aboutsummaryrefslogtreecommitdiffstats
path: root/src/vhdl/simulate/simul-execution.adb
blob: 91b506e72ae352a9f10b484dafe55b179a59c42f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
--  Interpreted simulation
--  Copyright (C) 2014 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GHDL; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.

with Ada.Unchecked_Conversion;
with Ada.Text_IO; use Ada.Text_IO;
with System;
with Types; use Types;
with Grt.Types; use Grt.Types;
with Flags; use Flags;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Std_Package;
with Vhdl.Evaluation;
with Vhdl.Utils; use Vhdl.Utils;
with Simul.Annotations; use Simul.Annotations;
with Name_Table;
with Simul.File_Operation;
with Simul.Debugger; use Simul.Debugger;
with Std_Names;
with Str_Table;
with Files_Map;
with Vhdl.Nodes_Utils; use Vhdl.Nodes_Utils;
with Simul.Simulation; use Simul.Simulation;
with Grt.Astdio.Vhdl;
with Grt.Stdio;
with Grt.Options;
with Grt.Vstrings;
with Simul.Grt_Interface;
with Grt.Values;
with Grt.Errors;
with Grt.Std_Logic_1164;
with Grt.Lib;
with Grt.Strings;
with Vhdl.Sem_Inst;

package body Simul.Execution is

   function Execute_Function_Call
     (Block: Block_Instance_Acc; Expr: Iir; Imp : Iir)
     return Iir_Value_Literal_Acc;

   procedure Finish_Sequential_Statements
     (Proc : Process_State_Acc; Complex_Stmt : Iir);
   procedure Init_Sequential_Statements
     (Proc : Process_State_Acc; Complex_Stmt : Iir);
   procedure Update_Next_Statement (Proc : Process_State_Acc);

   -- Display a message when an assertion has failed.
   procedure Execute_Failed_Assertion (Msg : String;
                                       Report : String;
                                       Severity : Natural;
                                       Stmt: Iir);

   function Get_Instance_By_Scope
     (Instance: Block_Instance_Acc; Scope: Sim_Info_Acc)
     return Block_Instance_Acc is
   begin
      case Scope.Kind is
         when Kind_Block
           | Kind_Frame
           | Kind_Process =>
            declare
               Current : Block_Instance_Acc;
            begin
               Current := Instance;
               while Current /= null loop
                  if Current.Block_Scope = Scope then
                     return Current;
                  end if;
                  Current := Current.Up_Block;
               end loop;
               raise Internal_Error;
            end;
         when Kind_Protected =>
            declare
               Current : Block_Instance_Acc;
            begin
               Current := Instance;
               while Current /= null loop
                  if Current.Block_Scope = Scope
                    or Current.Uninst_Scope = Scope
                  then
                     return Current;
                  end if;
                  Current := Current.Up_Block;
               end loop;
               raise Internal_Error;
            end;
         when Kind_Package =>
            if Scope.Pkg_Parent = null then
               --  This is a scope for an uninstantiated package.
               declare
                  Current : Block_Instance_Acc;
               begin
                  Current := Instance;
                  while Current /= null loop
                     if Current.Uninst_Scope = Scope then
                        return Current;
                     end if;
                     Current := Current.Up_Block;
                  end loop;
                  raise Internal_Error;
               end;
            else
               --  Instantiated package.
               declare
                  Parent : Block_Instance_Acc;
               begin
                  Parent := Get_Instance_By_Scope (Instance, Scope.Pkg_Parent);
                  return Parent.Objects (Scope.Pkg_Slot).Instance;
               end;
            end if;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Instance_By_Scope;

   function Get_Instance_Object (Instance: Block_Instance_Acc; Obj : Iir)
                                return Iir_Value_Literal_Acc
   is
      Info : constant Sim_Info_Acc := Get_Info (Obj);
      Obj_Inst : Block_Instance_Acc;
   begin
      Obj_Inst := Get_Instance_By_Scope (Instance, Info.Obj_Scope);
      return Obj_Inst.Objects (Info.Slot);
   end Get_Instance_Object;

   function Get_Info_For_Scope (Scope : Iir) return Sim_Info_Acc is
   begin
      --  The info for an architecture is in fact the entity.
      if Get_Kind (Scope) = Iir_Kind_Architecture_Body then
         return Get_Info (Get_Entity (Scope));
      else
         return Get_Info (Scope);
      end if;
   end Get_Info_For_Scope;

   procedure Create_Right_Bound_From_Length
     (Bounds : Iir_Value_Literal_Acc; Len : Iir_Index32) is
   begin
      pragma Assert (Bounds.Right = null);

      case Bounds.Left.Kind is
         when Iir_Value_E32 =>
            declare
               R : Ghdl_E32;
            begin
               case Bounds.Dir is
                  when Iir_To =>
                     R := Bounds.Left.E32 + Ghdl_E32 (Len - 1);
                  when Iir_Downto =>
                     R := Bounds.Left.E32 - Ghdl_E32 (Len - 1);
               end case;
               Bounds.Right := Create_E32_Value (R);
            end;
         when Iir_Value_I64 =>
            declare
               R : Ghdl_I64;
            begin
               case Bounds.Dir is
                  when Iir_To =>
                     R := Bounds.Left.I64 + Ghdl_I64 (Len - 1);
                  when Iir_Downto =>
                     R := Bounds.Left.I64 - Ghdl_I64 (Len - 1);
               end case;
               Bounds.Right := Create_I64_Value (R);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Create_Right_Bound_From_Length;

   function Create_Bounds_From_Length (Block : Block_Instance_Acc;
                                       Atype : Iir;
                                       Len : Iir_Index32)
                                      return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
      Index_Bounds : Iir_Value_Literal_Acc;
   begin
      Index_Bounds := Execute_Bounds (Block, Atype);

      Res := Create_Range_Value (Left => Index_Bounds.Left,
                                 Right => null,
                                 Dir => Index_Bounds.Dir,
                                 Length => Len);

      if Len = 0 then
         --  Special case.
         Res.Right := Res.Left;
         case Res.Left.Kind is
            when Iir_Value_I64 =>
               case Index_Bounds.Dir is
                  when Iir_To =>
                     Res.Left := Create_I64_Value (Res.Right.I64 + 1);
                  when Iir_Downto =>
                     Res.Left := Create_I64_Value (Res.Right.I64 - 1);
               end case;
            when others =>
               raise Internal_Error;
         end case;
      else
         Create_Right_Bound_From_Length (Res, Len);
      end if;
      return Res;
   end Create_Bounds_From_Length;

   function Execute_High_Limit (Bounds : Iir_Value_Literal_Acc)
                                return Iir_Value_Literal_Acc is
   begin
      if Bounds.Dir = Iir_To then
         return Bounds.Right;
      else
         return Bounds.Left;
      end if;
   end Execute_High_Limit;

   function Execute_Low_Limit (Bounds : Iir_Value_Literal_Acc)
                               return Iir_Value_Literal_Acc is
   begin
      if Bounds.Dir = Iir_To then
         return Bounds.Left;
      else
         return Bounds.Right;
      end if;
   end Execute_Low_Limit;

   function Execute_Left_Limit (Bounds : Iir_Value_Literal_Acc)
                                return Iir_Value_Literal_Acc is
   begin
      return Bounds.Left;
   end Execute_Left_Limit;

   function Execute_Right_Limit (Bounds : Iir_Value_Literal_Acc)
                                 return Iir_Value_Literal_Acc is
   begin
      return Bounds.Right;
   end Execute_Right_Limit;

   function Execute_Length (Bounds : Iir_Value_Literal_Acc)
                           return Iir_Value_Literal_Acc is
   begin
      return Create_I64_Value (Ghdl_I64 (Bounds.Length));
   end Execute_Length;

   function Create_Enum_Value (Pos : Natural; Etype : Iir)
                              return Iir_Value_Literal_Acc
   is
      Base_Type : constant Iir := Get_Base_Type (Etype);
      Mode : constant Iir_Value_Kind :=
        Get_Info (Base_Type).Scalar_Mode;
   begin
      case Iir_Value_Enums (Mode) is
         when Iir_Value_E8 =>
            return Create_E8_Value (Ghdl_E8 (Pos));
         when Iir_Value_E32 =>
            return Create_E32_Value (Ghdl_E32 (Pos));
         when Iir_Value_B1 =>
            return Create_B1_Value (Ghdl_B1'Val (Pos));
      end case;
   end Create_Enum_Value;

   function String_To_Iir_Value (Str : String) return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
   begin
      Res := Create_Array_Value (Str'Length, 1);
      Res.Bounds.D (1) := Create_Range_Value
        (Create_I64_Value (1),
         Create_I64_Value (Str'Length),
         Iir_To);
      for I in Str'Range loop
         Res.Val_Array.V (1 + Iir_Index32 (I - Str'First)) :=
           Create_E8_Value (Character'Pos (Str (I)));
      end loop;
      return Res;
   end String_To_Iir_Value;

   function Execute_Image_Attribute (Val : Iir_Value_Literal_Acc;
                                     Expr_Type : Iir)
                                    return String
   is
   begin
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Floating_Type_Definition
           | Iir_Kind_Floating_Subtype_Definition =>
            declare
               Str : String (1 .. 24);
               Last : Natural;
            begin
               Grt.Vstrings.To_String (Str, Last, Val.F64);
               return Str (Str'First .. Last);
            end;
         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            declare
               Str : String (1 .. 21);
               First : Natural;
            begin
               Grt.Vstrings.To_String (Str, First, Val.I64);
               return Str (First .. Str'Last);
            end;
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            declare
               Lits : constant Iir_Flist :=
                 Get_Enumeration_Literal_List (Get_Base_Type (Expr_Type));
               Pos : Natural;
            begin
               case Iir_Value_Enums (Val.Kind) is
                  when Iir_Value_B1 =>
                     Pos := Ghdl_B1'Pos (Val.B1);
                  when Iir_Value_E8 =>
                     Pos := Ghdl_E8'Pos (Val.E8);
                  when Iir_Value_E32 =>
                     Pos := Ghdl_E32'Pos (Val.E32);
               end case;
               return Name_Table.Image
                 (Get_Identifier (Get_Nth_Element (Lits, Pos)));
            end;
         when Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            declare
               Str : String (1 .. 21);
               First : Natural;
               Id : constant Name_Id :=
                 Get_Identifier (Get_Primary_Unit (Get_Base_Type (Expr_Type)));
            begin
               Grt.Vstrings.To_String (Str, First, Val.I64);
               return Str (First .. Str'Last) & ' ' & Name_Table.Image (Id);
            end;
         when others =>
            Error_Kind ("execute_image_attribute", Expr_Type);
      end case;
   end Execute_Image_Attribute;

   function Execute_Image_Attribute (Block: Block_Instance_Acc; Expr: Iir)
                                    return Iir_Value_Literal_Acc
   is
      Val : Iir_Value_Literal_Acc;
      Attr_Type : constant Iir := Get_Type (Get_Prefix (Expr));
   begin
      Val := Execute_Expression (Block, Get_Parameter (Expr));
      return String_To_Iir_Value
        (Execute_Image_Attribute (Val, Attr_Type));
   end Execute_Image_Attribute;

   function Execute_Path_Instance_Name_Attribute
     (Block : Block_Instance_Acc; Attr : Iir) return Iir_Value_Literal_Acc
   is
      use Vhdl.Evaluation;
      use Grt.Vstrings;
      use Name_Table;

      Name : constant Path_Instance_Name_Type :=
        Get_Path_Instance_Name_Suffix (Attr);
      Instance : Block_Instance_Acc;
      Rstr : Rstring;
      Is_Instance : constant Boolean :=
        Get_Kind (Attr) = Iir_Kind_Instance_Name_Attribute;
   begin
      if Name.Path_Instance = Null_Iir then
         return String_To_Iir_Value (Name.Suffix);
      end if;

      Instance := Get_Instance_By_Scope
        (Block, Get_Info_For_Scope (Name.Path_Instance));

      loop
         case Get_Kind (Instance.Label) is
            when Iir_Kind_Entity_Declaration =>
               if Instance.Parent = null then
                  Prepend (Rstr, Image (Get_Identifier (Instance.Label)));
                  exit;
               end if;
            when Iir_Kind_Architecture_Body =>
               if Is_Instance then
                  Prepend (Rstr, ')');
                  Prepend (Rstr, Image (Get_Identifier (Instance.Label)));
                  Prepend (Rstr, '(');
               end if;

               if Is_Instance or else Instance.Parent = null then
                  Prepend
                    (Rstr,
                     Image (Get_Identifier (Get_Entity (Instance.Label))));
               end if;
               if Instance.Parent = null then
                  Prepend (Rstr, ':');
                  exit;
               else
                  Instance := Instance.Parent;
               end if;
            when Iir_Kind_Block_Statement =>
               Prepend (Rstr, Image (Get_Label (Instance.Label)));
               Prepend (Rstr, ':');
               Instance := Instance.Parent;
            when Iir_Kind_Iterator_Declaration =>
               declare
                  Val : Iir_Value_Literal_Acc;
               begin
                  Val := Execute_Name (Instance, Instance.Label);
                  Prepend (Rstr, ')');
                  Prepend (Rstr, Execute_Image_Attribute
                             (Val, Get_Type (Instance.Label)));
                  Prepend (Rstr, '(');
               end;
               Instance := Instance.Parent;
            when Iir_Kind_Generate_Statement_Body =>
               Prepend (Rstr, Image (Get_Label (Get_Parent (Instance.Label))));
               Prepend (Rstr, ':');
               Instance := Instance.Parent;
            when Iir_Kind_Component_Instantiation_Statement =>
               if Is_Instance then
                  Prepend (Rstr, '@');
               end if;
               Prepend (Rstr, Image (Get_Label (Instance.Label)));
               Prepend (Rstr, ':');
               Instance := Instance.Parent;
            when others =>
               Error_Kind ("Execute_Path_Instance_Name_Attribute",
                           Instance.Label);
         end case;
      end loop;
      declare
         Str1 : String (1 .. Length (Rstr));
         Len1 : Natural;
      begin
         Copy (Rstr, Str1, Len1);
         Free (Rstr);
         return String_To_Iir_Value (Str1 & ':' & Name.Suffix);
      end;
   end Execute_Path_Instance_Name_Attribute;

   function Execute_Shift_Operator (Left : Iir_Value_Literal_Acc;
                                    Count : Ghdl_I64;
                                    Expr : Iir)
                                   return Iir_Value_Literal_Acc
   is
      Func : constant Iir_Predefined_Shift_Functions :=
        Get_Implicit_Definition (Get_Implementation (Expr));
      Cnt : Iir_Index32;
      Len : constant Iir_Index32 := Left.Bounds.D (1).Length;
      Dir_Left : Boolean;
      P : Iir_Index32;
      Res : Iir_Value_Literal_Acc;
      E : Iir_Value_Literal_Acc;
   begin
      --  LRM93 7.2.3
      --  That is, if R is 0 or if L is a null array, the return value is L.
      if Count = 0 or else Len = 0 then
         return Left;
      end if;

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Rol =>
            Dir_Left := True;
         when Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Ror =>
            Dir_Left := False;
      end case;
      if Count < 0 then
         Cnt := Iir_Index32 (-Count);
         Dir_Left := not Dir_Left;
      else
         Cnt := Iir_Index32 (Count);
      end if;

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl =>
            E := Create_Enum_Value
              (0, Get_Element_Subtype (Get_Base_Type (Get_Type (Expr))));
         when Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               E := Left.Val_Array.V (Len);
            else
               E := Left.Val_Array.V (1);
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            Cnt := Cnt mod Len;
            if not Dir_Left then
               Cnt := (Len - Cnt) mod Len;
            end if;
      end case;

      Res := Create_Array_Value (1);
      Res.Bounds.D (1) := Left.Bounds.D (1);
      Create_Array_Data (Res, Len);
      P := 1;

      case Func is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               if Cnt < Len then
                  for I in Cnt .. Len - 1 loop
                     Res.Val_Array.V (P) := Left.Val_Array.V (I + 1);
                     P := P + 1;
                  end loop;
               else
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Res.Val_Array.V (P) := E;
                  P := P + 1;
               end loop;
            else
               if Cnt > Len then
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Res.Val_Array.V (P) := E;
                  P := P + 1;
               end loop;
               for I in Cnt .. Len - 1 loop
                  Res.Val_Array.V (P) := Left.Val_Array.V (I - Cnt + 1);
                  P := P + 1;
               end loop;
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            for I in 1 .. Len loop
               Res.Val_Array.V (P) := Left.Val_Array.V (Cnt + 1);
               P := P + 1;
               Cnt := Cnt + 1;
               if Cnt = Len then
                  Cnt := 0;
               end if;
            end loop;
      end case;
      return Res;
   end Execute_Shift_Operator;

   Hex_Chars : constant array (Natural range 0 .. 15) of Character :=
     "0123456789ABCDEF";

   function Execute_Bit_Vector_To_String (Val : Iir_Value_Literal_Acc;
                                          Log_Base : Natural)
                                         return Iir_Value_Literal_Acc
   is
      Base : constant Natural := 2 ** Log_Base;
      Blen : constant Natural := Natural (Val.Bounds.D (1).Length);
      Str : String (1 .. (Blen + Log_Base - 1) / Log_Base);
      Pos : Natural;
      V : Natural;
      N : Natural;
   begin
      V := 0;
      N := 1;
      Pos := Str'Last;
      for I in reverse Val.Val_Array.V'Range loop
         V := V + Ghdl_B1'Pos (Val.Val_Array.V (I).B1) * N;
         N := N * 2;
         if N = Base or else I = Val.Val_Array.V'First then
            Str (Pos) := Hex_Chars (V);
            Pos := Pos - 1;
            N := 1;
            V := 0;
         end if;
      end loop;
      return String_To_Iir_Value (Str);
   end Execute_Bit_Vector_To_String;

   procedure Assert_Std_Ulogic_Dc (Loc : Iir)
   is
   begin
      Execute_Failed_Assertion
        ("assertion",
         "STD_LOGIC_1164: '-' operand for matching ordering operator",
         1, Loc);
   end Assert_Std_Ulogic_Dc;

   procedure Check_Std_Ulogic_Dc (Loc : Iir; V : Grt.Std_Logic_1164.Std_Ulogic)
   is
      use Grt.Std_Logic_1164;
   begin
      if V = '-' then
         Assert_Std_Ulogic_Dc (Loc);
      end if;
   end Check_Std_Ulogic_Dc;

   --  EXPR is the expression whose implementation is an implicit function.
   function Execute_Implicit_Function (Block : Block_Instance_Acc;
                                       Expr: Iir;
                                       Left_Param : Iir;
                                       Right_Param : Iir;
                                       Res_Type : Iir)
                                      return Iir_Value_Literal_Acc
   is
      pragma Unsuppress (Overflow_Check);

      Imp : constant Iir := Strip_Denoting_Name (Get_Implementation (Expr));
      Func : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);

      --  Rename definition for monadic operations.
      Left, Right: Iir_Value_Literal_Acc;
      Operand : Iir_Value_Literal_Acc renames Left;
      Result: Iir_Value_Literal_Acc;

      procedure Eval_Right is
      begin
         Right := Execute_Expression (Block, Right_Param);
      end Eval_Right;

      --  Eval right argument, check left and right have same length,
      --  Create RESULT from left.
      procedure Eval_Array is
      begin
         Eval_Right;
         if Left.Bounds.D (1).Length /= Right.Bounds.D (1).Length then
            Error_Msg_Constraint (Expr);
         end if;
         --  Need to copy as the result is modified.
         Result := Unshare (Left, Expr_Pool'Access);
      end Eval_Array;
   begin
      --  Eval left operand.
      case Func is
         when Iir_Predefined_Now_Function =>
            Left := null;
         when Iir_Predefined_Bit_Rising_Edge
           | Iir_Predefined_Boolean_Rising_Edge
           | Iir_Predefined_Bit_Falling_Edge
           | Iir_Predefined_Boolean_Falling_Edge=>
            Operand := Execute_Name (Block, Left_Param, True);
         when others =>
            Left := Execute_Expression (Block, Left_Param);
      end case;
      Right := null;

      case Func is
         when Iir_Predefined_Error =>
            raise Internal_Error;

         when Iir_Predefined_Array_Array_Concat
           | Iir_Predefined_Element_Array_Concat
           | Iir_Predefined_Array_Element_Concat
           | Iir_Predefined_Element_Element_Concat =>
            Eval_Right;

            declare
               --  Type of the index.
               Idx_Type : constant Iir :=
                 Get_Nth_Element (Get_Index_Subtype_List (Res_Type), 0);

