Null_Iir then
                  return Eval_Monadic_Operator (Expr, Left);
               else
                  Right := Eval_Static_Expr (Get_Actual (Right));
                  return Eval_Dyadic_Operator (Expr, Imp, Left, Right);
               end if;
            end;

         when Iir_Kind_Error =>
            return Expr;
         when others =>
            Error_Kind ("eval_static_expr", Expr);
      end case;
   end Eval_Static_Expr;

   --  If FORCE is true, always return a literal.
   function Eval_Expr_Keep_Orig (Expr : Iir; Force : Boolean) return Iir
   is
      Res : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kinds_Denoting_Name =>
            declare
               Orig : constant Iir := Get_Named_Entity (Expr);
            begin
               Res := Eval_Static_Expr (Orig);
               if Res /= Orig or else Force then
                  return Build_Constant (Res, Expr);
               else
                  return Expr;
               end if;
            end;
         when others =>
            Res := Eval_Static_Expr (Expr);
            if Res /= Expr
              and then Get_Literal_Origin (Res) /= Expr
            then
               --  Need to build a constant if the result is a different
               --  literal not tied to EXPR.
               return Build_Constant (Res, Expr);
            else
               return Res;
            end if;
      end case;
   end Eval_Expr_Keep_Orig;

   function Eval_Expr (Expr: Iir) return Iir is
   begin
      if Get_Expr_Staticness (Expr) /= Locally then
         Error_Msg_Sem (+Expr, "expression must be locally static");
         return Expr;
      else
         return Eval_Expr_Keep_Orig (Expr, False);
      end if;
   end Eval_Expr;

   --  Subroutine of Can_Eval_Composite_Value.  Return True iff EXPR is
   --  considered as a small composite.
   function Is_Small_Composite_Value (Expr : Iir) return Boolean
   is
      Expr_Type : constant Iir := Get_Type (Expr);
      Indexes : Iir_Flist;
      Len : Int64;
   begin
      --  Consider only arrays.  Records are never composite.
      if Get_Kind (Expr_Type) /= Iir_Kind_Array_Subtype_Definition then
         return False;
      end if;

      --  Element must be scalar.
      if Get_Kind (Get_Element_Subtype (Expr_Type))
        not in Iir_Kinds_Scalar_Type_And_Subtype_Definition
      then
         return False;
      end if;

      Indexes := Get_Index_Subtype_List (Expr_Type);

      --  Multi-dimensional arrays aren't considered as small.
      if Get_Nbr_Elements (Indexes) /= 1 then
         return False;
      end if;

      Len := Eval_Discrete_Type_Length (Get_Nth_Element (Indexes, 0));
      return Len <= 128;
   end Is_Small_Composite_Value;

   function Can_Eval_Composite_Value (Expr : Iir; Top : Boolean := False)
                                     return Boolean;

   --  Return True if EXPR should be evaluated.
   function Can_Eval_Value (Expr : Iir; Top : Boolean) return Boolean is
   begin
      --  Always evaluate scalar values.
      if Get_Kind (Get_Type (Expr))
        in Iir_Kinds_Scalar_Type_And_Subtype_Definition
      then
         return True;
      end if;
      return Can_Eval_Composite_Value (Expr, Top);
   end Can_Eval_Value;

   --  For composite values.
   --  Evluating a composite value is a trade-off: it can simplify the
   --  generated code if the value is small enough, or it can be a bad idea if
   --  the value is very large.  It is very easy to create large static
   --  composite values (like: bit_vector'(1 to 10**4 => '0'))
   function Can_Eval_Composite_Value (Expr : Iir; Top : Boolean := False)
                                     return Boolean
   is
      --  We are only considering static values.
      pragma Assert (Get_Expr_Staticness (Expr) = Locally);

