aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/simulate/simulation.adb
blob: 26c5e950850efd20030fdb7b6e075006aea4555b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
--  Interpreted simulation
--  Copyright (C) 2014 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GHDL; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.

with Types; use Types;
with Execution; use Execution;
with Areapools; use Areapools;
with Grt.Signals;
with Grt.Processes;
with Grtlink;
pragma Unreferenced (Grtlink);

package body Simulation is

   function Value_To_Iir_Value (Mode : Mode_Type; Val : Value_Union)
                               return Iir_Value_Literal_Acc is
   begin
      case Mode is
         when Mode_B1 =>
            return Create_B1_Value (Val.B1);
         when Mode_E8 =>
            return Create_E8_Value (Val.E8);
         when Mode_E32 =>
            return Create_E32_Value (Val.E32);
         when Mode_I64 =>
            return Create_I64_Value (Val.I64);
         when Mode_F64 =>
            return Create_F64_Value (Val.F64);
         when others =>
            raise Internal_Error;  -- FIXME
      end case;
   end Value_To_Iir_Value;

   procedure Iir_Value_To_Value (Src : Iir_Value_Literal_Acc;
                                 Dst : out Value_Union) is
   begin
      case Iir_Value_Scalars (Src.Kind) is
         when Iir_Value_B1 =>
            Dst.B1 := Src.B1;
         when Iir_Value_E8 =>
            Dst.E8 := Src.E8;
         when Iir_Value_E32 =>
            Dst.E32 := Src.E32;
         when Iir_Value_I64 =>
            Dst.I64 := Src.I64;
         when Iir_Value_F64 =>
            Dst.F64 := Src.F64;
      end case;
   end Iir_Value_To_Value;

   type Read_Signal_Flag_Enum is
     (Read_Signal_Event,
      Read_Signal_Active,
      --  In order to reuse the same code (that returns immediately if the
      --  attribute is true), we use not driving.
      Read_Signal_Not_Driving);

   function Read_Signal_Flag (Lit: Iir_Value_Literal_Acc;
                              Kind : Read_Signal_Flag_Enum)
                             return Boolean
   is
   begin
      case Lit.Kind is
         when Iir_Value_Array =>
            for I in Lit.Val_Array.V'Range loop
               if Read_Signal_Flag (Lit.Val_Array.V (I), Kind) then
                  return True;
               end if;
            end loop;
            return False;
         when Iir_Value_Record =>
            for I in Lit.Val_Record.V'Range loop
               if Read_Signal_Flag (Lit.Val_Record.V (I), Kind) then
                  return True;
               end if;
            end loop;
            return False;
         when Iir_Value_Signal =>
            case Kind is
               when Read_Signal_Event =>
                  return Lit.Sig.Event;
               when Read_Signal_Active =>
                  return Lit.Sig.Active;
               when Read_Signal_Not_Driving =>
                  if Grt.Signals.Ghdl_Signal_Driving (Lit.Sig) = True then
                     return False;
                  else
                     return True;
                  end if;
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Read_Signal_Flag;

   function Execute_Event_Attribute (Lit: Iir_Value_Literal_Acc)
                                    return Boolean is
   begin
      return Read_Signal_Flag (Lit, Read_Signal_Event);
   end Execute_Event_Attribute;

   function Execute_Active_Attribute (Lit: Iir_Value_Literal_Acc)
                                     return Boolean is
   begin
      return Read_Signal_Flag (Lit, Read_Signal_Active);
   end Execute_Active_Attribute;

   function Execute_Driving_Attribute (Lit: Iir_Value_Literal_Acc)
                                      return Boolean is
   begin
      return not Read_Signal_Flag (Lit, Read_Signal_Not_Driving);
   end Execute_Driving_Attribute;