               -- Array length of the result.
               Len: Iir_Index32;

               -- Index into the result.
               Pos: Iir_Index32;
            begin
               -- Compute the length of the result.
               case Func is
                  when Iir_Predefined_Array_Array_Concat =>
                     Len := Left.Val_Array.Len + Right.Val_Array.Len;
                  when Iir_Predefined_Element_Array_Concat =>
                     Len := 1 + Right.Val_Array.Len;
                  when Iir_Predefined_Array_Element_Concat =>
                     Len := Left.Val_Array.Len + 1;
                  when Iir_Predefined_Element_Element_Concat =>
                     Len := 1 + 1;
                  when others =>
                     raise Program_Error;
               end case;

               if Func = Iir_Predefined_Array_Array_Concat
                 and then Left.Val_Array.Len = 0
               then
                  if Flags.Vhdl_Std = Vhdl_87 then
                     --  LRM87 7.2.3
                     --  [...], unless the left operand is a null array, in
                     --  which case the result of the concatenation is the
                     --  right operand.
                     return Right;
                  else
                     --  LRM93 7.2.4
                     --  If both operands are null arrays, then the result of
                     --  the concatenation is the right operand.
                     if Right.Val_Array.Len = 0 then
                        return Right;
                     end if;
                  end if;
               end if;

               if Flags.Vhdl_Std = Vhdl_87
                 and then (Func = Iir_Predefined_Array_Array_Concat
                             or Func = Iir_Predefined_Array_Element_Concat)
               then
                  --  LRM87 7.2.3 Adding Operators
                  --  The left bound if this result is the left bound of the
                  --  left operand, [...].  The direction of the result is the
                  --  direction of the left operand, unless the left operand
                  --  is a null array, in which case the direction of the
                  --  result is that of the right operand.
                  Result := Create_Array_Value (Len, 1);
                  Result.Bounds.D (1) := Create_Range_Value
                    (Left.Bounds.D (1).Left, null, Left.Bounds.D (1).Dir, Len);
                  Create_Right_Bound_From_Length (Result.Bounds.D (1), Len);
               else
                  --  Create the array result.
                  Result := Create_Array_Value (Len, 1);
                  Result.Bounds.D (1) := Create_Bounds_From_Length
                    (Block, Idx_Type, Len);
               end if;
               Check_Range_Constraints
                 (Block, Result.Bounds.D (1), Idx_Type, Expr);

               -- Fill the result: left.
               case Func is
                  when Iir_Predefined_Array_Array_Concat
                    | Iir_Predefined_Array_Element_Concat =>
                     for I in Left.Val_Array.V'Range loop
                        Result.Val_Array.V (I) := Left.Val_Array.V (I);
                     end loop;
                     Pos := Left.Val_Array.Len;
                  when Iir_Predefined_Element_Array_Concat
                    | Iir_Predefined_Element_Element_Concat =>
                     Result.Val_Array.V (1) := Left;
                     Pos := 1;
                  when others =>
                     raise Program_Error;
               end case;

               -- Note: here POS is equal to the position of the last element
               -- filled, or 0 if no elements were filled.

               --  Fill the result: right.
               case Func is
                  when Iir_Predefined_Array_Array_Concat
                    | Iir_Predefined_Element_Array_Concat =>
                     for I in Right.Val_Array.V'Range loop
                        Result.Val_Array.V (Pos + I) := Right.Val_Array.V (I);
                     end loop;
                  when Iir_Predefined_Array_Element_Concat
                    | Iir_Predefined_Element_Element_Concat =>
                     Result.Val_Array.V (Pos + 1) := Right;
                  when others =>
                     raise Program_Error;
               end case;
            end;

         when Iir_Predefined_Bit_And
           | Iir_Predefined_Boolean_And =>
            if Left.B1 = Lit_Enum_0.B1 then
               --  Short circuit operator.
               Result := Lit_Enum_0;
            else
               Eval_Right;
               Result := Boolean_To_Lit (Right.B1 = Lit_Enum_1.B1);
            end if;
         when Iir_Predefined_Bit_Nand
           | Iir_Predefined_Boolean_Nand =>
            if Left.B1 = Lit_Enum_0.B1 then
               --  Short circuit operator.
               Result := Lit_Enum_1;
            else
               Eval_Right;
               Result := Boolean_To_Lit (Right.B1 = Lit_Enum_0.B1);
            end if;
         when Iir_Predefined_Bit_Or
           | Iir_Predefined_Boolean_Or =>
            if Left.B1 = Lit_Enum_1.B1 then
               --  Short circuit operator.
               Result := Lit_Enum_1;
            else
               Eval_Right;
               Result := Boolean_To_Lit (Right.B1 = Lit_Enum_1.B1);
            end if;
         when Iir_Predefined_Bit_Nor
           | Iir_Predefined_Boolean_Nor =>
            if Left.B1 = Lit_Enum_1.B1 then
               --  Short circuit operator.
               Result := Lit_Enum_0;
            else
               Eval_Right;
               Result := Boolean_To_Lit (Right.B1 = Lit_Enum_0.B1);
            end if;
         when Iir_Predefined_Bit_Xor
           | Iir_Predefined_Boolean_Xor =>
            Eval_Right;
            Result := Boolean_To_Lit (Left.B1 /= Right.B1);
         when Iir_Predefined_Bit_Xnor
           | Iir_Predefined_Boolean_Xnor =>
            Eval_Right;
            Result := Boolean_To_Lit (Left.B1 = Right.B1);
         when Iir_Predefined_Bit_Not
           | Iir_Predefined_Boolean_Not =>
            Result := Boolean_To_Lit (Operand.B1 = Lit_Enum_0.B1);

         when Iir_Predefined_Bit_Condition =>
            Result := Boolean_To_Lit (Operand.B1 = Lit_Enum_1.B1);

         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            Eval_Right;
            Result := Execute_Shift_Operator (Left, Right.I64, Expr);

         when Iir_Predefined_Enum_Equality
           | Iir_Predefined_Integer_Equality
           | Iir_Predefined_Array_Equality
           | Iir_Predefined_Access_Equality
           | Iir_Predefined_Physical_Equality
           | Iir_Predefined_Floating_Equality
           | Iir_Predefined_Record_Equality
           | Iir_Predefined_Bit_Match_Equality
           | Iir_Predefined_Bit_Array_Match_Equality =>
            Eval_Right;
            Result := Boolean_To_Lit (Is_Equal (Left, Right));
         when Iir_Predefined_Enum_Inequality
           | Iir_Predefined_Integer_Inequality
           | Iir_Predefined_Array_Inequality
           | Iir_Predefined_Access_Inequality
           | Iir_Predefined_Physical_Inequality
           | Iir_Predefined_Floating_Inequality
           | Iir_Predefined_Record_Inequality
           | Iir_Predefined_Bit_Match_Inequality
           | Iir_Predefined_Bit_Array_Match_Inequality =>
            Eval_Right;
            Result := Boolean_To_Lit (not Is_Equal (Left, Right));
         when Iir_Predefined_Integer_Less
           | Iir_Predefined_Physical_Less
           | Iir_Predefined_Enum_Less =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) < Equal);
         when Iir_Predefined_Integer_Greater
           | Iir_Predefined_Physical_Greater
           | Iir_Predefined_Enum_Greater =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) > Equal);
         when Iir_Predefined_Integer_Less_Equal
           | Iir_Predefined_Physical_Less_Equal
           | Iir_Predefined_Enum_Less_Equal =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) <= Equal);
         when Iir_Predefined_Integer_Greater_Equal
           | Iir_Predefined_Physical_Greater_Equal
           | Iir_Predefined_Enum_Greater_Equal =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) >= Equal);

         when Iir_Predefined_Enum_Minimum
           | Iir_Predefined_Physical_Minimum =>
            Eval_Right;
            if Compare_Value (Left, Right) = Less then
               Result := Left;
            else
               Result := Right;
            end if;
         when Iir_Predefined_Enum_Maximum
           | Iir_Predefined_Physical_Maximum =>
            Eval_Right;
            if Compare_Value (Left, Right) = Less then
               Result := Right;
            else
               Result := Left;
            end if;

         when Iir_Predefined_Integer_Plus
           | Iir_Predefined_Physical_Plus =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  Result := Create_I64_Value (Left.I64 + Right.I64);
               when others =>
                  raise Internal_Error;
            end case;
         when Iir_Predefined_Integer_Minus
           | Iir_Predefined_Physical_Minus =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  Result := Create_I64_Value (Left.I64 - Right.I64);
               when others =>
                  raise Internal_Error;
            end case;
         when Iir_Predefined_Integer_Mul =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  Result := Create_I64_Value (Left.I64 * Right.I64);
               when others =>
                  raise Internal_Error;
            end case;
         when Iir_Predefined_Integer_Mod =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  if Right.I64 = 0 then
                     Error_Msg_Constraint (Expr);
                  end if;
                  Result := Create_I64_Value (Left.I64 mod Right.I64);
               when others =>
                  raise Internal_Error;
            end case;
         when Iir_Predefined_Integer_Rem =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  if Right.I64 = 0 then
                     Error_Msg_Constraint (Expr);
                  end if;
                  Result := Create_I64_Value (Left.I64 rem Right.I64);
               when others =>
                  raise Internal_Error;
            end case;
         when Iir_Predefined_Integer_Div =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  if Right.I64 = 0 then
                     Error_Msg_Constraint (Expr);
                  end if;
                  Result := Create_I64_Value (Left.I64 / Right.I64);
               when others =>
                  raise Internal_Error;
            end case;

         when Iir_Predefined_Integer_Absolute
           | Iir_Predefined_Physical_Absolute =>
            case Operand.Kind is
               when Iir_Value_I64 =>
                  Result := Create_I64_Value (abs Operand.I64);
               when others =>
                  raise Internal_Error;
            end case;

         when Iir_Predefined_Integer_Negation
           | Iir_Predefined_Physical_Negation =>
            case Operand.Kind is
               when Iir_Value_I64 =>
                  Result := Create_I64_Value (-Operand.I64);
               when others =>
                  raise Internal_Error;
            end case;

         when Iir_Predefined_Integer_Identity
           | Iir_Predefined_Physical_Identity =>
            case Operand.Kind is
               when Iir_Value_I64 =>
                  Result := Create_I64_Value (Operand.I64);
               when others =>
                  raise Internal_Error;
            end case;

         when Iir_Predefined_Integer_Exp =>
            Eval_Right;
            case Left.Kind is
               when Iir_Value_I64 =>
                  if Right.I64 < 0 then
                     Error_Msg_Constraint (Expr);
                  end if;
                  Result := Create_I64_Value (Left.I64 ** Natural (Right.I64));
               when others =>
                  raise Internal_Error;
            end case;

         when Iir_Predefined_Integer_Minimum =>
            Eval_Right;
            Result := Create_I64_Value (Ghdl_I64'Min (Left.I64, Right.I64));
         when Iir_Predefined_Integer_Maximum =>
            Eval_Right;
            Result := Create_I64_Value (Ghdl_I64'Max (Left.I64, Right.I64));

         when Iir_Predefined_Floating_Mul =>
            Eval_Right;
            Result := Create_F64_Value (Left.F64 * Right.F64);
         when Iir_Predefined_Floating_Div =>
            Eval_Right;
            Result := Create_F64_Value (Left.F64 / Right.F64);
         when Iir_Predefined_Floating_Minus =>
            Eval_Right;
            Result := Create_F64_Value (Left.F64 - Right.F64);
         when Iir_Predefined_Floating_Plus =>
            Eval_Right;
            Result := Create_F64_Value (Left.F64 + Right.F64);
         when Iir_Predefined_Floating_Exp =>
            Eval_Right;
            Result := Create_F64_Value (Left.F64 ** Integer (Right.I64));
         when Iir_Predefined_Floating_Identity =>
            Result := Create_F64_Value (Operand.F64);
         when Iir_Predefined_Floating_Negation =>
            Result := Create_F64_Value (-Operand.F64);
         when Iir_Predefined_Floating_Absolute =>
            Result := Create_F64_Value (abs (Operand.F64));
         when Iir_Predefined_Floating_Less =>
            Eval_Right;
            Result := Boolean_To_Lit (Left.F64 < Right.F64);
         when Iir_Predefined_Floating_Less_Equal =>
            Eval_Right;
            Result := Boolean_To_Lit (Left.F64 <= Right.F64);
         when Iir_Predefined_Floating_Greater =>
            Eval_Right;
            Result := Boolean_To_Lit (Left.F64 > Right.F64);
         when Iir_Predefined_Floating_Greater_Equal =>
            Eval_Right;
            Result := Boolean_To_Lit (Left.F64 >= Right.F64);

         when Iir_Predefined_Floating_Minimum =>
            Eval_Right;
            Result := Create_F64_Value (Ghdl_F64'Min (Left.F64, Right.F64));
         when Iir_Predefined_Floating_Maximum =>
            Eval_Right;
            Result := Create_F64_Value (Ghdl_F64'Max (Left.F64, Right.F64));

         when Iir_Predefined_Integer_Physical_Mul =>
            Eval_Right;
            Result := Create_I64_Value (Left.I64 * Right.I64);
         when Iir_Predefined_Physical_Integer_Mul =>
            Eval_Right;
            Result := Create_I64_Value (Left.I64 * Right.I64);
         when Iir_Predefined_Physical_Physical_Div =>
            Eval_Right;
            Result := Create_I64_Value (Left.I64 / Right.I64);
         when Iir_Predefined_Physical_Integer_Div =>
            Eval_Right;
            Result := Create_I64_Value (Left.I64 / Right.I64);
         when Iir_Predefined_Real_Physical_Mul =>
            Eval_Right;
            Result := Create_I64_Value
              (Ghdl_I64 (Left.F64 * Ghdl_F64 (Right.I64)));
         when Iir_Predefined_Physical_Real_Mul =>
            Eval_Right;
            Result := Create_I64_Value
              (Ghdl_I64 (Ghdl_F64 (Left.I64) * Right.F64));
         when Iir_Predefined_Physical_Real_Div =>
            Eval_Right;
            Result := Create_I64_Value
              (Ghdl_I64 (Ghdl_F64 (Left.I64) / Right.F64));

         when Iir_Predefined_Universal_I_R_Mul =>
            Eval_Right;
            Result := Create_F64_Value (Ghdl_F64 (Left.I64) * Right.F64);
         when Iir_Predefined_Universal_R_I_Mul =>
            Eval_Right;
            Result := Create_F64_Value (Left.F64 * Ghdl_F64 (Right.I64));

         when Iir_Predefined_TF_Array_And =>
            Eval_Array;
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 and Right.Val_Array.V (I).B1;
            end loop;
         when Iir_Predefined_TF_Array_Nand =>
            Eval_Array;
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 and Right.Val_Array.V (I).B1);
            end loop;
         when Iir_Predefined_TF_Array_Or =>
            Eval_Array;
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 or Right.Val_Array.V (I).B1;
            end loop;
         when Iir_Predefined_TF_Array_Nor =>
            Eval_Array;
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 or Right.Val_Array.V (I).B1);
            end loop;
         when Iir_Predefined_TF_Array_Xor =>
            Eval_Array;
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 xor Right.Val_Array.V (I).B1;
            end loop;
         when Iir_Predefined_TF_Array_Xnor =>
            Eval_Array;
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 xor Right.Val_Array.V (I).B1);
            end loop;

         when Iir_Predefined_TF_Array_Element_And =>
            Eval_Right;
            Result := Unshare (Left, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 and Right.B1;
            end loop;
         when Iir_Predefined_TF_Element_Array_And =>
            Eval_Right;
            Result := Unshare (Right, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 and Left.B1;
            end loop;

         when Iir_Predefined_TF_Array_Element_Or =>
            Eval_Right;
            Result := Unshare (Left, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 or Right.B1;
            end loop;
         when Iir_Predefined_TF_Element_Array_Or =>
            Eval_Right;
            Result := Unshare (Right, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 or Left.B1;
            end loop;

         when Iir_Predefined_TF_Array_Element_Xor =>
            Eval_Right;
            Result := Unshare (Left, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 xor Right.B1;
            end loop;
         when Iir_Predefined_TF_Element_Array_Xor =>
            Eval_Right;
            Result := Unshare (Right, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 Result.Val_Array.V (I).B1 xor Left.B1;
            end loop;

         when Iir_Predefined_TF_Array_Element_Nand =>
            Eval_Right;
            Result := Unshare (Left, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 and Right.B1);
            end loop;
         when Iir_Predefined_TF_Element_Array_Nand =>
            Eval_Right;
            Result := Unshare (Right, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 and Left.B1);
            end loop;

         when Iir_Predefined_TF_Array_Element_Nor =>
            Eval_Right;
            Result := Unshare (Left, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 or Right.B1);
            end loop;
         when Iir_Predefined_TF_Element_Array_Nor =>
            Eval_Right;
            Result := Unshare (Right, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 or Left.B1);
            end loop;

         when Iir_Predefined_TF_Array_Element_Xnor =>
            Eval_Right;
            Result := Unshare (Left, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 xor Right.B1);
            end loop;
         when Iir_Predefined_TF_Element_Array_Xnor =>
            Eval_Right;
            Result := Unshare (Right, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 :=
                 not (Result.Val_Array.V (I).B1 xor Left.B1);
            end loop;

         when Iir_Predefined_TF_Array_Not =>
            --  Need to copy as the result is modified.
            Result := Unshare (Operand, Expr_Pool'Access);
            for I in Result.Val_Array.V'Range loop
               Result.Val_Array.V (I).B1 := not Result.Val_Array.V (I).B1;
            end loop;

         when Iir_Predefined_TF_Reduction_And =>
            Result := Create_B1_Value (True);
            for I in Operand.Val_Array.V'Range loop
               Result.B1 := Result.B1 and Operand.Val_Array.V (I).B1;
            end loop;
         when Iir_Predefined_TF_Reduction_Nand =>
            Result := Create_B1_Value (True);
            for I in Operand.Val_Array.V'Range loop
               Result.B1 := Result.B1 and Operand.Val_Array.V (I).B1;
            end loop;
            Result.B1 := not Result.B1;
         when Iir_Predefined_TF_Reduction_Or =>
            Result := Create_B1_Value (False);
            for I in Operand.Val_Array.V'Range loop
               Result.B1 := Result.B1 or Operand.Val_Array.V (I).B1;
            end loop;
         when Iir_Predefined_TF_Reduction_Nor =>
            Result := Create_B1_Value (False);
            for I in Operand.Val_Array.V'Range loop
               Result.B1 := Result.B1 or Operand.Val_Array.V (I).B1;
            end loop;
            Result.B1 := not Result.B1;
         when Iir_Predefined_TF_Reduction_Xor =>
            Result := Create_B1_Value (False);
            for I in Operand.Val_Array.V'Range loop
               Result.B1 := Result.B1 xor Operand.Val_Array.V (I).B1;
            end loop;
         when Iir_Predefined_TF_Reduction_Xnor =>
            Result := Create_B1_Value (False);
            for I in Operand.Val_Array.V'Range loop
               Result.B1 := Result.B1 xor Operand.Val_Array.V (I).B1;
            end loop;
            Result.B1 := not Result.B1;