      --  We are only considering composite types.
      pragma Assert (Get_Kind (Get_Type (Expr))
                       not in Iir_Kinds_Scalar_Type_And_Subtype_Definition);
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Type_Conversion
           | Iir_Kind_Qualified_Expression =>
            --  Not yet handled.
            return False;
         when Iir_Kinds_Denoting_Name =>
            return Can_Eval_Composite_Value (Get_Named_Entity (Expr), Top);
         when Iir_Kind_Constant_Declaration =>
            --  Pass through names only for small values.
            if Top or else not Is_Small_Composite_Value (Expr) then
               return False;
            else
               return Can_Eval_Composite_Value (Get_Default_Value (Expr));
            end if;
         when Iir_Kind_Attribute_Name =>
            if Top or else not Is_Small_Composite_Value (Expr) then
               return False;
            else
               return Can_Eval_Composite_Value
                 (Get_Attribute_Name_Expression (Expr));
            end if;
         when Iir_Kinds_Dyadic_Operator =>
            --  Concatenation can increase the size.
            --  Others (rol, ror...) don't.
            return Can_Eval_Value (Get_Left (Expr), False)
              and then Can_Eval_Value (Get_Right (Expr), False);
         when Iir_Kinds_Monadic_Operator =>
            --  For not.
            return Can_Eval_Composite_Value (Get_Operand (Expr));
         when Iir_Kind_Aggregate =>
            return Is_Small_Composite_Value (Expr);
         when Iir_Kinds_Literal
           | Iir_Kind_Enumeration_Literal
           | Iir_Kind_Simple_Aggregate
           | Iir_Kind_Image_Attribute
           | Iir_Kind_Simple_Name_Attribute =>
            return True;
         when Iir_Kind_Overflow_Literal =>
            return True;
         when Iir_Kind_Function_Call =>
            --  Either using post-fixed notation or implicit functions like
            --  to_string.
            --  Cannot be a user function (won't be locally static).
            declare
               Assoc : Iir;
               Assoc_Expr : Iir;
            begin
               Assoc := Get_Parameter_Association_Chain (Expr);
               while Is_Valid (Assoc) loop
                  case Iir_Kinds_Association_Element (Get_Kind (Assoc)) is
                     when Iir_Kind_Association_Element_By_Expression =>
                        Assoc_Expr := Get_Actual (Assoc);
                        if not Can_Eval_Value (Assoc_Expr, False) then
                           return False;
                        end if;
                     when Iir_Kind_Association_Element_Open =>
                        null;
                     when Iir_Kind_Association_Element_By_Individual =>
                        return False;
                  end case;
                  Assoc := Get_Chain (Assoc);
               end loop;
               return True;
            end;

         when others =>
            --  Be safe, don't crash on unhandled expression.
            --  Error_Kind ("can_eval_composite_value", Expr);
            return False;
      end case;
   end Can_Eval_Composite_Value;

   function Eval_Expr_If_Static (Expr : Iir) return Iir is
   begin
      if Expr /= Null_Iir and then Get_Expr_Staticness (Expr) = Locally then
         --  Evaluate only when there is a positive effect.
         if Can_Eval_Value (Expr, True) then
            return Eval_Expr_Keep_Orig (Expr, False);
         else
            return Expr;
         end if;
      else
         return Expr;
      end if;
   end Eval_Expr_If_Static;

   function Eval_Expr_Check (Expr : Iir; Sub_Type : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Eval_Expr_Keep_Orig (Expr, False);
      Eval_Check_Bound (Res, Sub_Type);
      return Res;
   end Eval_Expr_Check;

   function Eval_Expr_Check_If_Static (Expr : Iir; Atype : Iir) return Iir
   is
      Res : Iir;
   begin
      if Expr /= Null_Iir and then Get_Expr_Staticness (Expr) = Locally then
         --  Expression is static and can be evaluated.  Don't try to
         --  evaluate non-scalar expressions, that may create too large data.
         if Get_Kind (Atype) in Iir_Kinds_Scalar_Type_And_Subtype_Definition
         then
            Res := Eval_Expr_Keep_Orig (Expr, False);
         else
            Res := Expr;
         end if;

         if Res /= Null_Iir
           and then Get_Type_Staticness (Atype) = Locally
           and then Get_Kind (Atype) in Iir_Kinds_Range_Type_Definition
         then
            --  Check bounds (as this can be done).
            --  FIXME: create overflow_expr ?
            Eval_Check_Bound (Res, Atype);
         end if;

         return Res;
      else
         return Expr;
      end if;
   end Eval_Expr_Check_If_Static;

   function Eval_Int_In_Range (Val : Int64; Bound : Iir) return Boolean is
   begin
      case Get_Kind (Bound) is
         when Iir_Kind_Range_Expression =>
            case Get_Direction (Bound) is
               when Iir_To =>
                  if Val < Eval_Pos (Get_Left_Limit (Bound))
                    or else Val > Eval_Pos (Get_Right_Limit (Bound))
                  then
                     return False;
                  end if;
               when Iir_Downto =>
                  if Val > Eval_Pos (Get_Left_Limit (Bound))
                    or else Val < Eval_Pos (Get_Right_Limit (Bound))
                  then
                     return False;
                  end if;
            end case;
         when others =>
            Error_Kind ("eval_int_in_range", Bound);
      end case;
      return True;
   end Eval_Int_In_Range;