   function Execute_Read_Signal_Value
     (Sig: Iir_Value_Literal_Acc; Attr : Read_Signal_Value_Enum)
     return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            Res := Copy_Array_Bound (Sig);
            for I in Sig.Val_Array.V'Range loop
               Res.Val_Array.V (I) :=
                 Execute_Read_Signal_Value (Sig.Val_Array.V (I), Attr);
            end loop;
            return Res;
         when Iir_Value_Record =>
            Res := Create_Record_Value (Sig.Val_Record.Len);
            for I in Sig.Val_Record.V'Range loop
               Res.Val_Record.V (I) :=
                 Execute_Read_Signal_Value (Sig.Val_Record.V (I), Attr);
            end loop;
            return Res;
         when Iir_Value_Signal =>
            case Attr is
               when Read_Signal_Last_Value =>
                  return Value_To_Iir_Value
                    (Sig.Sig.Mode, Sig.Sig.Last_Value);
               when Read_Signal_Driver_Value =>
                  case Sig.Sig.Mode is
                     when Mode_F64 =>
                        return Create_F64_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_F64
                             (Sig.Sig));
                     when Mode_I64 =>
                        return Create_I64_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_I64
                             (Sig.Sig));
                     when Mode_E32 =>
                        return Create_E32_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_E32
                             (Sig.Sig));
                     when Mode_B1 =>
                        return Create_B1_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_B1
                             (Sig.Sig));
                     when others =>
                        raise Internal_Error;
                  end case;
               when Read_Signal_Effective_Value =>
                  return Value_To_Iir_Value
                    (Sig.Sig.Mode, Sig.Sig.Value_Ptr.all);
               when Read_Signal_Driving_Value =>
                  return Value_To_Iir_Value
                    (Sig.Sig.Mode, Sig.Sig.Driving_Value);
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Read_Signal_Value;

   procedure Execute_Write_Signal (Sig: Iir_Value_Literal_Acc;
                                   Val : Iir_Value_Literal_Acc;
                                   Attr : Write_Signal_Enum) is
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            pragma Assert (Val.Kind = Iir_Value_Array);
            pragma Assert (Sig.Val_Array.Len = Val.Val_Array.Len);
            for I in Sig.Val_Array.V'Range loop
               Execute_Write_Signal
                 (Sig.Val_Array.V (I), Val.Val_Array.V (I), Attr);
            end loop;
         when Iir_Value_Record =>
            pragma Assert (Val.Kind = Iir_Value_Record);
            pragma Assert (Sig.Val_Record.Len = Val.Val_Record.Len);
            for I in Sig.Val_Record.V'Range loop
               Execute_Write_Signal
                 (Sig.Val_Record.V (I), Val.Val_Record.V (I), Attr);
            end loop;
         when Iir_Value_Signal =>
            pragma Assert (Val.Kind in Iir_Value_Scalars);
            case Attr is
               when Write_Signal_Driving_Value =>
                  Iir_Value_To_Value (Val, Sig.Sig.Driving_Value);
               when Write_Signal_Effective_Value =>
                  Iir_Value_To_Value (Val, Sig.Sig.Value_Ptr.all);
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Write_Signal;

   function Execute_Last_Value_Attribute (Indirect: Iir_Value_Literal_Acc)
     return Iir_Value_Literal_Acc is
   begin
      return Execute_Read_Signal_Value (Indirect, Read_Signal_Last_Value);
   end Execute_Last_Value_Attribute;

   function Execute_Driving_Value_Attribute (Indirect: Iir_Value_Literal_Acc)
                                            return Iir_Value_Literal_Acc is
   begin
      return Execute_Read_Signal_Value (Indirect, Read_Signal_Driver_Value);
   end Execute_Driving_Value_Attribute;

   type Signal_Read_Last_Type is
     (Read_Last_Event,
      Read_Last_Active);