         when Iir_Predefined_Bit_Rising_Edge
           | Iir_Predefined_Boolean_Rising_Edge =>
            return Boolean_To_Lit
              (Execute_Event_Attribute (Operand)
                 and then Execute_Signal_Value (Operand).B1 = True);
         when Iir_Predefined_Bit_Falling_Edge
           | Iir_Predefined_Boolean_Falling_Edge =>
            return Boolean_To_Lit
              (Execute_Event_Attribute (Operand)
                 and then Execute_Signal_Value (Operand).B1 = False);

         when Iir_Predefined_Array_Greater =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) = Greater);

         when Iir_Predefined_Array_Greater_Equal =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) >= Equal);

         when Iir_Predefined_Array_Less =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) = Less);

         when Iir_Predefined_Array_Less_Equal =>
            Eval_Right;
            Result := Boolean_To_Lit (Compare_Value (Left, Right) <= Equal);

         when Iir_Predefined_Array_Minimum =>
            Eval_Right;
            if Compare_Value (Left, Right) = Less then
               Result := Left;
            else
               Result := Right;
            end if;
         when Iir_Predefined_Array_Maximum =>
            Eval_Right;
            if Compare_Value (Left, Right) = Less then
               Result := Right;
            else
               Result := Left;
            end if;

         when Iir_Predefined_Vector_Maximum =>
            declare
               El_St : constant Iir :=
                 Get_Return_Type (Get_Implementation (Expr));
               V : Iir_Value_Literal_Acc;
            begin
               Result := Execute_Low_Limit (Execute_Bounds (Block, El_St));
               for I in Left.Val_Array.V'Range loop
                  V := Left.Val_Array.V (I);
                  if Compare_Value (V, Result) = Greater then
                     Result := V;
                  end if;
               end loop;
            end;
         when Iir_Predefined_Vector_Minimum =>
            declare
               El_St : constant Iir :=
                 Get_Return_Type (Get_Implementation (Expr));
               V : Iir_Value_Literal_Acc;
            begin
               Result := Execute_High_Limit (Execute_Bounds (Block, El_St));
               for I in Left.Val_Array.V'Range loop
                  V := Left.Val_Array.V (I);
                  if Compare_Value (V, Result) = Less then
                     Result := V;
                  end if;
               end loop;
            end;

         when Iir_Predefined_Endfile =>
            Result := Boolean_To_Lit (File_Operation.Endfile (Left, Null_Iir));

         when Iir_Predefined_Now_Function =>
            Result := Create_I64_Value (Ghdl_I64 (Grt.Types.Current_Time));

         when Iir_Predefined_Integer_To_String
           | Iir_Predefined_Floating_To_String
           | Iir_Predefined_Physical_To_String =>
            Result := String_To_Iir_Value
              (Execute_Image_Attribute (Left, Get_Type (Left_Param)));

         when Iir_Predefined_Enum_To_String =>
            declare
               use Name_Table;
               Base_Type : constant Iir :=
                 Get_Base_Type (Get_Type (Left_Param));
               Lits : constant Iir_Flist :=
                 Get_Enumeration_Literal_List (Base_Type);
               Pos : constant Natural := Get_Enum_Pos (Left);
               Id : Name_Id;
            begin
               if Base_Type = Vhdl.Std_Package.Character_Type_Definition then
                  Result := String_To_Iir_Value ((1 => Character'Val (Pos)));
               else
                  Id := Get_Identifier (Get_Nth_Element (Lits, Pos));
                  if Is_Character (Id) then
                     Result := String_To_Iir_Value ((1 => Get_Character (Id)));
                  else
                     declare
                        Img : String := Image (Id);
                     begin
                        if Img (Img'First) = '\' then
                           --  Reformat extended identifiers for to_image.
                           pragma Assert (Img (Img'Last) = '\');
                           declare
                              Npos : Natural;
                              K : Natural;
                              C : Character;
                           begin
                              Npos := Img'First;
                              K := Npos + 1;
                              while K < Img'Last loop
                                 C := Img (K);
                                 Img (Npos) := C;
                                 Npos := Npos + 1;
                                 if C = '\' then
                                    K := K + 2;
                                 else
                                    K := K + 1;
                                 end if;
                              end loop;
                              Result := String_To_Iir_Value
                                (Img (Img'First .. Npos - 1));
                           end;
                        else
                           Result := String_To_Iir_Value (Img);
                        end if;
                     end;
                  end if;
               end if;
            end;

         when Iir_Predefined_Array_Char_To_String =>
            declare
               Lits : constant Iir_Flist :=
                 Get_Enumeration_Literal_List
                 (Get_Base_Type
                    (Get_Element_Subtype (Get_Type (Left_Param))));
               Str : String (1 .. Natural (Left.Bounds.D (1).Length));
               Pos : Natural;
            begin
               for I in Left.Val_Array.V'Range loop
                  Pos := Get_Enum_Pos (Left.Val_Array.V (I));
                  Str (Positive (I)) := Name_Table.Get_Character
                    (Get_Identifier (Get_Nth_Element (Lits, Pos)));
               end loop;
               Result := String_To_Iir_Value (Str);
            end;

         when Iir_Predefined_Bit_Vector_To_Hstring =>
            return Execute_Bit_Vector_To_String (Left, 4);

         when Iir_Predefined_Bit_Vector_To_Ostring =>
            return Execute_Bit_Vector_To_String (Left, 3);

         when Iir_Predefined_Real_To_String_Digits =>
            Eval_Right;
            declare
               Str : Grt.Vstrings.String_Real_Format;
               Last : Natural;
            begin
               Grt.Vstrings.To_String
                 (Str, Last, Left.F64, Ghdl_I32 (Right.I64));
               Result := String_To_Iir_Value (Str (1 .. Last));
            end;
         when Iir_Predefined_Real_To_String_Format =>
            Eval_Right;
            declare
               Format : String (1 .. Natural (Right.Val_Array.Len) + 1);
               Str : Grt.Vstrings.String_Real_Format;
               Last : Natural;
            begin
               for I in Right.Val_Array.V'Range loop
                  Format (Positive (I)) :=
                    Character'Val (Right.Val_Array.V (I).E8);
               end loop;
               Format (Format'Last) := ASCII.NUL;
               Grt.Vstrings.To_String
                 (Str, Last, Left.F64, To_Ghdl_C_String (Format'Address));
               Result := String_To_Iir_Value (Str (1 .. Last));
            end;
         when Iir_Predefined_Time_To_String_Unit =>
            Eval_Right;
            declare
               Str : Grt.Vstrings.String_Time_Unit;
               First : Natural;
               Unit : Iir;
            begin
               Unit := Get_Unit_Chain (Vhdl.Std_Package.Time_Type_Definition);
               while Unit /= Null_Iir loop
                  exit when Vhdl.Evaluation.Get_Physical_Value (Unit)
                    = Int64 (Right.I64);
                  Unit := Get_Chain (Unit);
               end loop;
               if Unit = Null_Iir then
                  Error_Msg_Exec
                    ("to_string for time called with wrong unit", Expr);
               end if;
               Grt.Vstrings.To_String (Str, First, Left.I64, Right.I64);
               Result := String_To_Iir_Value
                 (Str (First .. Str'Last) & ' '
                    & Name_Table.Image (Get_Identifier (Unit)));
            end;

         when Iir_Predefined_Std_Ulogic_Match_Equality =>
            Eval_Right;
            declare
               use Grt.Std_Logic_1164;
            begin
               Result := Create_E8_Value
                 (Std_Ulogic'Pos
                    (Match_Eq_Table (Std_Ulogic'Val (Left.E8),
                                     Std_Ulogic'Val (Right.E8))));
            end;
         when Iir_Predefined_Std_Ulogic_Match_Inequality =>
            Eval_Right;
            declare
               use Grt.Std_Logic_1164;
            begin
               Result := Create_E8_Value
                 (Std_Ulogic'Pos
                    (Not_Table (Match_Eq_Table (Std_Ulogic'Val (Left.E8),
                                                Std_Ulogic'Val (Right.E8)))));
            end;
         when Iir_Predefined_Std_Ulogic_Match_Ordering_Functions =>
            Eval_Right;
            declare
               use Grt.Std_Logic_1164;
               L : constant Std_Ulogic := Std_Ulogic'Val (Left.E8);
               R : constant Std_Ulogic := Std_Ulogic'Val (Right.E8);
               Res : Std_Ulogic;
            begin
               Check_Std_Ulogic_Dc (Expr, L);
               Check_Std_Ulogic_Dc (Expr, R);
               case Iir_Predefined_Std_Ulogic_Match_Ordering_Functions (Func)
                  is
                  when Iir_Predefined_Std_Ulogic_Match_Less =>
                     Res := Match_Lt_Table (L, R);
                  when Iir_Predefined_Std_Ulogic_Match_Less_Equal =>
                     Res := Or_Table (Match_Lt_Table (L, R),
                                      Match_Eq_Table (L, R));
                  when Iir_Predefined_Std_Ulogic_Match_Greater =>
                     Res := Not_Table (Or_Table (Match_Lt_Table (L, R),
                                                 Match_Eq_Table (L, R)));
                  when Iir_Predefined_Std_Ulogic_Match_Greater_Equal =>
                     Res := Not_Table (Match_Lt_Table (L, R));
               end case;
               Result := Create_E8_Value (Std_Ulogic'Pos (Res));
            end;

         when Iir_Predefined_Std_Ulogic_Array_Match_Equality
           | Iir_Predefined_Std_Ulogic_Array_Match_Inequality =>
            Eval_Right;
            if Left.Bounds.D (1).Length /= Right.Bounds.D (1).Length then
               Error_Msg_Constraint (Expr);
            end if;
            declare
               use Grt.Std_Logic_1164;
               Res : Std_Ulogic := '1';
               Le, Re : Std_Ulogic;
               Has_Match_Err : Boolean;
            begin
               Has_Match_Err := False;
               for I in Left.Val_Array.V'Range loop
                  Le := Std_Ulogic'Val (Left.Val_Array.V (I).E8);
                  Re := Std_Ulogic'Val (Right.Val_Array.V (I).E8);
                  if (Le = '-' or Re = '-') and then not Has_Match_Err then
                     Assert_Std_Ulogic_Dc (Expr);
                     Has_Match_Err := True;
                  end if;
                  Res := And_Table (Res, Match_Eq_Table (Le, Re));
               end loop;
               if Func = Iir_Predefined_Std_Ulogic_Array_Match_Inequality then
                  Res := Not_Table (Res);
               end if;
               Result := Create_E8_Value (Std_Ulogic'Pos (Res));
            end;

         when others =>
            Error_Msg_Elab (Expr, "execute_implicit_function: unimplemented " &
                              Iir_Predefined_Functions'Image (Func));
            raise Internal_Error;
      end case;
      return Result;
   exception
      when Constraint_Error =>
         Error_Msg_Constraint (Expr);
   end Execute_Implicit_Function;

   procedure Execute_Implicit_Procedure
     (Block: Block_Instance_Acc; Stmt: Iir_Procedure_Call)
   is
      Imp : constant Iir := Get_Implementation (Stmt);
      Assoc_Chain : constant Iir := Get_Parameter_Association_Chain (Stmt);
      Inter_Chain : constant Iir := Get_Interface_Declaration_Chain (Imp);
      Assoc: Iir;
      Formal : Iir;
      Val : Iir;
      Args: Iir_Value_Literal_Array (0 .. 3);
      Expr_Mark : Mark_Type;
   begin
      Mark (Expr_Mark, Expr_Pool);
      Assoc := Assoc_Chain;
      Formal := Inter_Chain;
      for I in Iir_Index32 loop
         exit when Assoc = Null_Iir;
         case Get_Kind (Assoc) is
            when Iir_Kind_Association_Element_By_Expression =>
               Val := Get_Actual (Assoc);
            when Iir_Kind_Association_Element_Open =>
               Val := Get_Default_Value (Formal);
            when others =>
               raise Internal_Error;
         end case;
         Args (I) := Execute_Expression (Block, Val);
         Assoc := Get_Chain (Assoc);
         Formal := Get_Chain (Formal);
      end loop;
      case Get_Implicit_Definition (Imp) is
         when Iir_Predefined_Deallocate =>
            if Args (0).Val_Access /= null then
               Free_Heap_Value (Args (0));
               Args (0).Val_Access := null;
            end if;
         when Iir_Predefined_File_Open =>
            File_Operation.File_Open
              (Args (0), Args (1), Args (2), Inter_Chain, Stmt);
         when Iir_Predefined_File_Open_Status =>
            File_Operation.File_Open_Status
              (Args (0), Args (1), Args (2), Args (3),
               Get_Chain (Inter_Chain), Stmt);
         when Iir_Predefined_Write =>
            if Get_Text_File_Flag (Get_Type (Inter_Chain)) then
               File_Operation.Write_Text (Args (0), Args (1));
            else
               File_Operation.Write_Binary (Args (0), Args (1));
            end if;
         when Iir_Predefined_Read_Length =>
            if Get_Text_File_Flag (Get_Type (Inter_Chain)) then
               File_Operation.Read_Length_Text
                 (Args (0), Args (1), Args (2));
            else
               File_Operation.Read_Length_Binary
                 (Args (0), Args (1), Args (2));
            end if;
         when Iir_Predefined_Read =>
            File_Operation.Read_Binary (Args (0), Args (1));
         when Iir_Predefined_Flush =>
            File_Operation.Flush (Args (0));
         when Iir_Predefined_File_Close =>
            if Get_Text_File_Flag (Get_Type (Inter_Chain)) then
               File_Operation.File_Close_Text (Args (0), Stmt);
            else
               File_Operation.File_Close_Binary (Args (0), Stmt);
            end if;
         when others =>
            Error_Kind ("execute_implicit_procedure",
                        Get_Implicit_Definition (Imp));
      end case;
      Release (Expr_Mark, Expr_Pool);
   end Execute_Implicit_Procedure;

   procedure Execute_Foreign_Procedure
     (Block: Block_Instance_Acc; Stmt: Iir_Procedure_Call)
   is
      Imp : constant Iir := Get_Implementation (Stmt);
      Assoc_Chain : constant Iir := Get_Parameter_Association_Chain (Stmt);
      Assoc: Iir;
      Args: Iir_Value_Literal_Array (0 .. 3) := (others => null);
      Expr_Mark : Mark_Type;
   begin
      Mark (Expr_Mark, Expr_Pool);
      Assoc := Assoc_Chain;
      for I in Args'Range loop
         exit when Assoc = Null_Iir;
         Args (I) := Execute_Expression (Block, Get_Actual (Assoc));
         Assoc := Get_Chain (Assoc);
      end loop;
      case Get_Identifier (Imp) is
         when Std_Names.Name_Untruncated_Text_Read =>
            File_Operation.Untruncated_Text_Read
              (Args (0), Args (1), Args (2));
         when Std_Names.Name_Control_Simulation =>
            --  FIXME: handle stop properly.
            --  FIXME: this is the only place where longjump is called.
            Grt.Lib.Ghdl_Control_Simulation
              (Args (0).B1, Args (1).B1, Std_Integer (Args (2).I64));
            --  Do not return.
         when Std_Names.Name_Textio_Write_Real =>
            File_Operation.Textio_Write_Real
              (Args (0), Args (1), Args (2).F64, Std_Integer (Args (3).I64));
         when others =>
            Error_Msg_Exec ("unsupported foreign procedure call", Stmt);
      end case;
      Release (Expr_Mark, Expr_Pool);
   end Execute_Foreign_Procedure;

   -- Compute the offset for INDEX into a range BOUNDS.
   -- EXPR is only used in case of error.
   function Get_Index_Offset
     (Index: Iir_Value_Literal_Acc;
      Bounds: Iir_Value_Literal_Acc;
      Expr: Iir)
      return Iir_Index32
   is
      Left_Pos, Right_Pos: Iir_Value_Literal_Acc;
   begin
      Left_Pos := Bounds.Left;
      Right_Pos := Bounds.Right;
      if Index.Kind /= Left_Pos.Kind or else Index.Kind /= Right_Pos.Kind then
         raise Internal_Error;
      end if;
      case Iir_Value_Discrete (Index.Kind) is
         when Iir_Value_B1 =>
            case Bounds.Dir is
               when Iir_To =>
                  if Index.B1 >= Left_Pos.B1 and then
                    Index.B1 <= Right_Pos.B1
                  then
                     -- to
                     return Ghdl_B1'Pos (Index.B1) - Ghdl_B1'Pos (Left_Pos.B1);
                  end if;
               when Iir_Downto =>
                  if Index.B1 <= Left_Pos.B1 and then
                    Index.B1 >= Right_Pos.B1
                  then
                     -- downto
                     return Ghdl_B1'Pos (Left_Pos.B1) - Ghdl_B1'Pos (Index.B1);
                  end if;
            end case;
         when Iir_Value_E8 =>
            case Bounds.Dir is
               when Iir_To =>
                  if Index.E8 >= Left_Pos.E8 and then
                    Index.E8 <= Right_Pos.E8
                  then
                     -- to
                     return Iir_Index32 (Index.E8 - Left_Pos.E8);
                  end if;
               when Iir_Downto =>
                  if Index.E8 <= Left_Pos.E8 and then
                    Index.E8 >= Right_Pos.E8
                  then
                     -- downto
                     return Iir_Index32 (Left_Pos.E8 - Index.E8);
                  end if;
            end case;
         when Iir_Value_E32 =>
            case Bounds.Dir is
               when Iir_To =>
                  if Index.E32 >= Left_Pos.E32 and then
                    Index.E32 <= Right_Pos.E32
                  then
                     -- to
                     return Iir_Index32 (Index.E32 - Left_Pos.E32);
                  end if;
               when Iir_Downto =>
                  if Index.E32 <= Left_Pos.E32 and then
                    Index.E32 >= Right_Pos.E32
                  then
                     -- downto
                     return Iir_Index32 (Left_Pos.E32 - Index.E32);
                  end if;
            end case;
         when Iir_Value_I64 =>
            case Bounds.Dir is
               when Iir_To =>
                  if Index.I64 >= Left_Pos.I64 and then
                    Index.I64 <= Right_Pos.I64
                  then
                     -- to
                     return Iir_Index32 (Index.I64 - Left_Pos.I64);
                  end if;
               when Iir_Downto =>
                  if Index.I64 <= Left_Pos.I64 and then
                    Index.I64 >= Right_Pos.I64
                  then
                     -- downto
                     return Iir_Index32 (Left_Pos.I64 - Index.I64);
                  end if;
            end case;
      end case;
      Error_Msg_Constraint (Expr);
      return 0;
   end Get_Index_Offset;

   --  Create an iir_value_literal of kind iir_value_array and of life LIFE.
   --  Allocate the array of bounds, and fill it from A_TYPE.
   --  Allocate the array of values.
   function Create_Array_Bounds_From_Type (Block : Block_Instance_Acc;
                                           A_Type : Iir;
                                           Create_Val_Array : Boolean)
                                          return Iir_Value_Literal_Acc
   is
      --  Only for constrained subtypes.
      pragma Assert (Get_Constraint_State (A_Type) = Fully_Constrained);

      Index_List : constant Iir_Flist := Get_Index_Subtype_List (A_Type);
      Res : Iir_Value_Literal_Acc;
      Len : Iir_Index32;
      Bound : Iir_Value_Literal_Acc;
   begin
      Res := Create_Array_Value (Iir_Index32 (Get_Nbr_Elements (Index_List)));
      Len := 1;
      for I in 1 .. Res.Bounds.Nbr_Dims loop
         Bound := Execute_Bounds
           (Block, Get_Nth_Element (Index_List, Natural (I - 1)));
         Len := Len * Bound.Length;
         Res.Bounds.D (I) := Bound;
      end loop;
      if Create_Val_Array then
         Create_Array_Data (Res, Len);
      end if;
      return Res;
   end Create_Array_Bounds_From_Type;