   function Eval_Phys_In_Range (Val : Int64; Bound : Iir) return Boolean
   is
      Left, Right : Int64;
   begin
      case Get_Kind (Bound) is
         when Iir_Kind_Range_Expression =>
            case Get_Kind (Get_Type (Get_Left_Limit (Bound))) is
               when Iir_Kind_Integer_Type_Definition
                 | Iir_Kind_Integer_Subtype_Definition =>
                  Left := Get_Value (Get_Left_Limit (Bound));
                  Right := Get_Value (Get_Right_Limit (Bound));
               when Iir_Kind_Physical_Type_Definition
                 | Iir_Kind_Physical_Subtype_Definition =>
                  Left := Get_Physical_Value (Get_Left_Limit (Bound));
                  Right := Get_Physical_Value (Get_Right_Limit (Bound));
               when others =>
                  Error_Kind ("eval_phys_in_range(1)", Get_Type (Bound));
            end case;
            case Get_Direction (Bound) is
               when Iir_To =>
                  if Val < Left or else Val > Right then
                     return False;
                  end if;
               when Iir_Downto =>
                  if Val > Left or else Val < Right then
                     return False;
                  end if;
            end case;
         when others =>
            Error_Kind ("eval_phys_in_range", Bound);
      end case;
      return True;
   end Eval_Phys_In_Range;

   function Eval_Fp_In_Range (Val : Fp64; Bound : Iir) return Boolean is
   begin
      case Get_Kind (Bound) is
         when Iir_Kind_Range_Expression =>
            case Get_Direction (Bound) is
               when Iir_To =>
                  if Val < Get_Fp_Value (Get_Left_Limit (Bound))
                    or else Val > Get_Fp_Value (Get_Right_Limit (Bound))
                  then
                     return False;
                  end if;
               when Iir_Downto =>
                  if Val > Get_Fp_Value (Get_Left_Limit (Bound))
                    or else Val < Get_Fp_Value (Get_Right_Limit (Bound))
                  then
                     return False;
                  end if;
            end case;
         when others =>
            Error_Kind ("eval_fp_in_range", Bound);
      end case;
      return True;
   end Eval_Fp_In_Range;

   --  Return FALSE if literal EXPR is not in SUB_TYPE bounds.
   function Eval_Is_In_Bound (Expr : Iir; Sub_Type : Iir) return Boolean
   is
      Type_Range : Iir;
      Val : Iir;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Simple_Name
           | Iir_Kind_Character_Literal
           | Iir_Kind_Selected_Name
           | Iir_Kind_Parenthesis_Name =>
            Val := Get_Named_Entity (Expr);
         when others =>
            Val := Expr;
      end case;

      case Get_Kind (Val) is
         when Iir_Kind_Error =>
            --  Ignore errors.
            return True;
         when Iir_Kind_Overflow_Literal =>
            --  Never within bounds
            return False;
         when others =>
            null;
      end case;

      case Get_Kind (Sub_Type) is
         when Iir_Kind_Integer_Subtype_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Int_In_Range (Get_Value (Val), Type_Range);

         when Iir_Kind_Floating_Subtype_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Fp_In_Range (Get_Fp_Value (Val), Type_Range);

         when Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            --  A check is required for an enumeration type definition for
            --  'val attribute.
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Int_In_Range
              (Int64 (Get_Enum_Pos (Val)), Type_Range);

         when Iir_Kind_Physical_Subtype_Definition =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            Type_Range := Get_Range_Constraint (Sub_Type);
            return Eval_Phys_In_Range (Get_Physical_Value (Val), Type_Range);

         when Iir_Kind_Base_Attribute =>
            if Get_Expr_Staticness (Val) /= Locally
              or else Get_Type_Staticness (Sub_Type) /= Locally
            then
               return True;
            end if;
            return Eval_Is_In_Bound (Val, Get_Type (Sub_Type));

         when Iir_Kind_Array_Subtype_Definition =>
            declare
               Val_Type : constant Iir := Get_Type (Val);
            begin
               if Is_Null (Val_Type) then
                  --  Punt on errors.
                  return True;
               end if;

               if Get_Constraint_State (Sub_Type) /= Fully_Constrained
                 or else
                 Get_Kind (Val_Type) /= Iir_Kind_Array_Subtype_Definition
                 or else
                 Get_Constraint_State (Val_Type) /= Fully_Constrained
               then
                  --  Cannot say no.
                  return True;
               end if;
               declare
                  E_Indexes : constant Iir_Flist :=
                    Get_Index_Subtype_List (Val_Type);
                  T_Indexes : constant Iir_Flist :=
                    Get_Index_Subtype_List (Sub_Type);
                  E_El : Iir;
                  T_El : Iir;
               begin
                  for I in Flist_First .. Flist_Last (E_Indexes) loop
                     E_El := Get_Index_Type (E_Indexes, I);
                     T_El := Get_Index_Type (T_Indexes, I);

                     if Get_Type_Staticness (E_El) = Locally
                       and then Get_Type_Staticness (T_El) = Locally
                       and then (Eval_Discrete_Type_Length (E_El)
                                   /= Eval_Discrete_Type_Length (T_El))
                     then
                        return False;
                     end if;
                  end loop;
                  return True;
               end;
            end;

         when Iir_Kind_Access_Type_Definition
           | Iir_Kind_Access_Subtype_Definition =>
            return True;