   --  Return the Last_Event absolute time.
   function Execute_Read_Signal_Last (Indirect: Iir_Value_Literal_Acc;
                                      Kind : Signal_Read_Last_Type)
                                     return Ghdl_I64
   is
      Res: Ghdl_I64;
   begin
      case Indirect.Kind is
         when Iir_Value_Array =>
            Res := Ghdl_I64'First;
            for I in Indirect.Val_Array.V'Range loop
               Res := Ghdl_I64'Max
                 (Res, Execute_Read_Signal_Last (Indirect.Val_Array.V (I),
                                                 Kind));
            end loop;
            return Res;
         when Iir_Value_Record =>
            Res := Ghdl_I64'First;
            for I in Indirect.Val_Record.V'Range loop
               Res := Ghdl_I64'Max
                 (Res, Execute_Read_Signal_Last (Indirect.Val_Record.V (I),
                                                 Kind));
            end loop;
            return Res;
         when Iir_Value_Signal =>
            case Kind is
               when Read_Last_Event =>
                  return Ghdl_I64 (Indirect.Sig.Last_Event);
               when Read_Last_Active =>
                  return Ghdl_I64 (Indirect.Sig.Last_Active);
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Read_Signal_Last;

   function Execute_Last_Event_Attribute (Indirect: Iir_Value_Literal_Acc)
                                         return Ghdl_I64 is
   begin
      return Execute_Read_Signal_Last (Indirect, Read_Last_Event);
   end Execute_Last_Event_Attribute;

   function Execute_Last_Active_Attribute (Indirect: Iir_Value_Literal_Acc)
                                          return Ghdl_I64 is
   begin
      return Execute_Read_Signal_Last (Indirect, Read_Last_Active);
   end Execute_Last_Active_Attribute;

   function Execute_Signal_Value (Indirect: Iir_Value_Literal_Acc)
     return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
   begin
      case Indirect.Kind is
         when Iir_Value_Array =>
            Res := Copy_Array_Bound (Indirect);
            for I in Indirect.Val_Array.V'Range loop
               Res.Val_Array.V (I) :=
                 Execute_Signal_Value (Indirect.Val_Array.V (I));
            end loop;
            return Res;
         when Iir_Value_Record =>
            Res := Create_Record_Value (Indirect.Val_Record.Len);
            for I in Indirect.Val_Record.V'Range loop
               Res.Val_Record.V (I) :=
                 Execute_Signal_Value (Indirect.Val_Record.V (I));
            end loop;
            return Res;
         when Iir_Value_Signal =>
            return Value_To_Iir_Value
              (Indirect.Sig.Mode, Indirect.Sig.Value_Ptr.all);
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Signal_Value;

   procedure Assign_Value_To_Array_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transactions: Transaction_Type)
   is
      Sub_Trans : Transaction_Type (Transactions.Len);
   begin
      Sub_Trans.Stmt := Transactions.Stmt;
      Sub_Trans.Reject := Transactions.Reject;

      for J in Target.Val_Array.V'Range loop
         for K in Transactions.Els'Range loop
            declare
               T : Transaction_El_Type renames Transactions.Els (K);
               S : Transaction_El_Type renames Sub_Trans.Els (K);
            begin
               S.After := T.After;

               if T.Value = null then
                  S.Value := null;
               else
                  S.Value := T.Value.Val_Array.V (J);
               end if;
            end;
         end loop;

         Assign_Value_To_Signal
           (Instance, Target.Val_Array.V (J), Sub_Trans);
      end loop;
   end Assign_Value_To_Array_Signal;

   procedure Assign_Value_To_Record_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transactions: Transaction_Type)
   is
      Sub_Trans : Transaction_Type (Transactions.Len);
   begin
      Sub_Trans.Stmt := Transactions.Stmt;
      Sub_Trans.Reject := Transactions.Reject;

      for J in Target.Val_Record.V'Range loop
         for K in Transactions.Els'Range loop
            declare
               T : Transaction_El_Type renames Transactions.Els (K);
               S : Transaction_El_Type renames Sub_Trans.Els (K);
            begin
               S.After := T.After;

               if T.Value = null then
                  S.Value := null;
               else
                  S.Value := T.Value.Val_Record.V (J);
               end if;
            end;
         end loop;