   --  Return the steps (ie, offset in the array when index DIM is increased
   --  by one) for array ARR and dimension DIM.
   function Get_Step_For_Dim (Arr: Iir_Value_Literal_Acc; Dim : Natural)
     return Iir_Index32
   is
      Bounds : Value_Bounds_Array_Acc renames Arr.Bounds;
      Res : Iir_Index32;
   begin
      Res := 1;
      for I in Iir_Index32 (Dim + 1) .. Bounds.Nbr_Dims loop
         Res := Res * Bounds.D (I).Length;
      end loop;
      return Res;
   end Get_Step_For_Dim;

   --  Create a literal for a string or a bit_string
   function String_To_Enumeration_Array_1 (Str: Iir; El_Type : Iir)
                                          return Iir_Value_Literal_Acc
   is
      pragma Assert (Get_Kind (Str) = Iir_Kind_String_Literal8);
      Id : constant String8_Id := Get_String8_Id (Str);
      Len : constant Iir_Index32 := Iir_Index32 (Get_String_Length (Str));

      El_Btype : constant Iir := Get_Base_Type (El_Type);

      Lit: Iir_Value_Literal_Acc;
      El : Iir_Value_Literal_Acc;
      Element_Mode : Iir_Value_Scalars;

      Pos : Nat8;
   begin
      Element_Mode := Get_Info (El_Btype).Scalar_Mode;

      Lit := Create_Array_Value (Len, 1);

      for I in Lit.Val_Array.V'Range loop
         -- FIXME: use literal from type ??
         Pos := Str_Table.Element_String8 (Id, Pos32 (I));
         case Element_Mode is
            when Iir_Value_B1 =>
               El := Create_B1_Value (Ghdl_B1'Val (Pos));
            when Iir_Value_E8 =>
               El := Create_E8_Value (Ghdl_E8'Val (Pos));
            when Iir_Value_E32 =>
               El := Create_E32_Value (Ghdl_E32'Val (Pos));
            when others =>
               raise Internal_Error;
         end case;
         Lit.Val_Array.V (I) := El;
      end loop;

      return Lit;
   end String_To_Enumeration_Array_1;

   --  Create a literal for a string or a bit_string
   function Execute_String_Literal (Str: Iir; Block_Type : Block_Instance_Acc)
                                   return Iir_Value_Literal_Acc
   is
      Array_Type: constant Iir := Get_Type (Str);
      Index_Types : constant Iir_Flist := Get_Index_Subtype_List (Array_Type);
      Res : Iir_Value_Literal_Acc;
   begin
      --  Array must be unidimensional.
      pragma Assert (Get_Nbr_Elements (Index_Types) = 1);

      Res := String_To_Enumeration_Array_1
        (Str, Get_Element_Subtype (Array_Type));

      --  When created from static evaluation, a string may still have an
      --  unconstrained type.
      if Get_Constraint_State (Array_Type) /= Fully_Constrained then
         Res.Bounds.D (1) :=
           Create_Range_Value (Create_I64_Value (1),
                               Create_I64_Value (Ghdl_I64 (Res.Val_Array.Len)),
                               Iir_To,
                               Res.Val_Array.Len);
      else
         Res.Bounds.D (1) :=
           Execute_Bounds (Block_Type, Get_Nth_Element (Index_Types, 0));
      end if;

      --  The range may not be statically constant.
      if Res.Bounds.D (1).Length /= Res.Val_Array.Len then
         Error_Msg_Constraint (Str);
      end if;

      return Res;
   end Execute_String_Literal;

   --  Fill LENGTH elements of RES, starting at ORIG by steps of STEP.
   --  Use expressions from (BLOCK, AGGREGATE) to fill the elements.
   --  EL_TYPE is the type of the array element.
   procedure Fill_Array_Aggregate_1 (Block : Block_Instance_Acc;
                                     Aggregate : Iir;
                                     Res : Iir_Value_Literal_Acc;
                                     Orig : Iir_Index32;
                                     Step : Iir_Index32;
                                     Dim : Iir_Index32;
                                     Nbr_Dim : Iir_Index32;
                                     El_Type : Iir)
   is
      Value : Iir;
      Bound : constant Iir_Value_Literal_Acc := Res.Bounds.D (Dim);
      Length : constant Iir_Index32 := Bound.Length;

      procedure Set_Elem (Pos : Iir_Index32)
      is
         Val : Iir_Value_Literal_Acc;
      begin
         if Dim = Nbr_Dim then
            --  VALUE is an expression (which may be an aggregate, but not
            --  a sub-aggregate.
            Val := Execute_Expression_With_Type (Block, Value, El_Type);
            --  LRM93 7.3.2.2
            --  For a multi-dimensional aggregate of dimension n, a check
            --  is made that all (n-1)-dimensional subaggregates have the
            --  same bounds.
            --  GHDL: I have added an implicit array conversion, however
            --   it may be useful to allow cases like this:
            --     type str_array is array (natural range <>)
            --        of string (10 downto 1);
            --     constant floats : str_array :=
            --         ( "00000000.0", HT & "+1.5ABCDE");
            --   The subtype of the first sub-aggregate (0.0) is
            --   determinated by the context, according to rule 9 and 4
            --   of LRM93 7.3.2.2 and therefore is string (10 downto 1),
            --   while the subtype of the second sub-aggregate (HT & ...)
            --   is determinated by rules 1 and 2 of LRM 7.2.4, and is
            --   string (1 to 10).
            --   Unless an implicit conversion is used, according to the
            --   LRM, this should fail, but it makes no sens.
            --
            --   FIXME: Add a warning, a flag ?
            --Implicit_Array_Conversion (Block, Val, El_Type, Value);
            --Check_Constraints (Block, Val, El_Type, Value);
            Res.Val_Array.V (1 + Orig + Pos * Step) := Val;
         else
            case Get_Kind (Value) is
               when Iir_Kind_Aggregate =>
                  --  VALUE is a sub-aggregate.
                  Fill_Array_Aggregate_1 (Block, Value, Res,
                                          Orig + Pos * Step,
                                          Step / Res.Bounds.D (Dim + 1).Length,
                                          Dim + 1, Nbr_Dim, El_Type);
               when Iir_Kind_String_Literal8 =>
                  pragma Assert (Dim + 1 = Nbr_Dim);
                  Val := String_To_Enumeration_Array_1 (Value, El_Type);
                  if Val.Val_Array.Len /= Res.Bounds.D (Nbr_Dim).Length then
                     Error_Msg_Constraint (Value);
                  end if;
                  for I in Val.Val_Array.V'Range loop
                     Res.Val_Array.V (Orig + Pos * Step + I) :=
                       Val.Val_Array.V (I);
                  end loop;
               when others =>
                  Error_Kind ("fill_array_aggregate_1", Value);
            end case;
         end if;
      end Set_Elem;

      procedure Set_Elem_By_Expr (Expr : Iir)
      is
         Expr_Pos: Iir_Value_Literal_Acc;
      begin
         Expr_Pos := Execute_Expression (Block, Expr);
         Set_Elem (Get_Index_Offset (Expr_Pos, Bound, Expr));
      end Set_Elem_By_Expr;

      procedure Set_Elem_By_Range (Expr : Iir)
      is
         A_Range : Iir_Value_Literal_Acc;
         High, Low : Iir_Value_Literal_Acc;
      begin
         A_Range := Execute_Bounds (Block, Expr);
         if Is_Null_Range (A_Range) then
            return;
         end if;
         if A_Range.Dir = Iir_To then
            High := A_Range.Right;
            Low := A_Range.Left;
         else
            High := A_Range.Left;
            Low := A_Range.Right;
         end if;

         --  Locally modified (incremented)
         Low := Unshare (Low, Expr_Pool'Access);

         loop
            Set_Elem (Get_Index_Offset (Low, Bound, Expr));
            exit when Is_Equal (Low, High);
            Increment (Low);
         end loop;
      end Set_Elem_By_Range;

      Assoc : Iir;
      Pos : Iir_Index32;
   begin
      Assoc := Get_Association_Choices_Chain (Aggregate);
      Pos := 0;
      while Assoc /= Null_Iir loop
         Value := Get_Associated_Expr (Assoc);
         loop
            case Get_Kind (Assoc) is
               when Iir_Kind_Choice_By_None =>
                  if Get_Element_Type_Flag (Assoc) then
                     if Pos >= Length then
                        Error_Msg_Constraint (Assoc);
                     end if;

                     Set_Elem (Pos);
                     Pos := Pos + 1;
                  else
                     declare
                        Val : Iir_Value_Literal_Acc;
                     begin
                        Val := Execute_Expression (Block, Value);
                        pragma Assert (Val.Kind = Iir_Value_Array);
                        pragma Assert (Val.Bounds.Nbr_Dims = 1);
                        for I in 1 .. Val.Val_Array.Len loop
                           if Pos >= Length then
                              Error_Msg_Constraint (Assoc);
                           end if;
                           Res.Val_Array.V (1 + Orig + Pos * Step) :=
                             Val.Val_Array.V (I);
                           Pos := Pos + 1;
                        end loop;
                     end;
                  end if;
               when Iir_Kind_Choice_By_Expression =>
                  Set_Elem_By_Expr (Get_Choice_Expression (Assoc));
               when Iir_Kind_Choice_By_Range =>
                  Set_Elem_By_Range (Get_Choice_Range (Assoc));
               when Iir_Kind_Choice_By_Others =>
                  for J in 1 .. Length loop
                     if Res.Val_Array.V (Orig + J * Step) = null then
                        Set_Elem (J - 1);
                     end if;
                  end loop;
                  return;
               when others =>
                  raise Internal_Error;
            end case;
            Assoc := Get_Chain (Assoc);
            exit when Assoc = Null_Iir;
            exit when not Get_Same_Alternative_Flag (Assoc);
         end loop;
      end loop;

      --  Check each elements have been set.
      --  FIXME: check directly with type.
      for J in 1 .. Length loop
         if Res.Val_Array.V (Orig + J * Step) = null then
            Error_Msg_Constraint (Aggregate);
         end if;
      end loop;
   end Fill_Array_Aggregate_1;

   --  Use expressions from (BLOCK, AGGREGATE) to fill RES.
   procedure Fill_Array_Aggregate (Block : Block_Instance_Acc;
                                   Aggregate : Iir;
                                   Res : Iir_Value_Literal_Acc)
   is
      Aggr_Type : constant Iir := Get_Type (Aggregate);
      El_Type : constant Iir := Get_Element_Subtype (Aggr_Type);
      Index_List : constant Iir_Flist := Get_Index_Subtype_List (Aggr_Type);
      Nbr_Dim : constant Iir_Index32 :=
        Iir_Index32 (Get_Nbr_Elements (Index_List));
      Step : Iir_Index32;
   begin
      Step := Get_Step_For_Dim (Res, 1);
      Fill_Array_Aggregate_1
        (Block, Aggregate, Res, 0, Step, 1, Nbr_Dim, El_Type);
   end Fill_Array_Aggregate;

   function Execute_Record_Aggregate (Block: Block_Instance_Acc;
                                      Aggregate: Iir;
                                      Aggregate_Type: Iir)
                                     return Iir_Value_Literal_Acc
   is
      List : constant Iir_Flist :=
        Get_Elements_Declaration_List (Get_Base_Type (Aggregate_Type));

      Res: Iir_Value_Literal_Acc;
      Expr : Iir;

      procedure Set_Expr (Pos : Iir_Index32) is
         El : constant Iir := Get_Nth_Element (List, Natural (Pos - 1));
      begin
         Res.Val_Record.V (Pos) :=
           Execute_Expression_With_Type (Block, Expr, Get_Type (El));
      end Set_Expr;

      Pos : Iir_Index32;
      Assoc: Iir;
      N_Expr : Iir;
   begin
      Res := Create_Record_Value (Iir_Index32 (Get_Nbr_Elements (List)));

      Assoc := Get_Association_Choices_Chain (Aggregate);
      Pos := 1;
      loop
         N_Expr := Get_Associated_Expr (Assoc);
         if N_Expr /= Null_Iir then
            Expr := N_Expr;
         end if;
         case Get_Kind (Assoc) is
            when Iir_Kind_Choice_By_None =>
               Set_Expr (Pos);
               Pos := Pos + 1;
            when Iir_Kind_Choice_By_Name =>
               Set_Expr (1 + Get_Element_Position
                           (Get_Named_Entity (Get_Choice_Name (Assoc))));
            when Iir_Kind_Choice_By_Others =>
               for I in Res.Val_Record.V'Range loop
                  if Res.Val_Record.V (I) = null then
                     Set_Expr (I);
                  end if;
               end loop;
            when others =>
               Error_Kind ("execute_record_aggregate", Assoc);
         end case;
         Assoc := Get_Chain (Assoc);
         exit when Assoc = Null_Iir;
      end loop;
      return Res;
   end Execute_Record_Aggregate;

   function Execute_Aggregate (Block: Block_Instance_Acc;
                               Aggregate: Iir;
                               Block_Type : Block_Instance_Acc;
                               Aggregate_Type: Iir)
                              return Iir_Value_Literal_Acc is
   begin
      case Get_Kind (Aggregate_Type) is
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Array_Subtype_Definition =>
            declare
               Res : Iir_Value_Literal_Acc;
            begin
               Res := Create_Array_Bounds_From_Type
                 (Block_Type, Aggregate_Type, True);
               Fill_Array_Aggregate (Block, Aggregate, Res);
               return Res;
            end;
         when Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            return Execute_Record_Aggregate (Block, Aggregate, Aggregate_Type);
         when others =>
            Error_Kind ("execute_aggregate", Aggregate_Type);
      end case;
   end Execute_Aggregate;

   function Execute_Association_Expression
     (Actual_Instance : Block_Instance_Acc;
      Actual : Iir;
      Formal_Instance : Block_Instance_Acc)
     return Iir_Value_Literal_Acc
   is
   begin
      case Get_Kind (Actual) is
         when Iir_Kind_String_Literal8 =>
            return Execute_String_Literal (Actual, Formal_Instance);
         when Iir_Kind_Aggregate =>
            return Execute_Aggregate
              (Actual_Instance, Actual, Formal_Instance, Get_Type (Actual));
         when others =>
            null;
      end case;
      return Execute_Expression (Actual_Instance, Actual);
   end Execute_Association_Expression;


   function Execute_Simple_Aggregate (Block: Block_Instance_Acc; Aggr : Iir)
                                     return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
      List : constant Iir_Flist := Get_Simple_Aggregate_List (Aggr);
   begin
      Res := Create_Array_Bounds_From_Type (Block, Get_Type (Aggr), True);
      for I in Res.Val_Array.V'Range loop
         Res.Val_Array.V (I) :=
           Execute_Expression (Block, Get_Nth_Element (List, Natural (I - 1)));
      end loop;
      return Res;
   end Execute_Simple_Aggregate;

   --  Fill LENGTH elements of RES, starting at ORIG by steps of STEP.
   --  Use expressions from (BLOCK, AGGREGATE) to fill the elements.
   --  EL_TYPE is the type of the array element.
   procedure Execute_Name_Array_Aggregate (Block : Block_Instance_Acc;
                                           Aggregate : Iir;
                                           Res : Iir_Value_Literal_Acc;
                                           Orig : Iir_Index32;
                                           Step : Iir_Index32;
                                           Dim : Iir_Index32;
                                           Nbr_Dim : Iir_Index32;
                                           El_Type : Iir)
   is
      Value : Iir;
      Bound : Iir_Value_Literal_Acc;

      procedure Set_Elem (Pos : Iir_Index32)
      is
         Val : Iir_Value_Literal_Acc;
         Is_Sig : Boolean;
      begin
         if Dim = Nbr_Dim then
            --  VALUE is an expression (which may be an aggregate, but not
            --  a sub-aggregate.
            Execute_Name_With_Base (Block, Value, null, Val, Is_Sig);
            Res.Val_Array.V (1 + Orig + Pos * Step) := Val;
         else
            --  VALUE is a sub-aggregate.
            Execute_Name_Array_Aggregate
              (Block, Value, Res,
               Orig + Pos * Step,
               Step / Res.Bounds.D (Dim + 1).Length,
               Dim + 1, Nbr_Dim, El_Type);
         end if;
      end Set_Elem;

      Assoc : Iir;
      Pos : Iir_Index32;
   begin
      Assoc := Get_Association_Choices_Chain (Aggregate);
      Bound := Res.Bounds.D (Dim);
      Pos := 0;
      while Assoc /= Null_Iir loop
         Value := Get_Associated_Expr (Assoc);
         case Get_Kind (Assoc) is
            when Iir_Kind_Choice_By_None =>
               null;
            when Iir_Kind_Choice_By_Expression =>
               declare
                  Expr_Pos: Iir_Value_Literal_Acc;
                  Val : constant Iir := Get_Expression (Assoc);
               begin
                  Expr_Pos := Execute_Expression (Block, Val);
                  Pos := Get_Index_Offset (Expr_Pos, Bound, Val);
               end;
            when others =>
               raise Internal_Error;
         end case;
         Set_Elem (Pos);
         Pos := Pos + 1;
         Assoc := Get_Chain (Assoc);
      end loop;
   end Execute_Name_Array_Aggregate;

   function Execute_Record_Name_Aggregate (Block: Block_Instance_Acc;
                                           Aggregate: Iir;
                                           Aggregate_Type: Iir)
                                          return Iir_Value_Literal_Acc
   is
      List : constant Iir_Flist :=
        Get_Elements_Declaration_List (Get_Base_Type (Aggregate_Type));
      Res: Iir_Value_Literal_Acc;
      Expr : Iir;
      Pos : Iir_Index32;
      El_Pos : Iir_Index32;
      Is_Sig : Boolean;
      Assoc: Iir;
   begin
      Res := Create_Record_Value (Iir_Index32 (Get_Nbr_Elements (List)));
      Assoc := Get_Association_Choices_Chain (Aggregate);
      Pos := 0;
      loop
         Expr := Get_Associated_Expr (Assoc);
         if Expr = Null_Iir then
            --  List of choices is not allowed.
            raise Internal_Error;
         end if;
         case Get_Kind (Assoc) is
            when Iir_Kind_Choice_By_None =>
               El_Pos := Pos;
               Pos := Pos + 1;
            when Iir_Kind_Choice_By_Name =>
               El_Pos := Get_Element_Position (Get_Name (Assoc));
            when Iir_Kind_Choice_By_Others =>
               raise Internal_Error;
            when others =>
               Error_Kind ("execute_record_name_aggregate", Assoc);
         end case;
         Execute_Name_With_Base
           (Block, Expr, null, Res.Val_Record.V (1 + El_Pos), Is_Sig);
         Assoc := Get_Chain (Assoc);
         exit when Assoc = Null_Iir;
      end loop;
      return Res;
   end Execute_Record_Name_Aggregate;

   function Execute_Name_Aggregate (Block: Block_Instance_Acc;
                                    Aggregate: Iir;
                                    Aggregate_Type: Iir)
                                   return Iir_Value_Literal_Acc is
   begin
      case Get_Kind (Aggregate_Type) is
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Array_Subtype_Definition =>
            declare
               El_Type : constant Iir := Get_Element_Subtype (Aggregate_Type);
               Index_List : constant Iir_Flist :=
                 Get_Index_Subtype_List (Aggregate_Type);
               Nbr_Dim : constant Iir_Index32 :=
                 Iir_Index32 (Get_Nbr_Elements (Index_List));
               Res : Iir_Value_Literal_Acc;
               Step : Iir_Index32;
            begin
               pragma Assert
                 (Get_Constraint_State (Aggregate_Type) = Fully_Constrained);
               Res := Create_Array_Bounds_From_Type
                 (Block, Aggregate_Type, True);
               Step := Get_Step_For_Dim (Res, 1);
               Execute_Name_Array_Aggregate
                 (Block, Aggregate, Res, 0, Step, 1, Nbr_Dim, El_Type);
               return Res;
            end;
         when Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            return Execute_Record_Name_Aggregate
              (Block, Aggregate, Aggregate_Type);
         when others =>
            Error_Kind ("execute_name_aggregate", Aggregate_Type);
      end case;
   end Execute_Name_Aggregate;