         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            --  FIXME: do it.
            return True;

         when Iir_Kind_File_Type_Definition =>
            return True;

         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Floating_Type_Definition =>
            return True;

         when Iir_Kind_Interface_Type_Definition
           | Iir_Kind_Protected_Type_Declaration =>
            return True;

         when Iir_Kind_Error =>
            return True;

         when others =>
            Error_Kind ("eval_is_in_bound", Sub_Type);
      end case;
   end Eval_Is_In_Bound;

   procedure Eval_Check_Bound (Expr : Iir; Sub_Type : Iir) is
   begin
      if Get_Kind (Expr) = Iir_Kind_Overflow_Literal then
         --  Nothing to check, and a message was already generated.
         return;
      end if;

      if not Eval_Is_In_Bound (Expr, Sub_Type) then
         Error_Msg_Sem (+Expr, "static expression violates bounds");
      end if;
   end Eval_Check_Bound;

   function Eval_Is_Range_In_Bound
     (A_Range : Iir; Sub_Type : Iir; Any_Dir : Boolean)
     return Boolean
   is
      Type_Range : Iir;
      Range_Constraint : constant Iir := Eval_Static_Range (A_Range);
   begin
      Type_Range := Get_Range_Constraint (Sub_Type);
      if not Any_Dir
        and then Get_Direction (Type_Range) /= Get_Direction (Range_Constraint)
      then
         return True;
      end if;

      case Get_Kind (Sub_Type) is
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Physical_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            declare
               L, R : Int64;
            begin
               --  Check for null range.
               L := Eval_Pos (Get_Left_Limit (Range_Constraint));
               R := Eval_Pos (Get_Right_Limit (Range_Constraint));
               case Get_Direction (Range_Constraint) is
                  when Iir_To =>
                     if L > R then
                        return True;
                     end if;
                  when Iir_Downto =>
                     if L < R then
                        return True;
                     end if;
               end case;
               return Eval_Int_In_Range (L, Type_Range)
                 and then Eval_Int_In_Range (R, Type_Range);
            end;
         when Iir_Kind_Floating_Subtype_Definition =>
            declare
               L, R : Fp64;
            begin
               --  Check for null range.
               L := Get_Fp_Value (Get_Left_Limit (Range_Constraint));
               R := Get_Fp_Value (Get_Right_Limit (Range_Constraint));
               case Get_Direction (Range_Constraint) is
                  when Iir_To =>
                     if L > R then
                        return True;
                     end if;
                  when Iir_Downto =>
                     if L < R then
                        return True;
                     end if;
               end case;
               return Eval_Fp_In_Range (L, Type_Range)
                 and then Eval_Fp_In_Range (R, Type_Range);
            end;
         when others =>
            Error_Kind ("eval_is_range_in_bound", Sub_Type);
      end case;

      --  Should check L <= R or L >= R according to direction.
      --return Eval_Is_In_Bound (Get_Left_Limit (A_Range), Sub_Type)
      --  and then Eval_Is_In_Bound (Get_Right_Limit (A_Range), Sub_Type);
   end Eval_Is_Range_In_Bound;

   procedure Eval_Check_Range
     (A_Range : Iir; Sub_Type : Iir; Any_Dir : Boolean)
   is
   begin
      if not Eval_Is_Range_In_Bound (A_Range, Sub_Type, Any_Dir) then
         Error_Msg_Sem (+A_Range, "static range violates bounds");
      end if;
   end Eval_Check_Range;

   function Eval_Discrete_Range_Length (Constraint : Iir) return Int64
   is
      --  We don't want to deal with very large ranges here.
      pragma Suppress (Overflow_Check);
      Res : Int64;
      Left, Right : Int64;
   begin
      Left := Eval_Pos (Get_Left_Limit (Constraint));
      Right := Eval_Pos (Get_Right_Limit (Constraint));
      case Get_Direction (Constraint) is
         when Iir_To =>
            if Right < Left then
               --  Null range.
               return 0;
            else
               Res := Right - Left + 1;
            end if;
         when Iir_Downto =>
            if Left < Right then
               --  Null range
               return 0;
            else
               Res := Left - Right + 1;
            end if;
      end case;
      return Res;
   end Eval_Discrete_Range_Length;