         Assign_Value_To_Signal
           (Instance, Target.Val_Record.V (J), Sub_Trans);
      end loop;
   end Assign_Value_To_Record_Signal;

   procedure Assign_Value_To_Scalar_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transactions: Transaction_Type)
   is
      pragma Unreferenced (Instance);
      use Grt.Signals;
   begin
      declare
         El : Transaction_El_Type renames Transactions.Els (1);
      begin
         if El.Value = null then
            Ghdl_Signal_Start_Assign_Null
              (Target.Sig, Transactions.Reject, El.After);
            if Transactions.Els'Last /= 1 then
               raise Internal_Error;
            end if;
            return;
         end if;

         --  FIXME: null transaction, check constraints.
         case Iir_Value_Scalars (El.Value.Kind) is
            when Iir_Value_B1 =>
               Ghdl_Signal_Start_Assign_B1
                 (Target.Sig, Transactions.Reject, El.Value.B1, El.After);
            when Iir_Value_E8 =>
               Ghdl_Signal_Start_Assign_E8
                 (Target.Sig, Transactions.Reject, El.Value.E8, El.After);
            when Iir_Value_E32 =>
               Ghdl_Signal_Start_Assign_E32
                 (Target.Sig, Transactions.Reject, El.Value.E32, El.After);
            when Iir_Value_I64 =>
               Ghdl_Signal_Start_Assign_I64
                 (Target.Sig, Transactions.Reject, El.Value.I64, El.After);
            when Iir_Value_F64 =>
               Ghdl_Signal_Start_Assign_F64
                 (Target.Sig, Transactions.Reject, El.Value.F64, El.After);
         end case;
      end;

      for I in 2 .. Transactions.Els'Last loop
         declare
            El : Transaction_El_Type renames Transactions.Els (I);
         begin
            case Iir_Value_Scalars (El.Value.Kind) is
               when Iir_Value_B1 =>
                  Ghdl_Signal_Next_Assign_B1
                    (Target.Sig, El.Value.B1, El.After);
               when Iir_Value_E8 =>
                  Ghdl_Signal_Next_Assign_E8
                    (Target.Sig, El.Value.E8, El.After);
               when Iir_Value_E32 =>
                  Ghdl_Signal_Next_Assign_E32
                    (Target.Sig, El.Value.E32, El.After);
               when Iir_Value_I64 =>
                  Ghdl_Signal_Next_Assign_I64
                    (Target.Sig, El.Value.I64, El.After);
               when Iir_Value_F64 =>
                  Ghdl_Signal_Next_Assign_F64
                    (Target.Sig, El.Value.F64, El.After);
            end case;
         end;
      end loop;
   end Assign_Value_To_Scalar_Signal;

   procedure Assign_Value_To_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transaction: Transaction_Type)
   is
   begin
      case Target.Kind is
         when Iir_Value_Array =>
            Assign_Value_To_Array_Signal
              (Instance, Target, Transaction);
         when Iir_Value_Record =>
            Assign_Value_To_Record_Signal
              (Instance, Target, Transaction);
         when Iir_Value_Signal =>
            Assign_Value_To_Scalar_Signal
              (Instance, Target, Transaction);
         when Iir_Value_Scalars
           | Iir_Value_Range
           | Iir_Value_File
           | Iir_Value_Access
           | Iir_Value_Protected
           | Iir_Value_Quantity
           | Iir_Value_Terminal
           | Iir_Value_Environment =>
            raise Internal_Error;
      end case;
   end Assign_Value_To_Signal;

   procedure Disconnect_Signal (Sig : Iir_Value_Literal_Acc) is
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Disconnect_Signal (Sig.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Array.V'Range loop
               Disconnect_Signal (Sig.Val_Record.V (I));
            end loop;
         when Iir_Value_Signal =>
            Grt.Signals.Ghdl_Signal_Disconnect (Sig.Sig);
         when others =>
            raise Internal_Error;
      end case;
   end Disconnect_Signal;