   --  Return the indexes range for prefix of ATTR.
   function Execute_Indexes (Block: Block_Instance_Acc; Attr : Iir)
                            return Iir_Value_Literal_Acc
   is
      Prefix : constant Iir := Strip_Denoting_Name (Get_Prefix (Attr));
      Dim : constant Natural :=
        Vhdl.Evaluation.Eval_Attribute_Parameter_Or_1 (Attr);
   begin
      case Get_Kind (Prefix) is
         when Iir_Kind_Type_Declaration
           | Iir_Kind_Subtype_Declaration =>
            declare
               Index : Iir;
            begin
               Index := Get_Nth_Element
                 (Get_Index_Subtype_List (Get_Type (Prefix)), Dim - 1);
               return Execute_Bounds (Block, Index);
            end;
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Array_Subtype_Definition =>
            Error_Kind ("execute_indexes", Prefix);
         when others =>
            declare
               Orig : Iir_Value_Literal_Acc;
            begin
               Orig := Execute_Name (Block, Prefix, True);
               return Orig.Bounds.D (Iir_Index32 (Dim));
            end;
      end case;
   end Execute_Indexes;

   function Execute_Bounds (Block: Block_Instance_Acc; Prefix: Iir)
      return Iir_Value_Literal_Acc
   is
      Bound : Iir_Value_Literal_Acc;
   begin
      case Get_Kind (Prefix) is
         when Iir_Kind_Range_Expression =>
            declare
               Info : constant Sim_Info_Acc := Get_Info (Prefix);
            begin
               if Info = null then
                  Bound := Create_Range_Value
                    (Execute_Expression (Block, Get_Left_Limit (Prefix)),
                     Execute_Expression (Block, Get_Right_Limit (Prefix)),
                     Get_Direction (Prefix));
               elsif Info.Kind = Kind_Object then
                  Bound := Get_Instance_Object (Block, Prefix);
               else
                  raise Internal_Error;
               end if;
            end;

         when Iir_Kind_Subtype_Declaration =>
            return Execute_Bounds (Block, Get_Type (Prefix));

         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Floating_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            --  FIXME: move this block before and avoid recursion.
            return Execute_Bounds (Block, Get_Range_Constraint (Prefix));

         when Iir_Kind_Range_Array_Attribute =>
            Bound := Execute_Indexes (Block, Prefix);
         when Iir_Kind_Reverse_Range_Array_Attribute =>
            Bound := Execute_Indexes (Block, Prefix);
            case Bound.Dir is
               when Iir_To =>
                  Bound := Create_Range_Value
                    (Bound.Right, Bound.Left, Iir_Downto, Bound.Length);
               when Iir_Downto =>
                  Bound := Create_Range_Value
                    (Bound.Right, Bound.Left, Iir_To, Bound.Length);
            end case;

         when Iir_Kind_Floating_Type_Definition
           | Iir_Kind_Integer_Type_Definition =>
            return Execute_Bounds
              (Block,
               Get_Range_Constraint (Get_Type (Get_Type_Declarator (Prefix))));

         when Iir_Kinds_Denoting_Name =>
            return Execute_Bounds (Block, Get_Named_Entity (Prefix));

         when Iir_Kind_Subtype_Attribute =>
            return Execute_Bounds (Block, Get_Type (Prefix));

         when others =>
            -- Error_Kind ("execute_bounds", Get_Kind (Prefix));
            declare
               Prefix_Val: Iir_Value_Literal_Acc;
            begin
               Prefix_Val := Execute_Expression (Block, Prefix);
               Bound := Prefix_Val.Bounds.D (1);
            end;
      end case;
      if not Bound.Dir'Valid then
         raise Internal_Error;
      end if;
      return Bound;
   end Execute_Bounds;

   -- Perform type conversion as desribed in LRM93 7.3.5
   function Execute_Type_Conversion (Block: Block_Instance_Acc;
                                     Val : Iir_Value_Literal_Acc;
                                     Target_Type : Iir;
                                     Loc : Iir)
                                    return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
   begin
      Res := Val;
      case Get_Kind (Target_Type) is
         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            case Iir_Value_Numerics (Res.Kind) is
               when Iir_Value_I64 =>
                  null;
               when Iir_Value_F64 =>
                  if Res.F64 > Ghdl_F64 (Int64'Last) or
                    Res.F64 < Ghdl_F64 (Int64'First)
                  then
                     Error_Msg_Constraint (Loc);
                  end if;
                  Res := Create_I64_Value (Ghdl_I64 (Res.F64));
            end case;
         when Iir_Kind_Floating_Type_Definition
           | Iir_Kind_Floating_Subtype_Definition =>
            case Iir_Value_Numerics (Res.Kind) is
               when Iir_Value_F64 =>
                  null;
               when Iir_Value_I64 =>
                  Res := Create_F64_Value (Ghdl_F64 (Res.I64));
            end case;
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            --  Must be same type.
            null;
         when Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            --  Same type.
            null;
         when Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            --  Same type.
            null;
         when Iir_Kind_Array_Subtype_Definition
           | Iir_Kind_Array_Type_Definition =>
            --  LRM93 7.3.5
            --  if the type mark denotes an unconstrained array type and the
            --  operand is not a null array, then for each index position, the
            --  bounds of the result are obtained by converting the bounds of
            --  the operand to the corresponding index type of the target type.
            --
            --  LRM93 7.3.5
            --  If the type mark denotes a constrained array subtype, then the
            --  bounds of the result are those imposed by the type mark.
            if Get_Constraint_State (Target_Type) = Fully_Constrained then
               Implicit_Array_Conversion (Block, Res, Target_Type, Loc);
            else
               declare
                  Idx_List : constant Iir_Flist :=
                    Get_Index_Subtype_List (Target_Type);
                  Idx_Type : Iir;
               begin
                  Res := Create_Array_Value (Val.Bounds.Nbr_Dims);
                  Res.Val_Array := Val.Val_Array;
                  for I in Val.Bounds.D'Range loop
                     Idx_Type := Get_Index_Type (Idx_List, Natural (I - 1));
                     Res.Bounds.D (I) := Create_Range_Value
                       (Left => Execute_Type_Conversion
                          (Block, Val.Bounds.D (I).Left, Idx_Type, Loc),
                        Right => Execute_Type_Conversion
                          (Block, Val.Bounds.D (I).Right, Idx_Type, Loc),
                        Dir => Val.Bounds.D (I).Dir,
                        Length => Val.Bounds.D (I).Length);
                  end loop;
               end;
               end if;
         when others =>
            Error_Kind ("execute_type_conversion", Target_Type);
      end case;
      Check_Constraints (Block, Res, Target_Type, Loc);
      return Res;
   end Execute_Type_Conversion;

   --  Decrement VAL.
   --  May raise a constraint error using EXPR.
   function Execute_Dec (Val : Iir_Value_Literal_Acc; Expr : Iir)
     return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
   begin
      case Iir_Value_Discrete (Val.Kind) is
         when Iir_Value_B1 =>
            if Val.B1 = False then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_B1_Value (False);
         when Iir_Value_E8 =>
            if Val.E8 = 0 then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_E8_Value (Val.E8 - 1);
         when Iir_Value_E32 =>
            if Val.E32 = 0 then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_E32_Value (Val.E32 - 1);
         when Iir_Value_I64 =>
            if Val.I64 = Ghdl_I64'First then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_I64_Value (Val.I64 - 1);
      end case;
      return Res;
   end Execute_Dec;

   --  Increment VAL.
   --  May raise a constraint error using EXPR.
   function Execute_Inc (Val : Iir_Value_Literal_Acc; Expr : Iir)
     return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
   begin
      case Iir_Value_Discrete (Val.Kind) is
         when Iir_Value_B1 =>
            if Val.B1 = True then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_B1_Value (True);
         when Iir_Value_E32 =>
            if Val.E32 = Ghdl_E32'Last then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_E32_Value (Val.E32 + 1);
         when Iir_Value_E8 =>
            if Val.E8 = Ghdl_E8'Last then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_E8_Value (Val.E8 + 1);
         when Iir_Value_I64 =>
            if Val.I64 = Ghdl_I64'Last then
               Error_Msg_Constraint (Expr);
            end if;
            Res := Create_I64_Value (Val.I64 + 1);
      end case;
      return Res;
   end Execute_Inc;

   function Execute_Expression_With_Type (Block: Block_Instance_Acc;
                                          Expr: Iir;
                                          Expr_Type : Iir)
                                         return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
   begin
      if Get_Kind (Expr) = Iir_Kind_Aggregate
        and then not Is_Fully_Constrained_Type (Get_Type (Expr))
      then
         return Execute_Aggregate (Block, Expr, Block, Expr_Type);
      else
         Res := Execute_Expression (Block, Expr);
         Implicit_Array_Conversion (Block, Res, Expr_Type, Expr);
         Check_Constraints (Block, Res, Expr_Type, Expr);
         return Res;
      end if;
   end Execute_Expression_With_Type;

   function Execute_Signal_Name
     (Block : Block_Instance_Acc; Expr : Iir; Kind : Signal_Slot)
     return Iir_Value_Literal_Acc
   is
      Base : constant Iir := Get_Object_Prefix (Expr, False);
      Info : constant Sim_Info_Acc := Get_Info (Base);
      Bblk : Block_Instance_Acc;
      Slot : Object_Slot_Type;
      Base_Val : Iir_Value_Literal_Acc;
      Res : Iir_Value_Literal_Acc;
      Is_Sig : Boolean;
   begin
      if Get_Kind (Base) = Iir_Kind_Object_Alias_Declaration then
         Bblk := Get_Instance_By_Scope (Block, Info.Obj_Scope);
         Base_Val := Execute_Signal_Name (Bblk, Get_Name (Base), Kind);
      else
         Bblk := Get_Instance_By_Scope (Block, Info.Obj_Scope);
         case Kind is
            when Signal_Sig =>
               Slot := Info.Slot;
            when Signal_Val =>
               Slot := Info.Slot + 1;
            when Signal_Init =>
               Slot := Info.Slot + 2;
         end case;
         Base_Val := Bblk.Objects (Slot);
      end if;
      Execute_Name_With_Base (Block, Expr, Base_Val, Res, Is_Sig);
      pragma Assert (Is_Sig);
      return Res;
   end Execute_Signal_Name;

   --  Indexed element will be at Pfx.Val_Array.V (Pos + 1)
   procedure Execute_Indexed_Name (Block: Block_Instance_Acc;
                                   Expr: Iir;
                                   Pfx : Iir_Value_Literal_Acc;
                                   Pos : out Iir_Index32)
   is
      pragma Assert (Get_Kind (Expr) = Iir_Kind_Indexed_Name);
      Index_List : constant Iir_Flist := Get_Index_List (Expr);
      Nbr_Dimensions : constant Iir_Index32 :=
        Iir_Index32 (Get_Nbr_Elements (Index_List));
      Index: Iir;
      Value: Iir_Value_Literal_Acc;
      Off : Iir_Index32;
   begin
      for I in 1 .. Nbr_Dimensions loop
         Index := Get_Nth_Element (Index_List, Natural (I - 1));
         Value := Execute_Expression (Block, Index);
         Off := Get_Index_Offset (Value, Pfx.Bounds.D (I), Expr);
         if I = 1 then
            Pos := Off;
         else
            Pos := Pos * Pfx.Bounds.D (I).Length + Off;
         end if;
      end loop;
   end Execute_Indexed_Name;

   --  Indexed element will be at Pfx.Val_Array.V (Pos)
   procedure Execute_Slice_Name (Prefix_Array: Iir_Value_Literal_Acc;
                                 Srange : Iir_Value_Literal_Acc;
                                 Low : out Iir_Index32;
                                 High : out Iir_Index32;
                                 Loc : Iir)
   is
      Index_Order : Order;
      -- Lower and upper bounds of the slice.
   begin
      pragma Assert (Prefix_Array /= null);

      --  LRM93 6.5
      --  It is an error if the direction of the discrete range is not
      --  the same as that of the index range of the array denoted by
      --  the prefix of the slice name.
      if Srange.Dir /= Prefix_Array.Bounds.D (1).Dir then
         Error_Msg_Exec ("slice direction mismatch", Loc);
      end if;

      --  LRM93 6.5
      --  It is an error if either of the bounds of the
      --  discrete range does not belong to the index range of the
      --  prefixing array, unless the slice is a null slice.
      Index_Order := Compare_Value (Srange.Left, Srange.Right);
      if (Srange.Dir = Iir_To and Index_Order = Greater)
        or (Srange.Dir = Iir_Downto and Index_Order = Less)
      then
         --  Null slice.
         Low := 1;
         High := 0;
      else
         Low := Get_Index_Offset
           (Srange.Left, Prefix_Array.Bounds.D (1), Loc);
         High := Get_Index_Offset
           (Srange.Right, Prefix_Array.Bounds.D (1), Loc);
      end if;
   end Execute_Slice_Name;

   procedure Execute_Name_With_Base (Block: Block_Instance_Acc;
                                     Expr: Iir;
                                     Base : Iir_Value_Literal_Acc;
                                     Res : out Iir_Value_Literal_Acc;
                                     Is_Sig : out Boolean) is
   begin
      --  Default value
      Is_Sig := False;

      case Get_Kind (Expr) is
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Guard_Signal_Declaration
           | Iir_Kind_Stable_Attribute
           | Iir_Kind_Quiet_Attribute
           | Iir_Kind_Delayed_Attribute
           | Iir_Kind_Transaction_Attribute =>
            Is_Sig := True;
            if Base /= null then
               Res := Base;
            else
               Res := Get_Instance_Object (Block, Expr);
            end if;

         when Iir_Kind_Object_Alias_Declaration =>
            --  FIXME: add a flag ?
            Is_Sig := Is_Signal_Object (Expr);
            if Base /= null then
               Res := Base;
            else
               Res := Get_Instance_Object (Block, Expr);
            end if;

         when Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Constant_Declaration
           | Iir_Kind_Interface_Variable_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_File_Declaration
           | Iir_Kind_Attribute_Value
           | Iir_Kind_Iterator_Declaration
           | Iir_Kind_Terminal_Declaration
           | Iir_Kinds_Quantity_Declaration
           | Iir_Kind_Psl_Endpoint_Declaration =>
            if Base /= null then
               Res := Base;
            else
               Res := Get_Instance_Object (Block, Expr);
            end if;

         when Iir_Kind_Indexed_Name =>
            declare
               Pfx : Iir_Value_Literal_Acc;
               Pos : Iir_Index32;
            begin
               Execute_Name_With_Base
                 (Block, Get_Prefix (Expr), Base, Pfx, Is_Sig);
               Execute_Indexed_Name (Block, Expr, Pfx, Pos);
               Res := Pfx.Val_Array.V (Pos + 1);
            end;

         when Iir_Kind_Slice_Name =>
            declare
               Prefix_Array: Iir_Value_Literal_Acc;
               Srange : Iir_Value_Literal_Acc;
               Low, High: Iir_Index32;
            begin
               Execute_Name_With_Base
                 (Block, Get_Prefix (Expr), Base, Prefix_Array, Is_Sig);

               Srange := Execute_Bounds (Block, Get_Suffix (Expr));
               Execute_Slice_Name (Prefix_Array, Srange, Low, High, Expr);

               Res := Create_Array_Value (High - Low + 1, 1);
               Res.Bounds.D (1) := Srange;
               for I in Low .. High loop
                  Res.Val_Array.V (1 + I - Low) :=
                    Prefix_Array.Val_Array.V (1 + I);
               end loop;
            end;

         when Iir_Kind_Selected_Element =>
            declare
               Prefix: Iir_Value_Literal_Acc;
               Pos: Iir_Index32;
            begin
               Execute_Name_With_Base
                 (Block, Get_Prefix (Expr), Base, Prefix, Is_Sig);
               Pos := Get_Element_Position (Get_Named_Entity (Expr));
               Res := Prefix.Val_Record.V (Pos + 1);
            end;

         when Iir_Kind_Dereference
           | Iir_Kind_Implicit_Dereference =>
            declare
               Prefix: Iir_Value_Literal_Acc;
            begin
               Prefix := Execute_Name (Block, Get_Prefix (Expr));
               Res := Prefix.Val_Access;
               if Res = null then
                  Error_Msg_Exec ("deferencing null access", Expr);
               end if;
            end;

         when Iir_Kinds_Denoting_Name
           | Iir_Kind_Attribute_Name =>
            Execute_Name_With_Base
              (Block, Get_Named_Entity (Expr), Base, Res, Is_Sig);

         when Iir_Kind_Function_Call =>
            --  A prefix can be an expression
            if Base /= null then
               raise Internal_Error;
            end if;
            Res := Execute_Expression (Block, Expr);

         when Iir_Kind_Aggregate =>
            Res := Execute_Name_Aggregate (Block, Expr, Get_Type (Expr));

         when Iir_Kind_Image_Attribute =>
            Res := Execute_Image_Attribute (Block, Expr);

         when Iir_Kind_Path_Name_Attribute
           | Iir_Kind_Instance_Name_Attribute =>
            Res := Execute_Path_Instance_Name_Attribute (Block, Expr);

         when others =>
            Error_Kind ("execute_name_with_base", Expr);
      end case;
   end Execute_Name_With_Base;

   function Execute_Name (Block: Block_Instance_Acc;
                          Expr: Iir;
                          Ref : Boolean := False)
                         return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
      Is_Sig : Boolean;
   begin
      Execute_Name_With_Base (Block, Expr, null, Res, Is_Sig);
      if not Is_Sig or else Ref then
         return Res;
      else
         return Execute_Signal_Value (Res);
      end if;
   end Execute_Name;

   function Execute_Value_Attribute (Block: Block_Instance_Acc;
                                     Str_Val : Iir_Value_Literal_Acc;
                                     Expr: Iir)
                                    return Iir_Value_Literal_Acc
   is
      use Grt_Interface;
      use Name_Table;
      pragma Unreferenced (Block);

      Expr_Type : constant Iir := Get_Type (Expr);
      Res : Iir_Value_Literal_Acc;

      Str_Bnd : aliased Std_String_Bound := Build_Bound (Str_Val);
      Str_Str : aliased Std_String_Uncons (1 .. Str_Bnd.Dim_1.Length);
      Str : aliased Std_String := (To_Std_String_Basep (Str_Str'Address),
                                   To_Std_String_Boundp (Str_Bnd'Address));
   begin
      Set_Std_String_From_Iir_Value (Str, Str_Val);
      case Get_Kind (Expr_Type) is
         when Iir_Kind_Integer_Type_Definition
           | Iir_Kind_Integer_Subtype_Definition =>
            Res := Create_I64_Value
              (Grt.Values.Ghdl_Value_I64 (Str'Unrestricted_Access));
         when Iir_Kind_Floating_Type_Definition
           | Iir_Kind_Floating_Subtype_Definition =>
            Res := Create_F64_Value
              (Grt.Values.Ghdl_Value_F64 (Str'Unrestricted_Access));
         when Iir_Kind_Physical_Type_Definition
           | Iir_Kind_Physical_Subtype_Definition =>
            declare
               Is_Real : Boolean;
               Lit_Pos : Ghdl_Index_Type;
               Lit_End : Ghdl_Index_Type;
               Unit_Pos : Ghdl_Index_Type;
               Unit_Len : Ghdl_Index_Type;
               Mult : Ghdl_I64;
               Unit : Iir;
               Unit_Id : Name_Id;
            begin
               Grt.Values.Ghdl_Value_Physical_Split
                 (Str'Unrestricted_Access,
                  Is_Real, Lit_Pos, Lit_End, Unit_Pos);

               --  Find unit.
               Unit_Len := 0;
               Unit_Pos := Unit_Pos + 1;   --  From 0 based to 1 based
               for I in Unit_Pos .. Str_Bnd.Dim_1.Length loop
                  exit when Grt.Strings.Is_Whitespace (Str_Str (I));
                  Unit_Len := Unit_Len + 1;
                  Str_Str (I) := Grt.Strings.To_Lower (Str_Str (I));
               end loop;