   function Eval_Discrete_Type_Length (Sub_Type : Iir) return Int64
   is
   begin
      case Get_Kind (Sub_Type) is
         when Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            return Eval_Discrete_Range_Length
              (Get_Range_Constraint (Sub_Type));
         when others =>
            Error_Kind ("eval_discrete_type_length", Sub_Type);
      end case;
   end Eval_Discrete_Type_Length;

   function Eval_Is_Null_Discrete_Range (Rng : Iir) return Boolean
   is
      Left, Right : Int64;
   begin
      Left := Eval_Pos (Get_Left_Limit (Rng));
      Right := Eval_Pos (Get_Right_Limit (Rng));
      case Get_Direction (Rng) is
         when Iir_To =>
            return Right < Left;
         when Iir_Downto =>
            return Left < Right;
      end case;
   end Eval_Is_Null_Discrete_Range;

   function Eval_Pos (Expr : Iir) return Int64 is
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Integer_Literal =>
            return Get_Value (Expr);
         when Iir_Kind_Enumeration_Literal =>
            return Int64 (Get_Enum_Pos (Expr));
         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal
           | Iir_Kind_Unit_Declaration =>
            return Get_Physical_Value (Expr);
         when Iir_Kinds_Denoting_Name =>
            return Eval_Pos (Get_Named_Entity (Expr));
         when others =>
            Error_Kind ("eval_pos", Expr);
      end case;
   end Eval_Pos;

   function Eval_Static_Range (Rng : Iir) return Iir
   is
      Expr : Iir;
      Kind : Iir_Kind;
   begin
      Expr := Rng;
      loop
         Kind := Get_Kind (Expr);
         case Kind is
            when Iir_Kind_Range_Expression =>
               if Get_Expr_Staticness (Expr) /= Locally then
                  return Null_Iir;
               end if;

               --  Normalize the range expression.
               declare
                  Left : Iir;
                  Right : Iir;
               begin
                  Left := Get_Left_Limit_Expr (Expr);
                  if Is_Valid (Left) then
                     Left := Eval_Expr_Keep_Orig (Left, False);
                     Set_Left_Limit_Expr (Expr, Left);
                     Set_Left_Limit (Expr, Left);
                  end if;
                  Right := Get_Right_Limit_Expr (Expr);
                  if Is_Valid (Right) then
                     Right := Eval_Expr_Keep_Orig (Right, False);
                     Set_Right_Limit_Expr (Expr, Right);
                     Set_Right_Limit (Expr, Right);
                  end if;
               end;
               return Expr;
            when Iir_Kind_Integer_Subtype_Definition
              | Iir_Kind_Floating_Subtype_Definition
              | Iir_Kind_Enumeration_Type_Definition
              | Iir_Kind_Enumeration_Subtype_Definition
              | Iir_Kind_Physical_Subtype_Definition =>
               Expr := Get_Range_Constraint (Expr);
            when Iir_Kind_Range_Array_Attribute
              | Iir_Kind_Reverse_Range_Array_Attribute =>
               declare
                  Indexes_List : Iir_Flist;
                  Prefix : Iir;
                  Res : Iir;
                  Dim : Natural;
               begin
                  Prefix := Get_Prefix (Expr);
                  if Get_Kind (Prefix) /= Iir_Kind_Array_Subtype_Definition
                  then
                     Prefix := Get_Type (Prefix);
                  end if;
                  if Get_Kind (Prefix) /= Iir_Kind_Array_Subtype_Definition
                  then
                     --  Unconstrained object.
                     return Null_Iir;
                  end if;
                  Indexes_List := Get_Index_Subtype_List (Prefix);
                  Dim := Eval_Attribute_Parameter_Or_1 (Expr);
                  if Dim < 1
                    or else Dim > Get_Nbr_Elements (Indexes_List)
                  then
                     --  Avoid cascaded errors.
                     Dim := 1;
                  end if;
                  Expr := Get_Nth_Element (Indexes_List, Dim - 1);
                  if Kind = Iir_Kind_Reverse_Range_Array_Attribute then
                     Expr := Eval_Static_Range (Expr);