   --  Call Ghdl_Process_Wait_Add_Sensitivity for each scalar subelement of
   --  SIG.
   procedure Wait_Add_Sensitivity (Sig: Iir_Value_Literal_Acc)
   is
   begin
      case Sig.Kind is
         when Iir_Value_Signal =>
            Grt.Processes.Ghdl_Process_Wait_Add_Sensitivity (Sig.Sig);
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Wait_Add_Sensitivity (Sig.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Record.V'Range loop
               Wait_Add_Sensitivity (Sig.Val_Record.V (I));
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Wait_Add_Sensitivity;

   -- Return true if the process should be suspended.
   function Execute_Wait_Statement (Instance : Block_Instance_Acc;
                                    Stmt: Iir_Wait_Statement)
                                   return Boolean
   is
      Expr: Iir;
      El : Iir;
      List: Iir_List;
      Res: Iir_Value_Literal_Acc;
      Status : Boolean;
      Marker : Mark_Type;
   begin
      if not Instance.In_Wait_Flag then
         Mark (Marker, Expr_Pool);

         -- LRM93 8.1
         -- The execution of a wait statement causes the time expression to
         -- be evaluated to determine the timeout interval.
         Expr := Get_Timeout_Clause (Stmt);
         if Expr /= Null_Iir then
            Res := Execute_Expression (Instance, Expr);
            Grt.Processes.Ghdl_Process_Wait_Set_Timeout (Std_Time (Res.I64));
         end if;

         -- LRM93 8.1
         -- The suspended process may also resume as a result of an event
         -- occuring on any signal in the sensitivity set of the wait
         -- statement.
         List := Get_Sensitivity_List (Stmt);
         if List /= Null_Iir_List then
            for J in Natural loop
               El := Get_Nth_Element (List, J);
               exit when El = Null_Iir;
               Wait_Add_Sensitivity (Execute_Name (Instance, El, True));
            end loop;
         end if;

         --  LRM93 8.1
         --  It also causes the execution of the corresponding process
         --  statement to be suspended.
         Grt.Processes.Ghdl_Process_Wait_Suspend;
         Instance.In_Wait_Flag := True;
         Release (Marker, Expr_Pool);
         return True;
      else
         --  LRM93 8.1
         --  The suspended process will resume, at the latest, immediately
         --  after the timeout interval has expired.
         if not Grt.Processes.Ghdl_Process_Wait_Timed_Out then
            --  Compute the condition clause only if the timeout has not
            --  expired.

            -- LRM93 8.1
            -- If such an event occurs, the condition in the condition clause
            -- is evaluated.
            --
            -- if no condition clause appears, the condition clause until true
            -- is assumed.
            Status :=
              Execute_Condition (Instance, Get_Condition_Clause (Stmt));
            if not Status then
               -- LRM93 8.1
               -- If the value of the condition is FALSE, the process will
               -- re-suspend.
               -- Such re-suspension does not involve the recalculation of
               -- the timeout interval.
               Grt.Processes.Ghdl_Process_Wait_Suspend;
               return True;
            end if;
         end if;

         -- LRM93 8.1
         --   If the value of the condition is TRUE, the process will resume.
         -- next statement.
         Grt.Processes.Ghdl_Process_Wait_Close;

         Instance.In_Wait_Flag := False;
         return False;
      end if;
   end Execute_Wait_Statement;

   type Resolver_Read_Mode is (Read_Port, Read_Driver);

   function Resolver_Read_Value (Sig : Iir_Value_Literal_Acc;
                                 Mode : Resolver_Read_Mode;
                                 Index : Ghdl_Index_Type)
                                return Iir_Value_Literal_Acc
   is
      use Grt.Signals;
      Val : Ghdl_Value_Ptr;
      Res : Iir_Value_Literal_Acc;
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            Res := Copy_Array_Bound (Sig);
            for I in Sig.Val_Array.V'Range loop
               Res.Val_Array.V (I) :=
                 Resolver_Read_Value (Sig.Val_Array.V (I), Mode, Index);
            end loop;
         when Iir_Value_Record =>
            Res := Create_Record_Value (Sig.Val_Record.Len);
            for I in Sig.Val_Record.V'Range loop
               Res.Val_Record.V (I) :=
                 Resolver_Read_Value (Sig.Val_Record.V (I), Mode, Index);
            end loop;
         when Iir_Value_Signal =>
            case Mode is
               when Read_Port =>
                  Val := Ghdl_Signal_Read_Port (Sig.Sig, Index);
               when Read_Driver =>
                  Val := Ghdl_Signal_Read_Driver (Sig.Sig, Index);
            end case;
            Res := Value_To_Iir_Value (Sig.Sig.Mode, Val.all);
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Resolver_Read_Value;