               Unit := Get_Primary_Unit (Expr_Type);
               while Unit /= Null_Iir loop
                  Unit_Id := Get_Identifier (Unit);
                  exit when Get_Name_Length (Unit_Id) = Natural (Unit_Len)
                    and then Image (Unit_Id) =
                    String (Str_Str (Unit_Pos .. Unit_Pos + Unit_Len - 1));
                  Unit := Get_Chain (Unit);
               end loop;

               if Unit = Null_Iir then
                  Error_Msg_Exec ("incorrect unit name", Expr);
               end if;
               Mult := Ghdl_I64 (Get_Value (Get_Physical_Literal (Unit)));

               Str_Bnd.Dim_1.Length := Lit_End;
               if Is_Real then
                  Res := Create_I64_Value
                    (Ghdl_I64
                       (Grt.Values.Ghdl_Value_F64 (Str'Unrestricted_Access)
                          * Ghdl_F64 (Mult)));
               else
                  Res := Create_I64_Value
                    (Grt.Values.Ghdl_Value_I64 (Str'Unrestricted_Access)
                       * Mult);
               end if;
            end;
         when Iir_Kind_Enumeration_Type_Definition
           | Iir_Kind_Enumeration_Subtype_Definition =>
            declare
               Enums : constant Iir_Flist :=
                 Get_Enumeration_Literal_List (Get_Base_Type (Expr_Type));
               Lit_Start : Ghdl_Index_Type;
               Lit_End : Ghdl_Index_Type;
               Enum : Iir;
               Lit_Id : Name_Id;
               Enum_Id : Name_Id;
            begin
               --  Remove leading and trailing blanks
               for I in Str_Str'Range loop
                  if not Grt.Strings.Is_Whitespace (Str_Str (I)) then
                     Lit_Start := I;
                     exit;
                  end if;
               end loop;
               for I in reverse Lit_Start .. Str_Str'Last loop
                  if not Grt.Strings.Is_Whitespace (Str_Str (I)) then
                     Lit_End := I;
                     exit;
                  end if;
               end loop;

               if Str_Str (Lit_Start) = '''
                 and then Str_Str (Lit_End) = '''
                 and then Lit_End = Lit_Start + 2
               then
                  --  Enumeration literal.
                  Lit_Id := Get_Identifier (Str_Str (Lit_Start + 1));

                  for I in Natural loop
                     Enum := Get_Nth_Element (Enums, I);
                     exit when Enum = Null_Iir;
                     exit when Get_Identifier (Enum) = Lit_Id;
                  end loop;
               else
                  --  Literal identifier.
                  --  Convert to lower case.
                  for I in Lit_Start .. Lit_End loop
                     Str_Str (I) := Grt.Strings.To_Lower (Str_Str (I));
                  end loop;

                  for I in Natural loop
                     Enum := Get_Nth_Element (Enums, I);
                     exit when Enum = Null_Iir;
                     Enum_Id := Get_Identifier (Enum);
                     exit when (Get_Name_Length (Enum_Id) =
                                  Natural (Lit_End - Lit_Start + 1))
                       and then (Image (Enum_Id) =
                                   String (Str_Str (Lit_Start .. Lit_End)));
                  end loop;
               end if;

               if Enum = Null_Iir then
                  Error_Msg_Exec
                    ("incorrect enumeration literal for 'value", Expr);
               end if;

               return Create_Enum_Value
                 (Natural (Get_Enum_Pos (Enum)), Expr_Type);
            end;
         when others =>
            Error_Kind ("value_attribute", Expr_Type);
      end case;
      return Res;
   end Execute_Value_Attribute;

   --  For 'Last_Event and 'Last_Active: convert the absolute last time to
   --  a relative delay.
   function To_Relative_Time (T : Ghdl_I64) return Iir_Value_Literal_Acc
   is
      A : Ghdl_I64;
   begin
      if T = -Ghdl_I64'Last then
         A := Ghdl_I64'Last;
      else
         A := Ghdl_I64 (Grt.Types.Current_Time) - T;
      end if;
      return Create_I64_Value (A);
   end To_Relative_Time;

   -- Evaluate an expression.
   function Execute_Expression (Block: Block_Instance_Acc; Expr: Iir)
                               return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Guard_Signal_Declaration
           | Iir_Kind_Stable_Attribute
           | Iir_Kind_Quiet_Attribute
           | Iir_Kind_Delayed_Attribute
           | Iir_Kind_Transaction_Attribute
           | Iir_Kind_Object_Alias_Declaration =>
            Res := Execute_Name (Block, Expr);
            return Res;

         when Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Constant_Declaration
           | Iir_Kind_Interface_Variable_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_File_Declaration
           | Iir_Kind_Attribute_Value
           | Iir_Kind_Iterator_Declaration
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Slice_Name
           | Iir_Kind_Selected_Element
           | Iir_Kind_Dereference
           | Iir_Kind_Implicit_Dereference
           | Iir_Kind_Psl_Endpoint_Declaration =>
            return Execute_Name (Block, Expr);

         when Iir_Kinds_Denoting_Name
           | Iir_Kind_Attribute_Name =>
            return Execute_Expression (Block, Get_Named_Entity (Expr));

         when Iir_Kind_Aggregate =>
            return Execute_Aggregate (Block, Expr, Block, Get_Type (Expr));
         when Iir_Kind_Simple_Aggregate =>
            return Execute_Simple_Aggregate (Block, Expr);

         when Iir_Kinds_Dyadic_Operator
           | Iir_Kinds_Monadic_Operator =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
            begin
               if Get_Implicit_Definition (Imp) in Iir_Predefined_Explicit then
                  return Execute_Function_Call (Block, Expr, Imp);
               else
                  if Get_Kind (Expr) in Iir_Kinds_Dyadic_Operator then
                     Res := Execute_Implicit_Function
                       (Block, Expr, Get_Left (Expr), Get_Right (Expr),
                        Get_Type (Expr));
                  else
                     Res := Execute_Implicit_Function
                       (Block, Expr, Get_Operand (Expr), Null_Iir,
                        Get_Type (Expr));
                  end if;
                  return Res;
               end if;
            end;

         when Iir_Kind_Function_Call =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Assoc : Iir;
               Args : Iir_Array (0 .. 1);
            begin
               if Get_Implicit_Definition (Imp) in Iir_Predefined_Explicit then
                  return Execute_Function_Call (Block, Expr, Imp);
               else
                  Assoc := Get_Parameter_Association_Chain (Expr);
                  if Assoc /= Null_Iir then
                     Args (0) := Get_Actual (Assoc);
                     Assoc := Get_Chain (Assoc);
                  else
                     Args (0) := Null_Iir;
                  end if;
                  if Assoc /= Null_Iir  then
                     Args (1) := Get_Actual (Assoc);
                  else
                     Args (1) := Null_Iir;
                  end if;
                  return Execute_Implicit_Function
                    (Block, Expr, Args (0), Args (1), Get_Type (Expr));
               end if;
            end;

         when Iir_Kind_Integer_Literal =>
            declare
               Lit_Type : constant Iir := Get_Base_Type (Get_Type (Expr));
               Lit : constant Int64 := Get_Value (Expr);
            begin
               case Get_Info (Lit_Type).Scalar_Mode is
                  when Iir_Value_I64 =>
                     return Create_I64_Value (Ghdl_I64 (Lit));
                  when others =>
                     raise Internal_Error;
               end case;
            end;

         when Iir_Kind_Floating_Point_Literal =>
            return Create_F64_Value (Ghdl_F64 (Get_Fp_Value (Expr)));

         when Iir_Kind_Enumeration_Literal =>
            declare
               Lit_Type : constant Iir := Get_Base_Type (Get_Type (Expr));
               Lit : constant Iir_Int32 := Get_Enum_Pos (Expr);
            begin
               case Get_Info (Lit_Type).Scalar_Mode is
                  when Iir_Value_B1 =>
                     return Create_B1_Value (Ghdl_B1'Val (Lit));
                  when Iir_Value_E8 =>
                     return Create_E8_Value (Ghdl_E8'Val (Lit));
                  when Iir_Value_E32 =>
                     return Create_E32_Value (Ghdl_E32 (Lit));
                  when others =>
                     raise Internal_Error;
               end case;
            end;

         when Iir_Kind_Physical_Int_Literal
           | Iir_Kind_Physical_Fp_Literal
           | Iir_Kind_Unit_Declaration =>
            return Create_I64_Value
              (Ghdl_I64 (Vhdl.Evaluation.Get_Physical_Value (Expr)));

         when Iir_Kind_String_Literal8 =>
            return Execute_String_Literal (Expr, Block);

         when Iir_Kind_Null_Literal =>
            return Null_Lit;

         when Iir_Kind_Overflow_Literal =>
            Error_Msg_Constraint (Expr);
            return null;

         when Iir_Kind_Parenthesis_Expression =>
            return Execute_Expression (Block, Get_Expression (Expr));

         when Iir_Kind_Type_Conversion =>
            return Execute_Type_Conversion
              (Block, Execute_Expression (Block, Get_Expression (Expr)),
               Get_Type (Expr), Expr);

         when Iir_Kind_Qualified_Expression =>
            Res := Execute_Expression_With_Type
              (Block, Get_Expression (Expr), Get_Type (Get_Type_Mark (Expr)));
            return Res;

         when Iir_Kind_Allocator_By_Expression =>
            Res := Execute_Expression (Block, Get_Expression (Expr));
            Res := Unshare_Heap (Res);
            return Create_Access_Value (Res);

         when Iir_Kind_Allocator_By_Subtype =>
            Res := Create_Value_For_Type
              (Block,
               Get_Type_Of_Subtype_Indication (Get_Subtype_Indication (Expr)),
               Init_Value_Default);
            Res := Unshare_Heap (Res);
            return Create_Access_Value (Res);

         when Iir_Kind_Left_Type_Attribute =>
            Res := Execute_Bounds (Block, Get_Prefix (Expr));
            return Execute_Left_Limit (Res);

         when Iir_Kind_Right_Type_Attribute =>
            Res := Execute_Bounds (Block, Get_Prefix (Expr));
            return Execute_Right_Limit (Res);

         when Iir_Kind_High_Type_Attribute =>
            Res := Execute_Bounds (Block, Get_Prefix (Expr));
            return Execute_High_Limit (Res);

         when Iir_Kind_Low_Type_Attribute =>
            Res := Execute_Bounds (Block, Get_Prefix (Expr));
            return Execute_Low_Limit (Res);

         when Iir_Kind_High_Array_Attribute =>
            Res := Execute_Indexes (Block, Expr);
            return Execute_High_Limit (Res);

         when Iir_Kind_Low_Array_Attribute =>
            Res := Execute_Indexes (Block, Expr);
            return Execute_Low_Limit (Res);

         when Iir_Kind_Left_Array_Attribute =>
            Res := Execute_Indexes (Block, Expr);
            return Execute_Left_Limit (Res);

         when Iir_Kind_Right_Array_Attribute =>
            Res := Execute_Indexes (Block, Expr);
            return Execute_Right_Limit (Res);

         when Iir_Kind_Length_Array_Attribute =>
            Res := Execute_Indexes (Block, Expr);
            return Execute_Length (Res);

         when Iir_Kind_Ascending_Array_Attribute =>
            Res := Execute_Indexes (Block, Expr);
            return Boolean_To_Lit (Res.Dir = Iir_To);

         when Iir_Kind_Event_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return Boolean_To_Lit (Execute_Event_Attribute (Res));

         when Iir_Kind_Active_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return Boolean_To_Lit (Execute_Active_Attribute (Res));

         when Iir_Kind_Driving_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return Boolean_To_Lit (Execute_Driving_Attribute (Res));

         when Iir_Kind_Last_Value_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return Execute_Last_Value_Attribute (Res);

         when Iir_Kind_Driving_Value_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return Execute_Driving_Value_Attribute (Res);

         when Iir_Kind_Last_Event_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return To_Relative_Time (Execute_Last_Event_Attribute (Res));

         when Iir_Kind_Last_Active_Attribute =>
            Res := Execute_Name (Block, Get_Prefix (Expr), True);
            return To_Relative_Time (Execute_Last_Active_Attribute (Res));

         when Iir_Kind_Val_Attribute =>
            declare
               Prefix_Type: constant Iir := Get_Type (Get_Prefix (Expr));
               Base_Type : constant Iir := Get_Base_Type (Prefix_Type);
               Mode : constant Iir_Value_Kind :=
                 Get_Info (Base_Type).Scalar_Mode;
            begin
               Res := Execute_Expression (Block, Get_Parameter (Expr));
               case Iir_Value_Discrete (Mode) is
                  when Iir_Value_I64 =>
                     null;
                  when Iir_Value_E8 =>
                     Res := Create_E8_Value (Ghdl_E8 (Res.I64));
                  when Iir_Value_E32 =>
                     Res := Create_E32_Value (Ghdl_E32 (Res.I64));
                  when Iir_Value_B1 =>
                     Res := Create_B1_Value (Ghdl_B1'Val (Res.I64));
               end case;
               Check_Constraints (Block, Res, Prefix_Type, Expr);
               return Res;
            end;

         when Iir_Kind_Pos_Attribute =>
            declare
               N_Res: Iir_Value_Literal_Acc;
               Prefix_Type: constant Iir := Get_Type (Get_Prefix (Expr));
               Base_Type : constant Iir := Get_Base_Type (Prefix_Type);
               Mode : constant Iir_Value_Kind :=
                 Get_Info (Base_Type).Scalar_Mode;
            begin
               Res := Execute_Expression (Block, Get_Parameter (Expr));
               case Iir_Value_Discrete (Mode) is
                  when Iir_Value_I64 =>
                     null;
                  when Iir_Value_B1 =>
                     N_Res := Create_I64_Value (Ghdl_B1'Pos (Res.B1));
                     Res := N_Res;
                  when Iir_Value_E8 =>
                     N_Res := Create_I64_Value (Ghdl_I64 (Res.E8));
                     Res := N_Res;
                  when Iir_Value_E32 =>
                     N_Res := Create_I64_Value (Ghdl_I64 (Res.E32));
                     Res := N_Res;
               end case;
               Check_Constraints (Block, Res, Get_Type (Expr), Expr);
               return Res;
            end;

         when Iir_Kind_Succ_Attribute =>
            Res := Execute_Expression (Block, Get_Parameter (Expr));
            Res := Execute_Inc (Res, Expr);
            Check_Constraints (Block, Res, Get_Type (Expr), Expr);
            return Res;

         when Iir_Kind_Pred_Attribute =>
            Res := Execute_Expression (Block, Get_Parameter (Expr));
            Res := Execute_Dec (Res, Expr);
            Check_Constraints (Block, Res, Get_Type (Expr), Expr);
            return Res;

         when Iir_Kind_Leftof_Attribute =>
            declare
               Bound : Iir_Value_Literal_Acc;
            begin
               Res := Execute_Expression (Block, Get_Parameter (Expr));
               Bound := Execute_Bounds
                 (Block, Get_Type (Get_Prefix (Expr)));
               case Bound.Dir is
                  when Iir_To =>
                     Res := Execute_Dec (Res, Expr);
                  when Iir_Downto =>
                     Res := Execute_Inc (Res, Expr);
               end case;
               Check_Constraints (Block, Res, Get_Type (Expr), Expr);
               return Res;
            end;

         when Iir_Kind_Rightof_Attribute =>
            declare
               Bound : Iir_Value_Literal_Acc;
            begin
               Res := Execute_Expression (Block, Get_Parameter (Expr));
               Bound := Execute_Bounds
                 (Block, Get_Type (Get_Prefix (Expr)));
               case Bound.Dir is
                  when Iir_Downto =>
                     Res := Execute_Dec (Res, Expr);
                  when Iir_To =>
                     Res := Execute_Inc (Res, Expr);
               end case;
               Check_Constraints (Block, Res, Get_Type (Expr), Expr);
               return Res;
            end;

         when Iir_Kind_Image_Attribute =>
            return Execute_Image_Attribute (Block, Expr);

         when Iir_Kind_Value_Attribute =>
            Res := Execute_Expression (Block, Get_Parameter (Expr));
            return Execute_Value_Attribute (Block, Res, Expr);

         when Iir_Kind_Path_Name_Attribute
           | Iir_Kind_Instance_Name_Attribute =>
            return Execute_Path_Instance_Name_Attribute (Block, Expr);

         when others =>
            Error_Kind ("execute_expression", Expr);
      end case;
   end Execute_Expression;

   procedure Execute_Dyadic_Association (Out_Block: Block_Instance_Acc;
                                         In_Block: Block_Instance_Acc;
                                         Expr : Iir;
                                         Inter_Chain: Iir)
   is
      Inter: Iir;
      Val: Iir_Value_Literal_Acc;
   begin
      Inter := Inter_Chain;
      for I in 0 .. 1 loop
         if I = 0 then
            Val := Execute_Expression (Out_Block, Get_Left (Expr));
         else
            Val := Execute_Expression (Out_Block, Get_Right (Expr));
         end if;
         Implicit_Array_Conversion (In_Block, Val, Get_Type (Inter), Expr);
         Check_Constraints (In_Block, Val, Get_Type (Inter), Expr);

         Elaboration.Create_Object (In_Block, Inter);
         In_Block.Objects (Get_Info (Inter).Slot) :=
           Unshare (Val, Instance_Pool);
         Inter := Get_Chain (Inter);
      end loop;
   end Execute_Dyadic_Association;

   procedure Execute_Monadic_Association (Out_Block: Block_Instance_Acc;
                                          In_Block: Block_Instance_Acc;
                                          Expr : Iir;
                                          Inter: Iir)
   is
      Val: Iir_Value_Literal_Acc;
   begin
      Val := Execute_Expression (Out_Block, Get_Operand (Expr));
      Implicit_Array_Conversion (In_Block, Val, Get_Type (Inter), Expr);
      Check_Constraints (In_Block, Val, Get_Type (Inter), Expr);

      Elaboration.Create_Object (In_Block, Inter);
      In_Block.Objects (Get_Info (Inter).Slot) :=
        Unshare (Val, Instance_Pool);
   end Execute_Monadic_Association;

   --  Like Get_Subprogram_Body, but also works for instances, where
   --  instantiated nodes have no bodies.
   --  FIXME: maybe fix the issue directly in Sem_Inst ?
   function Get_Subprogram_Body_Origin (Spec : Iir) return Iir
   is
      Res : constant Iir := Get_Subprogram_Body (Spec);
      Orig : Iir;
   begin
      if Res /= Null_Iir then
         return Res;
      else
         Orig := Vhdl.Sem_Inst.Get_Origin (Spec);
         pragma Assert (Orig /= Null_Iir);
         return Get_Subprogram_Body_Origin (Orig);
      end if;
   end Get_Subprogram_Body_Origin;

   --  Like Get_Protected_Type_Body, but also works for instances, where
   --  instantiated nodes have no bodies.
   --  FIXME: maybe fix the issue directly in Sem_Inst ?
   function Get_Protected_Type_Body_Origin (Spec : Iir) return Iir
   is
      Res : constant Iir := Get_Protected_Type_Body (Spec);
      Orig : Iir;
   begin
      if Res /= Null_Iir then
         return Res;
      else
         Orig := Vhdl.Sem_Inst.Get_Origin (Spec);
         return Get_Protected_Type_Body_Origin (Orig);
      end if;
   end Get_Protected_Type_Body_Origin;

   --  Create a block instance for subprogram IMP.
   function Create_Subprogram_Instance (Instance : Block_Instance_Acc;
                                        Prot_Obj : Block_Instance_Acc;
                                        Imp : Iir)
                                       return Block_Instance_Acc
   is
      Parent : Iir;
      Bod : Iir;

      Up_Block: Block_Instance_Acc;
      Up_Info : Sim_Info_Acc;