                     Res := Create_Iir (Iir_Kind_Range_Expression);
                     Location_Copy (Res, Expr);
                     Set_Type (Res, Get_Type (Expr));
                     case Get_Direction (Expr) is
                        when Iir_To =>
                           Set_Direction (Res, Iir_Downto);
                        when Iir_Downto =>
                           Set_Direction (Res, Iir_To);
                     end case;
                     Set_Left_Limit (Res, Get_Right_Limit (Expr));
                     Set_Right_Limit (Res, Get_Left_Limit (Expr));
                     Set_Range_Origin (Res, Rng);
                     Set_Expr_Staticness (Res, Get_Expr_Staticness (Expr));
                     return Res;
                  end if;
               end;

            when Iir_Kind_Subtype_Declaration
              | Iir_Kind_Base_Attribute
              | Iir_Kind_Subtype_Attribute
              | Iir_Kind_Element_Attribute =>
               Expr := Get_Type (Expr);
            when Iir_Kind_Type_Declaration =>
               Expr := Get_Type_Definition (Expr);
            when Iir_Kind_Simple_Name
              | Iir_Kind_Selected_Name =>
               Expr := Get_Named_Entity (Expr);
            when others =>
               Error_Kind ("eval_static_range", Expr);
         end case;
      end loop;
   end Eval_Static_Range;

   function Eval_Range (Arange : Iir) return Iir is
      Res : Iir;
   begin
      Res := Eval_Static_Range (Arange);
      if Res /= Arange
        and then Get_Range_Origin (Res) /= Arange
      then
         return Build_Constant_Range (Res, Arange);
      else
         return Res;
      end if;
   end Eval_Range;

   function Eval_Range_If_Static (Arange : Iir) return Iir is
   begin
      if Get_Expr_Staticness (Arange) /= Locally then
         return Arange;
      else
         return Eval_Range (Arange);
      end if;
   end Eval_Range_If_Static;

   --  Return the range constraint of a discrete range.
   function Eval_Discrete_Range_Expression (Constraint : Iir) return Iir
   is
      Res : Iir;
   begin
      Res := Eval_Static_Range (Constraint);
      if Res = Null_Iir then
         Error_Kind ("eval_discrete_range_expression", Constraint);
      else
         return Res;
      end if;
   end Eval_Discrete_Range_Expression;

   function Eval_Discrete_Range_Left (Constraint : Iir) return Iir
   is
      Range_Expr : Iir;
   begin
      Range_Expr := Eval_Discrete_Range_Expression (Constraint);
      return Get_Left_Limit (Range_Expr);
   end Eval_Discrete_Range_Left;

   function Eval_Is_Eq (L, R : Iir) return Boolean
   is
      Expr_Type : constant Iir := Get_Type (L);
   begin
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition
           | Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            return Eval_Pos (L) = Eval_Pos (R);
         when Iir_Kind_Floating_Subtype_Definition
           | Iir_Kind_Floating_Type_Definition =>
            return Get_Fp_Value (L) = Get_Fp_Value (R);
         when others =>
            Error_Kind ("eval_is_eq", Expr_Type);
      end case;
   end Eval_Is_Eq;

   function Eval_Operator_Symbol_Name (Id : Name_Id) return String is
   begin
      return '"' & Image (Id) & '"';
   end Eval_Operator_Symbol_Name;

   function Eval_Simple_Name (Id : Name_Id) return String is
   begin
      --  LRM 14.1
      --  E'SIMPLE_NAME
      --    Result: [...] but with apostrophes (in the case of a character
      --            literal)
      if Is_Character (Id) then
         return ''' & Get_Character (Id) & ''';
      end if;
      case Id is
         when Std_Names.Name_Word_Operators
           | Std_Names.Name_First_Operator .. Std_Names.Name_Last_Operator =>
            return Eval_Operator_Symbol_Name (Id);
         when Std_Names.Name_Xnor
           | Std_Names.Name_Shift_Operators =>
            if Flags.Vhdl_Std > Vhdl_87 then
               return Eval_Operator_Symbol_Name (Id);
            end if;
         when others =>
            null;
      end case;
      return Image (Id);
   end Eval_Simple_Name;

   package body String_Utils is
      --  Fill Res from EL.  This is used to speed up Lt and Eq operations.
      function Get_Str_Info (Expr : Iir) return Str_Info is
      begin
         case Get_Kind (Expr) is
            when Iir_Kind_Simple_Aggregate =>
               declare
                  List : constant Iir_Flist :=
                    Get_Simple_Aggregate_List (Expr);
               begin
                  return Str_Info'(Is_String => False,
                                   Len => Nat32 (Get_Nbr_Elements (List)),
                                   List => List);
               end;
            when Iir_Kind_String_Literal8 =>
               return Str_Info'(Is_String => True,
                                Len => Get_String_Length (Expr),
                                Id => Get_String8_Id (Expr));
            when others =>
               Error_Kind ("string_utils.get_info", Expr);
         end case;
      end Get_Str_Info;