   procedure Resolution_Proc (Instance_Addr : System.Address;
                              Val : System.Address;
                              Bool_Vec : System.Address;
                              Vec_Len : Ghdl_Index_Type;
                              Nbr_Drv : Ghdl_Index_Type;
                              Nbr_Ports : Ghdl_Index_Type)
   is
      pragma Unreferenced (Val);

      Instance : Resolv_Instance_Type;
      pragma Import (Ada, Instance);
      for Instance'Address use Instance_Addr;

      type Bool_Array is array (1 .. Nbr_Drv) of Boolean;
      Vec : Bool_Array;
      pragma Import (Ada, Vec);
      for Vec'Address use Bool_Vec;
      Off : Iir_Index32;

      Arr : Iir_Value_Literal_Acc;
      Arr_Type : constant Iir :=
        Get_Type (Get_Interface_Declaration_Chain (Instance.Func));

      Res : Iir_Value_Literal_Acc;

      Len : constant Iir_Index32 := Iir_Index32 (Vec_Len + Nbr_Ports);
      Instance_Mark, Expr_Mark : Mark_Type;
   begin
      pragma Assert (Instance_Pool = null);
      Instance_Pool := Global_Pool'Access;
      Mark (Instance_Mark, Instance_Pool.all);
      Mark (Expr_Mark, Expr_Pool);
      Current_Process := No_Process;

      Arr := Create_Array_Value (Len, 1);
      Arr.Bounds.D (1) := Create_Bounds_From_Length
        (Instance.Block,
         Get_First_Element (Get_Index_Subtype_List (Arr_Type)),
         Len);

      --  First ports
      for I in 1 .. Nbr_Ports loop
         Arr.Val_Array.V (Iir_Index32 (I)) := Resolver_Read_Value
           (Instance.Sig, Read_Port, I - 1);
      end loop;

      --  Then drivers.
      Off := Iir_Index32 (Nbr_Ports) + 1;
      for I in 1 .. Nbr_Drv loop
         if Vec (I) then
            Arr.Val_Array.V (Off) := Resolver_Read_Value
              (Instance.Sig, Read_Driver, I - 1);
            Off := Off + 1;
         end if;
      end loop;

      --  Call resolution function.
      Res := Execute_Resolution_Function (Instance.Block, Instance.Func, Arr);

      --  Set driving value.
      Execute_Write_Signal (Instance.Sig, Res, Write_Signal_Driving_Value);

      Release (Instance_Mark, Instance_Pool.all);
      Release (Expr_Mark, Expr_Pool);
      Instance_Pool := null;
   end Resolution_Proc;

   function Guard_Func (Data : System.Address) return Ghdl_B1
   is
      Guard : Guard_Instance_Type;
      pragma Import (Ada, Guard);
      for Guard'Address use Data;

      Val : Boolean;

      Prev_Instance_Pool : Areapool_Acc;
   begin
      pragma Assert (Instance_Pool = null
                       or else Instance_Pool = Global_Pool'Access);
      Prev_Instance_Pool := Instance_Pool;

      Instance_Pool := Global_Pool'Access;
      Current_Process := No_Process;

      Val := Execute_Condition
        (Guard.Instance, Get_Guard_Expression (Guard.Guard));

      Instance_Pool := Prev_Instance_Pool;

      return Ghdl_B1'Val (Boolean'Pos (Val));
   end Guard_Func;
end Simulation;