      Label : Iir;
   begin
      case Get_Kind (Imp) is
         when Iir_Kinds_Subprogram_Declaration =>
            Bod := Get_Subprogram_Body_Origin (Imp);
            Parent := Get_Parent (Imp);
            Label := Get_Subprogram_Specification (Bod);
         when Iir_Kind_Protected_Type_Declaration =>
            --  The parent of the protected type body must have the same scope
            --  as the parent of the protected type declaration.
            Bod := Get_Protected_Type_Body_Origin (Imp);
            Parent := Get_Parent (Get_Type_Declarator (Imp));
            Label := Imp;
         when others =>
            Error_Kind ("create_subprogram_instance", Imp);
      end case;

      if Prot_Obj /= null then
         --  This is a call to a method (from the outside to a subprogram of
         --  a protected type). Put the protected object as upblock.
         Up_Block := Prot_Obj;
      else
         --  This is a normal subprogram call.
         Up_Info := Get_Info_For_Scope (Parent);
         Up_Block := Get_Instance_By_Scope (Instance, Up_Info);
      end if;

      --  Extract the info from the body, as it is complete (has slot for
      --  internal declarations).  Usually, body and spec share the same info,
      --  but there are exceptions: there can be multiple spec for the same
      --  body for shared generic packages.
      declare
         Func_Info : constant Sim_Info_Acc := Get_Info (Bod);

         subtype Block_Type is Block_Instance_Type (Func_Info.Nbr_Objects);
         function To_Block_Instance_Acc is new
           Ada.Unchecked_Conversion (System.Address, Block_Instance_Acc);
         function Alloc_Block_Instance is new
           Alloc_On_Pool_Addr (Block_Type);

         Res : Block_Instance_Acc;
      begin
         Res := To_Block_Instance_Acc
           (Alloc_Block_Instance
              (Instance_Pool,
               Block_Instance_Type'(Max_Objs => Func_Info.Nbr_Objects,
                                    Id => No_Block_Instance_Id,
                                    Block_Scope => Get_Info (Label),
                                    Uninst_Scope => null,
                                    Up_Block => Up_Block,
                                    Label => Imp,
                                    Bod => Bod,
                                    Stmt => Null_Iir,
                                    Parent => Instance,
                                    Children => null,
                                    Brother => null,
                                    Marker => Empty_Marker,
                                    Objects => (others => null),
                                    Elab_Objects => 0,
                                    In_Wait_Flag => False,
                                    Actuals_Ref => null,
                                    Result => null)));
         return Res;
      end;
   end Create_Subprogram_Instance;

   function Get_Protected_Object_Instance
     (Block : Block_Instance_Acc; Call : Iir) return Block_Instance_Acc
   is
      Meth_Obj : constant Iir := Get_Method_Object (Call);
      Obj : Iir_Value_Literal_Acc;
   begin
      if Meth_Obj = Null_Iir then
         return null;
      else
         Obj := Execute_Name (Block, Meth_Obj, True);
         return Protected_Table.Table (Obj.Prot);
      end if;
   end Get_Protected_Object_Instance;

   -- Destroy a dynamic block_instance.
   procedure Execute_Subprogram_Call_Final (Instance : Block_Instance_Acc) is
   begin
      Finalize_Declarative_Part
        (Instance, Get_Declaration_Chain (Instance.Bod));
   end Execute_Subprogram_Call_Final;

   function Execute_Function_Body (Instance : Block_Instance_Acc)
                                  return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
   begin
      Current_Process.Instance := Instance;

      Elaborate_Declarative_Part
        (Instance, Get_Declaration_Chain (Instance.Bod));

      -- execute statements
      Instance.Stmt := Get_Sequential_Statement_Chain (Instance.Bod);
      Execute_Sequential_Statements (Current_Process);
      pragma Assert (Current_Process.Instance = Instance);

      if Instance.Result = null then
         Error_Msg_Exec
           ("function scope exited without a return statement",
            Instance.Label);
      end if;

      -- Free variables, slots...
      -- Need to copy the return value, because it can contains values from
      -- arguments.
      Res := Instance.Result;

      Current_Process.Instance := Instance.Parent;
      Execute_Subprogram_Call_Final (Instance);

      return Res;
   end Execute_Function_Body;

   function Execute_Assoc_Function_Conversion (Block : Block_Instance_Acc;
                                               Func : Iir;
                                               Prot_Block : Block_Instance_Acc;
                                               Val : Iir_Value_Literal_Acc)
                                              return Iir_Value_Literal_Acc
   is
      Inter : Iir;
      Instance : Block_Instance_Acc;
      Res : Iir_Value_Literal_Acc;
      Marker : Mark_Type;
   begin
      Mark (Marker, Instance_Pool.all);

      -- Create an instance for this function.
      Instance := Create_Subprogram_Instance (Block, Prot_Block, Func);

      Inter := Get_Interface_Declaration_Chain (Func);
      Elaboration.Create_Object (Instance, Inter);
      --  FIXME: implicit conversion
      Instance.Objects (Get_Info (Inter).Slot) := Val;

      Res := Execute_Function_Body (Instance);
      Res := Unshare (Res, Expr_Pool'Access);
      Release (Marker, Instance_Pool.all);
      return Res;
   end Execute_Assoc_Function_Conversion;

   function Execute_Assoc_Conversion
     (Block : Block_Instance_Acc; Conv : Iir; Val : Iir_Value_Literal_Acc)
     return Iir_Value_Literal_Acc
   is
      Ent : Iir;
      Prot_Block : Block_Instance_Acc;
   begin
      case Get_Kind (Conv) is
         when Iir_Kind_Function_Call =>
            --  FIXME: shouldn't CONV always be a denoting_name ?
            Prot_Block := Get_Protected_Object_Instance (Block, Conv);
            return Execute_Assoc_Function_Conversion
              (Block, Get_Implementation (Conv), Prot_Block, Val);
         when Iir_Kind_Type_Conversion =>
            --  FIXME: shouldn't CONV always be a denoting_name ?
            return Execute_Type_Conversion (Block, Val, Get_Type (Conv), Conv);
         when Iir_Kinds_Denoting_Name
           | Iir_Kind_Function_Declaration =>
            Ent := Strip_Denoting_Name (Conv);
            if Get_Kind (Ent) = Iir_Kind_Function_Declaration then
               return Execute_Assoc_Function_Conversion
                 (Block, Ent, null, Val);
            elsif Get_Kind (Ent) in Iir_Kinds_Type_Declaration then
               return Execute_Type_Conversion
                 (Block, Val, Get_Type (Ent), Ent);
            else
               Error_Kind ("execute_assoc_conversion(1)", Ent);
            end if;
         when others =>
            Error_Kind ("execute_assoc_conversion(2)", Conv);
      end case;
   end Execute_Assoc_Conversion;

   procedure Associate_By_Reference (Block : Block_Instance_Acc;
                                     Formal : Iir;
                                     Formal_Base : Iir_Value_Literal_Acc;
                                     Actual : Iir_Value_Literal_Acc)
   is
      Prefix : constant Iir := Strip_Denoting_Name (Get_Prefix (Formal));
      Is_Sig : Boolean;
      Pfx : Iir_Value_Literal_Acc;
      Pos : Iir_Index32;
   begin
      if Get_Kind (Prefix) = Iir_Kind_Slice_Name then
         --  That case is not handled correctly.
         raise Program_Error;
      end if;
      Execute_Name_With_Base (Block, Prefix, Formal_Base, Pfx, Is_Sig);

      case Get_Kind (Formal) is
         when Iir_Kind_Indexed_Name =>
            Execute_Indexed_Name (Block, Formal, Pfx, Pos);
            Store (Pfx.Val_Array.V (Pos + 1), Actual);
         when Iir_Kind_Slice_Name =>
            declare
               Low, High : Iir_Index32;
               Srange : Iir_Value_Literal_Acc;
            begin
               Srange := Execute_Bounds (Block, Get_Suffix (Formal));
               Execute_Slice_Name (Pfx, Srange, Low, High, Formal);
               for I in 1 .. High - Low + 1 loop
                  Store (Pfx.Val_Array.V (Low + I), Actual.Val_Array.V (I));
               end loop;
            end;
         when Iir_Kind_Selected_Element =>
            Pos := Get_Element_Position (Get_Named_Entity (Formal));
            Store (Pfx.Val_Record.V (Pos + 1), Actual);
         when others =>
            Error_Kind ("associate_by_reference", Formal);
      end case;
   end Associate_By_Reference;

   --  Establish correspondance for association list ASSOC_LIST from block
   --  instance OUT_BLOCK for subprogram of block SUBPRG_BLOCK.
   procedure Execute_Association (Out_Block : Block_Instance_Acc;
                                  Subprg_Block : Block_Instance_Acc;
                                  Inter_Chain : Iir;
                                  Assoc_Chain : Iir)
   is
      Nbr_Assoc : constant Natural := Get_Chain_Length (Assoc_Chain);
      Assoc: Iir;
      Assoc_Inter : Iir;
      Actual : Iir;
      Inter: Iir;
      Formal : Iir;
      Conv : Iir;
      Val: Iir_Value_Literal_Acc;
      Assoc_Idx : Iir_Index32;
      Last_Individual : Iir_Value_Literal_Acc;
      Mode : Iir_Mode;
      Marker : Mark_Type;
   begin
      Subprg_Block.Actuals_Ref := null;
      Mark (Marker, Expr_Pool);

      Assoc := Assoc_Chain;
      Assoc_Inter := Inter_Chain;
      Assoc_Idx := 1;
      while Assoc /= Null_Iir loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);
         Formal := Get_Association_Formal (Assoc, Inter);

         --  Extract the actual value.
         case Get_Kind (Assoc) is
            when Iir_Kind_Association_Element_Open =>
               --  Not allowed in individual association.
               pragma Assert (Formal = Inter);
               pragma Assert (Get_Whole_Association_Flag (Assoc));
               Actual := Get_Default_Value (Inter);
            when Iir_Kind_Association_Element_By_Expression =>
               Actual := Get_Actual (Assoc);
            when Iir_Kind_Association_Element_By_Individual =>
               --  Directly create the whole value on the instance pool, as its
               --  life is longer than the statement.
               if Get_Kind (Inter) = Iir_Kind_Interface_Signal_Declaration then
                  Last_Individual := Create_Value_For_Type
                    (Out_Block, Get_Actual_Type (Assoc), Init_Value_Signal);
               else
                  Last_Individual := Create_Value_For_Type
                    (Out_Block, Get_Actual_Type (Assoc), Init_Value_Any);
               end if;
               Last_Individual :=
                 Unshare (Last_Individual, Instance_Pool);
               Elaboration.Create_Object (Subprg_Block, Inter);
               Subprg_Block.Objects (Get_Info (Inter).Slot) := Last_Individual;
               goto Continue;
            when others =>
               Error_Kind ("execute_association(1)", Assoc);
         end case;

         --  Compute actual value.
         case Get_Kind (Inter) is
            when Iir_Kind_Interface_Constant_Declaration
              | Iir_Kind_Interface_File_Declaration =>
               Val := Execute_Expression (Out_Block, Actual);
               Implicit_Array_Conversion
                 (Out_Block, Val, Get_Type (Formal), Assoc);
               Check_Constraints (Out_Block, Val, Get_Type (Formal), Assoc);
            when Iir_Kind_Interface_Signal_Declaration =>
               Val := Execute_Name (Out_Block, Actual, True);
               Implicit_Array_Conversion
                 (Out_Block, Val, Get_Type (Formal), Assoc);
            when Iir_Kind_Interface_Variable_Declaration =>
               Mode := Get_Mode (Inter);
               if Mode = Iir_In_Mode then
                  --  FIXME: Ref ?
                  Val := Execute_Expression (Out_Block, Actual);
               else
                  Val := Execute_Name (Out_Block, Actual, False);
               end if;

               --  FIXME: by value for scalars ?

               --  Keep ref for back-copy
               if Mode /= Iir_In_Mode then
                  if Subprg_Block.Actuals_Ref = null then
                     declare
                        subtype Actuals_Ref_Type is
                          Value_Array (Iir_Index32 (Nbr_Assoc));
                        function To_Value_Array_Acc is new
                          Ada.Unchecked_Conversion (System.Address,
                                                    Value_Array_Acc);
                        function Alloc_Actuals_Ref is new
                          Alloc_On_Pool_Addr (Actuals_Ref_Type);

                     begin
                        Subprg_Block.Actuals_Ref := To_Value_Array_Acc
                          (Alloc_Actuals_Ref
                             (Instance_Pool,
                              Actuals_Ref_Type'(Len => Iir_Index32 (Nbr_Assoc),
                                                V => (others => null))));
                     end;
                  end if;
                  Subprg_Block.Actuals_Ref.V (Assoc_Idx) :=
                    Unshare_Bounds (Val, Instance_Pool);
               end if;

               if Mode = Iir_Out_Mode then
                  if Get_Formal_Conversion (Assoc) /= Null_Iir then
                     --  For an OUT variable using an out conversion, don't
                     --  associate with the actual, create a temporary value.
                     Val := Create_Value_For_Type
                       (Out_Block, Get_Type (Formal), Init_Value_Default);
                  elsif Get_Kind (Get_Type (Formal)) in
                    Iir_Kinds_Scalar_Type_And_Subtype_Definition
                  then
                     --  These are passed by value.  Must be reset.
                     Val := Create_Value_For_Type
                       (Out_Block, Get_Type (Formal), Init_Value_Default);
                  end if;
               else
                  if Get_Kind (Assoc) =
                    Iir_Kind_Association_Element_By_Expression
                  then
                     Conv := Get_Actual_Conversion (Assoc);
                     if Conv /= Null_Iir then
                        Val := Execute_Assoc_Conversion
                          (Out_Block, Conv, Val);
                     end if;
                  end if;

                  --  FIXME: check constraints ?
               end if;

               Implicit_Array_Conversion
                 (Out_Block, Val, Get_Type (Formal), Assoc);

            when others =>
               Error_Kind ("execute_association(2)", Inter);
         end case;

         if Get_Whole_Association_Flag (Assoc) then
            case Get_Kind (Inter) is
               when Iir_Kind_Interface_Constant_Declaration
                 | Iir_Kind_Interface_Variable_Declaration
                 | Iir_Kind_Interface_File_Declaration =>
                  --  FIXME: Arguments are passed by copy.
                  Elaboration.Create_Object (Subprg_Block, Inter);
                  Subprg_Block.Objects (Get_Info (Inter).Slot) :=
                    Unshare (Val, Instance_Pool);
               when Iir_Kind_Interface_Signal_Declaration =>
                  Elaboration.Create_Signal (Subprg_Block, Inter);
                  Subprg_Block.Objects (Get_Info (Inter).Slot) :=
                    Unshare_Bounds (Val, Instance_Pool);
               when others =>
                  Error_Kind ("execute_association", Inter);
            end case;
         else
            Associate_By_Reference
              (Subprg_Block, Formal, Last_Individual, Val);
         end if;

         << Continue >> null;
         Next_Association_Interface (Assoc, Assoc_Inter);
         Assoc_Idx := Assoc_Idx + 1;
      end loop;

      Release (Marker, Expr_Pool);
   end Execute_Association;

   procedure Execute_Back_Association (Instance : Block_Instance_Acc)
   is
      Call : constant Iir := Get_Procedure_Call (Instance.Parent.Stmt);
      Imp : constant Iir := Get_Implementation (Call);
      Assoc : Iir;
      Assoc_Inter : Iir;
      Inter : Iir;
      Formal : Iir;
      Assoc_Idx : Iir_Index32;
   begin
      Assoc := Get_Parameter_Association_Chain (Call);
      Assoc_Inter := Get_Interface_Declaration_Chain (Imp);
      Assoc_Idx := 1;
      while Assoc /= Null_Iir loop
         if Get_Kind (Assoc) /= Iir_Kind_Association_Element_By_Individual then
            Inter := Get_Association_Interface (Assoc, Assoc_Inter);
            Formal := Get_Association_Formal (Assoc, Inter);

            case Get_Kind (Inter) is
               when Iir_Kind_Interface_Variable_Declaration =>
                  if Get_Mode (Inter) /= Iir_In_Mode
                    and then Get_Kind (Get_Type (Inter)) /=
                    Iir_Kind_File_Type_Definition
                  then
                     --  For out/inout variable interface, the value must
                     --  be copied (FIXME: unless when passed by reference ?).
                     declare
                        Targ : constant Iir_Value_Literal_Acc :=
                          Instance.Actuals_Ref.V (Assoc_Idx);
                        Base : constant Iir_Value_Literal_Acc :=
                          Instance.Objects (Get_Info (Inter).Slot);
                        Val : Iir_Value_Literal_Acc;
                        Conv : Iir;
                        Is_Sig : Boolean;
                        Expr_Mark : Mark_Type;
                     begin
                        Mark (Expr_Mark, Expr_Pool);

                        --  Extract for individual association.
                        Execute_Name_With_Base
                          (Instance, Formal, Base, Val, Is_Sig);
                        Conv := Get_Formal_Conversion (Assoc);
                        if Conv /= Null_Iir then
                           Val := Execute_Assoc_Conversion
                             (Instance, Conv, Val);
                           --  FIXME: free val ?
                        end if;
                        Store (Targ, Val);

                        Release (Expr_Mark, Expr_Pool);
                     end;
                  end if;
               when Iir_Kind_Interface_File_Declaration =>
                  null;
               when Iir_Kind_Interface_Signal_Declaration
                 | Iir_Kind_Interface_Constant_Declaration =>
                  null;
               when others =>
                  Error_Kind ("execute_back_association", Inter);
            end case;
         end if;
         Next_Association_Interface (Assoc, Assoc_Inter);
         Assoc_Idx := Assoc_Idx + 1;
      end loop;
   end Execute_Back_Association;

   function Execute_Foreign_Function_Call
     (Block: Block_Instance_Acc; Expr : Iir; Imp : Iir)
      return Iir_Value_Literal_Acc
   is
      Res : Iir_Value_Literal_Acc;
   begin
      case Get_Identifier (Imp) is
         when Std_Names.Name_Get_Resolution_Limit =>
            Res := Create_I64_Value (1);
         when Std_Names.Name_Textio_Read_Real =>
            Res := Create_F64_Value
              (File_Operation.Textio_Read_Real (Block.Objects (1)));
         when others =>
            Error_Msg_Exec ("unsupported foreign function call", Expr);
      end case;
      return Res;
   end Execute_Foreign_Function_Call;

   -- BLOCK is the block instance in which the function call appears.
   function Execute_Function_Call
     (Block: Block_Instance_Acc; Expr: Iir; Imp : Iir)
      return Iir_Value_Literal_Acc
   is
      Inter_Chain : constant Iir := Get_Interface_Declaration_Chain (Imp);
      Subprg_Block: Block_Instance_Acc;
      Prot_Block : Block_Instance_Acc;
      Assoc_Chain: Iir;
      Res : Iir_Value_Literal_Acc;
   begin
      Mark (Block.Marker, Instance_Pool.all);

      case Get_Kind (Expr) is
         when Iir_Kind_Function_Call =>
            Prot_Block := Get_Protected_Object_Instance (Block, Expr);
            Subprg_Block :=
              Create_Subprogram_Instance (Block, Prot_Block, Imp);
            Assoc_Chain := Get_Parameter_Association_Chain (Expr);
            Execute_Association
              (Block, Subprg_Block, Inter_Chain, Assoc_Chain);
            --  No out/inout interface for functions.
            pragma Assert (Subprg_Block.Actuals_Ref = null);
         when Iir_Kinds_Dyadic_Operator =>
            Subprg_Block := Create_Subprogram_Instance (Block, null, Imp);
            Execute_Dyadic_Association
              (Block, Subprg_Block, Expr, Inter_Chain);
         when Iir_Kinds_Monadic_Operator =>
            Subprg_Block := Create_Subprogram_Instance (Block, null, Imp);
            Execute_Monadic_Association
              (Block, Subprg_Block, Expr, Inter_Chain);
         when others =>
            Error_Kind ("execute_subprogram_call_init", Expr);
      end case;

      if Get_Foreign_Flag (Imp) then
         Res := Execute_Foreign_Function_Call (Subprg_Block, Expr, Imp);
      else
         Res := Execute_Function_Body (Subprg_Block);
      end if;