      --  Return the position of element IDX of STR.
      function Get_Pos (Str : Str_Info; Idx : Nat32) return Iir_Int32
      is
         S : Iir;
         P : Nat32;
      begin
         case Str.Is_String is
            when False =>
               S := Get_Nth_Element (Str.List, Natural (Idx));
               return Get_Enum_Pos (S);
            when True =>
               P := Str_Table.Element_String8 (Str.Id, Idx + 1);
               return Iir_Int32 (P);
         end case;
      end Get_Pos;
   end String_Utils;

   function Compare_String_Literals (L, R : Iir) return Compare_Type
   is
      use String_Utils;
      L_Info : constant Str_Info := Get_Str_Info (L);
      R_Info : constant Str_Info := Get_Str_Info (R);
      L_Pos, R_Pos : Iir_Int32;
   begin
      if L_Info.Len /= R_Info.Len then
         raise Internal_Error;
      end if;

      for I in 0 .. L_Info.Len - 1 loop
         L_Pos := Get_Pos (L_Info, I);
         R_Pos := Get_Pos (R_Info, I);
         if L_Pos /= R_Pos then
            if L_Pos < R_Pos then
               return Compare_Lt;
            else
               return Compare_Gt;
            end if;
         end if;
      end loop;
      return Compare_Eq;
   end Compare_String_Literals;

   function Get_Path_Instance_Name_Suffix (Attr : Iir)
                                          return Path_Instance_Name_Type
   is
      --  Current path for name attributes.
      Path_Str : String_Acc := null;
      Path_Maxlen : Natural := 0;
      Path_Len : Natural;
      Path_Instance : Iir;

      procedure Deallocate is new Ada.Unchecked_Deallocation
        (Name => String_Acc, Object => String);

      procedure Path_Reset is
      begin
         Path_Len := 0;
         Path_Instance := Null_Iir;
         if Path_Maxlen = 0 then
            Path_Maxlen := 256;
            Path_Str := new String (1 .. Path_Maxlen);
         end if;
      end Path_Reset;

      procedure Path_Add (Str : String)
      is
         N_Len : Natural;
         N_Path : String_Acc;
      begin
         N_Len := Path_Maxlen;
         loop
            exit when Path_Len + Str'Length <= N_Len;
            N_Len := N_Len * 2;
         end loop;
         if N_Len /= Path_Maxlen then
            N_Path := new String (1 .. N_Len);
            N_Path (1 .. Path_Len) := Path_Str (1 .. Path_Len);
            Deallocate (Path_Str);
            Path_Str := N_Path;
            Path_Maxlen := N_Len;
         end if;
         Path_Str (Path_Len + 1 .. Path_Len + Str'Length) := Str;
         Path_Len := Path_Len + Str'Length;
      end Path_Add;

      procedure Path_Add_Type_Name (Atype : Iir)
      is
         Adecl : constant Iir := Get_Type_Declarator (Atype);
      begin
         Path_Add (Image (Get_Identifier (Adecl)));
      end Path_Add_Type_Name;

      procedure Path_Add_Signature (Subprg : Iir)
      is
         Chain : Iir;
      begin
         Path_Add ("[");
         Chain := Get_Interface_Declaration_Chain (Subprg);
         while Chain /= Null_Iir loop
            Path_Add_Type_Name (Get_Type (Chain));
            Chain := Get_Chain (Chain);
            if Chain /= Null_Iir then
               Path_Add (",");
            end if;
         end loop;

         case Get_Kind (Subprg) is
            when Iir_Kind_Function_Declaration =>
               Path_Add (" return ");
               Path_Add_Type_Name (Get_Return_Type (Subprg));
            when others =>
               null;
         end case;
         Path_Add ("]");
      end Path_Add_Signature;

      procedure Path_Add_Name (N : Iir)
      is
         Img : constant String := Eval_Simple_Name (Get_Identifier (N));
      begin
         if Img (Img'First) /= 'P' then
            --  Skip anonymous processes.
            Path_Add (Img);
         end if;
      end Path_Add_Name;

      procedure Path_Add_Element (El : Iir; Is_Instance : Boolean) is
      begin
         --  LRM 14.1
         --  E'INSTANCE_NAME
         --    There is one full path instance element for each component
         --    instantiation, block statement, generate statemenent, process
         --    statement, or subprogram body in the design hierarchy between
         --    the top design entity and the named entity denoted by the
         --    prefix.
         --
         --  E'PATH_NAME
         --    There is one path instance element for each component
         --    instantiation, block statement, generate statement, process
         --    statement, or subprogram body in the design hierarchy between
         --    the root design entity and the named entity denoted by the
         --    prefix.
         case Get_Kind (El) is
            when Iir_Kind_Library_Declaration =>
               Path_Add (":");
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Package_Declaration
              | Iir_Kind_Package_Body
              | Iir_Kind_Package_Instantiation_Declaration =>
               if Is_Nested_Package (El) then
                  Path_Add_Element (Get_Parent (El), Is_Instance);
               else
                  Path_Add_Element
                    (Get_Library (Get_Design_File (Get_Design_Unit (El))),
                     Is_Instance);
               end if;
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Entity_Declaration =>
               Path_Instance := El;
            when Iir_Kind_Architecture_Body =>
               Path_Instance := El;
            when Iir_Kind_Design_Unit =>
               Path_Add_Element (Get_Library_Unit (El), Is_Instance);
            when Iir_Kind_Sensitized_Process_Statement
              | Iir_Kind_Process_Statement
              | Iir_Kind_Block_Statement
              | Iir_Kind_Protected_Type_Body =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Protected_Type_Declaration =>
               declare
                  Decl : constant Iir := Get_Type_Declarator (El);
               begin
                  Path_Add_Element (Get_Parent (Decl), Is_Instance);
                  Path_Add_Name (Decl);
                  Path_Add (":");
               end;
            when Iir_Kind_Function_Declaration
              | Iir_Kind_Procedure_Declaration =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
               Path_Add_Name (El);
               if Flags.Vhdl_Std >= Vhdl_02 then
                  --  Add signature.
                  Path_Add_Signature (El);
               end if;
               Path_Add (":");
            when Iir_Kind_Procedure_Body =>
               Path_Add_Element (Get_Subprogram_Specification (El),
                                 Is_Instance);
            when Iir_Kind_For_Generate_Statement =>
               Path_Instance := El;
            when Iir_Kind_If_Generate_Statement =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
               Path_Add_Name (El);
               Path_Add (":");
            when Iir_Kind_Generate_Statement_Body =>
               declare
                  Parent : constant Iir := Get_Parent (El);
               begin
                  if Get_Kind (Parent) = Iir_Kind_For_Generate_Statement then
                     Path_Instance := El;
                  else
                     Path_Add_Element (Parent, Is_Instance);
                  end if;
               end;
            when Iir_Kinds_Sequential_Statement =>
               Path_Add_Element (Get_Parent (El), Is_Instance);
            when others =>
               Error_Kind ("path_add_element", El);
         end case;
      end Path_Add_Element;

      Prefix : constant Iir := Get_Named_Entity (Get_Prefix (Attr));
      Is_Instance : constant Boolean :=
        Get_Kind (Attr) = Iir_Kind_Instance_Name_Attribute;
   begin
      Path_Reset;

      --  LRM 14.1
      --  E'PATH_NAME
      --    The local item name in E'PATH_NAME equals E'SIMPLE_NAME, unless
      --    E denotes a library, package, subprogram or label. In this
      --    latter case, the package based path or instance based path,
      --    as appropriate, will not contain a local item name.
      --
      --  E'INSTANCE_NAME
      --    The local item name in E'INSTANCE_NAME equals E'SIMPLE_NAME,
      --    unless E denotes a library, package, subprogram, or label.  In
      --    this latter case, the package based path or full instance based
      --    path, as appropriate, will not contain a local item name.
      case Get_Kind (Prefix) is
         when Iir_Kind_Constant_Declaration
           | Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Iterator_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Interface_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_File_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_Type_Declaration
           | Iir_Kind_Subtype_Declaration =>
            Path_Add_Element (Get_Parent (Prefix), Is_Instance);
            Path_Add_Name (Prefix);
         when Iir_Kind_Library_Declaration
           | Iir_Kinds_Library_Unit
           | Iir_Kind_Function_Declaration
           | Iir_Kind_Procedure_Declaration
           | Iir_Kinds_Concurrent_Statement
           | Iir_Kinds_Sequential_Statement =>
            Path_Add_Element (Prefix, Is_Instance);
         when others =>
            Error_Kind ("get_path_instance_name_suffix", Prefix);
      end case;

      declare
         Result : constant Path_Instance_Name_Type :=
           (Len => Path_Len,
            Path_Instance => Path_Instance,
            Suffix => Path_Str (1 .. Path_Len));
      begin
         Deallocate (Path_Str);
         return Result;
      end;
   end Get_Path_Instance_Name_Suffix;

end Vhdl.Evaluation;