      --  Unfortunately, we don't know where the result has been allocated,
      --  so copy it before releasing the instance pool.
      Res := Unshare (Res, Expr_Pool'Access);

      Release (Block.Marker, Instance_Pool.all);

      return Res;
   end Execute_Function_Call;

   --  Slide an array VALUE using bounds from REF_VALUE.  Do not modify
   --  VALUE if not an array.
   procedure Implicit_Array_Conversion (Value : in out Iir_Value_Literal_Acc;
                                        Ref_Value : Iir_Value_Literal_Acc;
                                        Expr : Iir)
   is
      Res : Iir_Value_Literal_Acc;
   begin
      if Value.Kind /= Iir_Value_Array then
         return;
      end if;
      Res := Create_Array_Value (Value.Bounds.Nbr_Dims);
      Res.Val_Array := Value.Val_Array;
      for I in Value.Bounds.D'Range loop
         if Value.Bounds.D (I).Length /= Ref_Value.Bounds.D (I).Length then
            Error_Msg_Constraint (Expr);
            return;
         end if;
         Res.Bounds.D (I) := Ref_Value.Bounds.D (I);
      end loop;
      Value := Res;
   end Implicit_Array_Conversion;

   procedure Implicit_Array_Conversion (Instance : Block_Instance_Acc;
                                        Value : in out Iir_Value_Literal_Acc;
                                        Ref_Type : Iir;
                                        Expr : Iir)
   is
      Ref_Value : Iir_Value_Literal_Acc;
   begin
      --  Do array conversion only if REF_TYPE is a constrained array type
      --  definition.
      if Value.Kind /= Iir_Value_Array then
         return;
      end if;
      if Get_Constraint_State (Ref_Type) /= Fully_Constrained then
         return;
      end if;
      Ref_Value := Create_Array_Bounds_From_Type (Instance, Ref_Type, True);
      for I in Value.Bounds.D'Range loop
         if Value.Bounds.D (I).Length /= Ref_Value.Bounds.D (I).Length then
            Error_Msg_Constraint (Expr);
            return;
         end if;
      end loop;
      Ref_Value.Val_Array.V := Value.Val_Array.V;
      Value := Ref_Value;
   end Implicit_Array_Conversion;

   procedure Check_Range_Constraints (Instance : Block_Instance_Acc;
                                      Rng : Iir_Value_Literal_Acc;
                                      Rng_Type : Iir;
                                      Loc : Iir) is
   begin
      if not Is_Null_Range (Rng) then
         Check_Constraints (Instance, Rng.Left, Get_Type (Rng_Type), Loc);
         Check_Constraints (Instance, Rng.Right, Get_Type (Rng_Type), Loc);
      end if;
   end Check_Range_Constraints;

   procedure Check_Array_Constraints (Instance: Block_Instance_Acc;
                                      Value: Iir_Value_Literal_Acc;
                                      Def: Iir;
                                      Expr: Iir)
   is
      Index_List : Iir_Flist;
      Element_Subtype : Iir;
      New_Bounds : Iir_Value_Literal_Acc;
   begin
      --  Nothing to check for unconstrained arrays.
      if not Get_Index_Constraint_Flag (Def) then
         return;
      end if;

      Index_List := Get_Index_Subtype_List (Def);
      for I in Value.Bounds.D'Range loop
         New_Bounds := Execute_Bounds
           (Instance, Get_Nth_Element (Index_List, Natural (I - 1)));
         if not Is_Equal (Value.Bounds.D (I), New_Bounds) then
            Error_Msg_Constraint (Expr);
            return;
         end if;
      end loop;

      if Boolean'(False) then
         Index_List := Get_Index_List (Def);
         Element_Subtype := Get_Element_Subtype (Def);
         for I in Value.Val_Array.V'Range loop
            Check_Constraints
              (Instance, Value.Val_Array.V (I), Element_Subtype, Expr);
         end loop;
      end if;
   end Check_Array_Constraints;

   --  Check DEST and SRC are array compatible.
   procedure Check_Array_Match (Instance: Block_Instance_Acc;
                                Dest: Iir_Value_Literal_Acc;
                                Src : Iir_Value_Literal_Acc;
                                Expr: Iir)
   is
      pragma Unreferenced (Instance);
   begin
      for I in Dest.Bounds.D'Range loop
         if Dest.Bounds.D (I).Length /= Src.Bounds.D (I).Length then
            Error_Msg_Constraint (Expr);
            exit;
         end if;
      end loop;
   end Check_Array_Match;
   pragma Unreferenced (Check_Array_Match);

   procedure Check_Constraints (Instance: Block_Instance_Acc;
                                Value: Iir_Value_Literal_Acc;
                                Def: Iir;
                                Expr: Iir)
   is
      Base_Type : constant Iir := Get_Base_Type (Def);
      High, Low: Iir_Value_Literal_Acc;
      Bound : Iir_Value_Literal_Acc;
   begin
      case Get_Kind (Def) is
         when Iir_Kind_Integer_Subtype_Definition
           | Iir_Kind_Floating_Subtype_Definition
           | Iir_Kind_Enumeration_Subtype_Definition
           | Iir_Kind_Physical_Subtype_Definition
           | Iir_Kind_Enumeration_Type_Definition =>
            Bound := Execute_Bounds (Instance, Def);
            if Bound.Dir = Iir_To then
               High := Bound.Right;
               Low := Bound.Left;
            else
               High := Bound.Left;
               Low := Bound.Right;
            end if;
            case Iir_Value_Scalars (Get_Info (Base_Type).Scalar_Mode) is
               when Iir_Value_I64 =>
                  if Value.I64 in Low.I64 .. High.I64 then
                     return;
                  end if;
               when Iir_Value_E8 =>
                  if Value.E8 in Low.E8 .. High.E8 then
                     return;
                  end if;
               when Iir_Value_E32 =>
                  if Value.E32 in Low.E32 .. High.E32 then
                     return;
                  end if;
               when Iir_Value_F64 =>
                  if Value.F64 in Low.F64 .. High.F64 then
                     return;
                  end if;
               when Iir_Value_B1 =>
                  if Value.B1 in Low.B1 .. High.B1 then
                     return;
                  end if;
            end case;
         when Iir_Kind_Array_Subtype_Definition
           | Iir_Kind_Array_Type_Definition =>
            Check_Array_Constraints (Instance, Value, Def, Expr);
            return;
         when Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            declare
               List : constant Iir_Flist :=
                 Get_Elements_Declaration_List (Get_Base_Type (Def));
               El : Iir_Element_Declaration;
            begin
               for I in Flist_First .. Flist_Last (List) loop
                  El := Get_Nth_Element (List, I);
                  Check_Constraints
                    (Instance,
                     Value.Val_Record.V (Get_Element_Position (El) + 1),
                     Get_Type (El),
                     Expr);
               end loop;
            end;
            return;
         when Iir_Kind_Integer_Type_Definition =>
            return;
         when Iir_Kind_Floating_Type_Definition =>
            return;
         when Iir_Kind_Physical_Type_Definition =>
            return;
         when Iir_Kind_Access_Type_Definition
           | Iir_Kind_Access_Subtype_Definition =>
            return;
         when Iir_Kind_File_Type_Definition =>
            return;
         when others =>
            Error_Kind ("check_constraints", Def);
      end case;
      Error_Msg_Constraint (Expr);
   end Check_Constraints;

   function Execute_Resolution_Function
     (Block: Block_Instance_Acc; Imp : Iir; Arr : Iir_Value_Literal_Acc)
      return Iir_Value_Literal_Acc
   is
      Inter : Iir;
      Instance : Block_Instance_Acc;
   begin
      -- Create a frame for this function.
      Instance := Create_Subprogram_Instance (Block, null, Imp);

      Inter := Get_Interface_Declaration_Chain (Imp);
      Elaboration.Create_Object (Instance, Inter);
      Instance.Objects (Get_Info (Inter).Slot) := Arr;

      return Execute_Function_Body (Instance);
   end Execute_Resolution_Function;

   procedure Execute_Signal_Assignment (Instance: Block_Instance_Acc;
                                        Stmt: Iir_Signal_Assignment_Statement;
                                        Wf : Iir)
   is
      Nbr_We : constant Natural := Get_Chain_Length (Wf);

      Transactions : Transaction_Type (Nbr_We);

      We: Iir_Waveform_Element;
      Res: Iir_Value_Literal_Acc;
      Rdest: Iir_Value_Literal_Acc;
      Targ_Type : Iir;
      Marker : Mark_Type;
   begin
      Mark (Marker, Expr_Pool);

      Rdest := Execute_Name (Instance, Get_Target (Stmt), True);
      Targ_Type := Get_Type (Get_Target (Stmt));

      --  Disconnection statement.
      if Wf = Null_Iir then
         Disconnect_Signal (Rdest);
         Release (Marker, Expr_Pool);
         return;
      elsif Get_Kind (Wf) = Iir_Kind_Unaffected_Waveform then
         return;
      end if;

      Transactions.Stmt := Stmt;

      -- LRM93 8.4.1
      -- Evaluation of a waveform consists of the evaluation of each waveform
      -- elements in the waveform.
      We := Wf;
      for I in Transactions.Els'Range loop
         declare
            Trans : Transaction_El_Type renames Transactions.Els (I);
         begin
            if Get_Time (We) /= Null_Iir then
               Res := Execute_Expression (Instance, Get_Time (We));
               -- LRM93 8.4.1
               -- It is an error if the time expression in a waveform element
               -- evaluates to a negative value.
               if Res.I64 < 0 then
                  Error_Msg_Exec ("time value is negative", Get_Time (We));
               end if;
               Trans.After := Std_Time (Res.I64);
            else
               -- LRM93 8.4.1
               -- If the after clause of a waveform element is not present,
               -- then an implicit "after 0 ns" is assumed.
               Trans.After := 0;
            end if;

            -- LRM93 8.4.1
            -- It is an error if the sequence of new transactions is not in
            -- ascending order with respect to time.
            if I > 1
              and then Trans.After <= Transactions.Els (I - 1).After
            then
               Error_Msg_Exec
                 ("sequence not in ascending order with respect to time", We);
            end if;

            if Get_Kind (Get_We_Value (We)) = Iir_Kind_Null_Literal then
               -- null transaction.
               Trans.Value := null;
            else
               -- LRM93 8.4.1
               -- For the first form of waveform element, the value component
               -- of the transaction is determined by the value expression in
               -- the waveform element.
               Trans.Value := Execute_Expression_With_Type
                 (Instance, Get_We_Value (We), Targ_Type);
            end if;
         end;
         We := Get_Chain (We);
      end loop;
      pragma Assert (We = Null_Iir);

      case Get_Delay_Mechanism (Stmt) is
         when Iir_Transport_Delay =>
            Transactions.Reject := 0;
         when Iir_Inertial_Delay =>
            -- LRM93 8.4
            -- or, in the case that a pulse rejection limit is specified,
            -- a pulse whose duration is shorter than that limit will not
            -- be transmitted.
            -- Every inertially delayed signal assignment has a pulse
            -- rejection limit.
            if Get_Reject_Time_Expression (Stmt) /= Null_Iir then
               -- LRM93 8.4
               -- If the delay mechanism specifies inertial delay, and if the
               -- reserved word reject followed by a time expression is
               -- present, then the time expression specifies the pulse
               -- rejection limit.
               Res := Execute_Expression
                 (Instance, Get_Reject_Time_Expression (Stmt));
               -- LRM93 8.4
               -- It is an error if the pulse rejection limit for any
               -- inertially delayed signal assignement statement is either
               -- negative ...
               if Res.I64 < 0 then
                  Error_Msg_Exec ("reject time negative", Stmt);
               end if;
               -- LRM93 8.4
               -- ... or greather than the time expression associated with
               -- the first waveform element.
               Transactions.Reject := Std_Time (Res.I64);
               if Transactions.Reject > Transactions.Els (1).After then
                  Error_Msg_Exec
                    ("reject time greather than time expression", Stmt);
               end if;
            else
               -- LRM93 8.4
               -- In all other cases, the pulse rejection limit is the time
               -- expression associated ith the first waveform element.
               Transactions.Reject := Transactions.Els (1).After;
            end if;
      end case;

      --  FIXME: slice Transactions to remove transactions after end of time.
      Assign_Value_To_Signal (Instance, Rdest, Transactions);

      Release (Marker, Expr_Pool);
   end Execute_Signal_Assignment;

   -- Display a message when an assertion has failed.
   -- REPORT is the value (string) to display, or null to use default message.
   -- SEVERITY is the severity or null to use default (error).
   -- STMT is used to display location.
   procedure Execute_Failed_Assertion (Msg : String;
                                       Report : String;
                                       Severity : Natural;
                                       Stmt: Iir) is
   begin
      -- LRM93 8.2
      -- The error message consists of at least:

      -- 4: name of the design unit containing the assertion.
      Put (Standard_Output, Disp_Location (Stmt));

      Put (Standard_Output, ":@");
      Grt.Astdio.Vhdl.Put_Time (Grt.Stdio.stdout, Current_Time);

      -- 1: an indication that this message is from an assertion.
      Put (Standard_Output, ":(");
      Put (Standard_Output, Msg);
      Put (Standard_Output, ' ');

      -- 2: the value of the severity level.
      case Severity is
         when 0 =>
            Put (Standard_Output, "note");
         when 1 =>
            Put (Standard_Output, "warning");
         when 2 =>
            Put (Standard_Output, "error");
         when 3 =>
            Put (Standard_Output, "failure");
         when others =>
            Error_Internal (Null_Iir, "execute_failed_assertion");
      end case;
      Put (Standard_Output, "): ");

      -- 3: the value of the message string.
      Put_Line (Standard_Output, Report);

      -- Stop execution if the severity is too high.
      if Severity >= Grt.Options.Severity_Level then
         Debug (Reason_Assert);
         Grt.Errors.Fatal_Error;
      end if;
   end Execute_Failed_Assertion;

   procedure Execute_Failed_Assertion (Instance: Block_Instance_Acc;
                                       Label : String;
                                       Stmt : Iir;
                                       Default_Msg : String;
                                       Default_Severity : Natural)
   is
      Expr: Iir;
      Report, Severity_Lit: Iir_Value_Literal_Acc;
      Severity : Natural;
      Marker : Mark_Type;
   begin
      Mark (Marker, Expr_Pool);
      Expr := Get_Report_Expression (Stmt);
      if Expr /= Null_Iir then
         Report := Execute_Expression (Instance, Expr);
      else
         Report := null;
      end if;
      Expr := Get_Severity_Expression (Stmt);
      if Expr /= Null_Iir then
         Severity_Lit := Execute_Expression (Instance, Expr);
         Severity := Natural'Val (Severity_Lit.E8);
      else
         Severity := Default_Severity;
      end if;
      if Report /= null then
         declare
            Msg : String (1 .. Natural (Report.Val_Array.Len));
         begin
            for I in Report.Val_Array.V'Range loop
               Msg (Positive (I)) :=
                 Character'Val (Report.Val_Array.V (I).E8);
            end loop;
            Execute_Failed_Assertion (Label, Msg, Severity, Stmt);
         end;
      else
         Execute_Failed_Assertion (Label, Default_Msg, Severity, Stmt);
      end if;
      Release (Marker, Expr_Pool);
   end Execute_Failed_Assertion;

   function Is_In_Choice (Instance : Block_Instance_Acc;
                          Choice : Iir;
                          Expr : Iir_Value_Literal_Acc)
                         return Boolean
   is
      Res : Boolean;
   begin
      case Get_Kind (Choice) is
         when Iir_Kind_Choice_By_Others =>
            return True;
         when Iir_Kind_Choice_By_Expression =>
            declare
               Expr1: Iir_Value_Literal_Acc;
            begin
               Expr1 := Execute_Expression
                 (Instance, Get_Choice_Expression (Choice));
               Res := Is_Equal (Expr, Expr1);
               return Res;
            end;
         when Iir_Kind_Choice_By_Range =>
            declare
               A_Range : Iir_Value_Literal_Acc;
            begin
               A_Range := Execute_Bounds
                 (Instance, Get_Choice_Range (Choice));
               Res := Is_In_Range (Expr, A_Range);
            end;
            return Res;
         when others =>
            Error_Kind ("is_in_choice", Choice);
      end case;
   end Is_In_Choice;

   function Execute_Choice (Instance : Block_Instance_Acc;
                            Expr : Iir;
                            First_Assoc : Iir) return Iir
   is
      Value: Iir_Value_Literal_Acc;
      Assoc: Iir;
      Assoc_Res : Iir;
      Marker : Mark_Type;
   begin
      Mark (Marker, Expr_Pool);
      Assoc := First_Assoc;

      Value := Execute_Expression (Instance, Expr);
      if Get_Type_Staticness (Get_Type (Expr)) /= Locally
        and then Get_Kind (Assoc) = Iir_Kind_Choice_By_Expression
      then
         --  Choice is not locally constrained, check length.
         declare
            Choice_Type : constant Iir :=
              Get_Type (Get_Choice_Expression (Assoc));
            Choice_Len : Int64;
         begin
            Choice_Len := Vhdl.Evaluation.Eval_Discrete_Type_Length
              (Get_String_Type_Bound_Type (Choice_Type));
            if Choice_Len /= Int64 (Value.Bounds.D (1).Length) then
               Error_Msg_Constraint (Expr);
            end if;
         end;
      end if;

      while Assoc /= Null_Iir loop
         if not Get_Same_Alternative_Flag (Assoc) then
            Assoc_Res := Assoc;
         end if;

         if Is_In_Choice (Instance, Assoc, Value) then
            Release (Marker, Expr_Pool);
            return Assoc_Res;
         end if;

         Assoc := Get_Chain (Assoc);
      end loop;
      --  FIXME: infinite loop???
      Error_Msg_Exec ("no choice for expression", Expr);
      raise Internal_Error;
   end Execute_Choice;

   --  Return TRUE iff VAL is in the range defined by BOUNDS.
   function Is_In_Range (Val : Iir_Value_Literal_Acc;
                         Bounds : Iir_Value_Literal_Acc)
     return Boolean
   is
      Max, Min : Iir_Value_Literal_Acc;
   begin
      case Bounds.Dir is
         when Iir_To =>
            Min := Bounds.Left;
            Max := Bounds.Right;
         when Iir_Downto =>
            Min := Bounds.Right;
            Max := Bounds.Left;
      end case;

      case Iir_Value_Discrete (Val.Kind) is
         when Iir_Value_E8 =>
            return Val.E8 >= Min.E8 and Val.E8 <= Max.E8;
         when Iir_Value_E32 =>
            return Val.E32 >= Min.E32 and Val.E32 <= Max.E32;
         when Iir_Value_B1 =>
            return Val.B1 >= Min.B1 and Val.B1 <= Max.B1;
         when Iir_Value_I64 =>
            return Val.I64 >= Min.I64 and Val.I64 <= Max.I64;
      end case;
   end Is_In_Range;

   --  Increment or decrement VAL according to BOUNDS.DIR.
   --  FIXME: use increment ?
   procedure Update_Loop_Index (Val : Iir_Value_Literal_Acc;
                                Bounds : Iir_Value_Literal_Acc)
   is
   begin
      case Iir_Value_Discrete (Val.Kind) is
         when Iir_Value_E8 =>
            case Bounds.Dir is
               when Iir_To =>
                  Val.E8 := Val.E8 + 1;
               when Iir_Downto =>
                  Val.E8 := Val.E8 - 1;
            end case;
         when Iir_Value_E32 =>
            case Bounds.Dir is
               when Iir_To =>
                  Val.E32 := Val.E32 + 1;
               when Iir_Downto =>
                  Val.E32 := Val.E32 - 1;
            end case;
         when Iir_Value_B1 =>
            case Bounds.Dir is
               when Iir_To =>
                  Val.B1 := True;
               when Iir_Downto =>
                  Val.B1 := False;
            end case;
         when Iir_Value_I64 =>
            case Bounds.Dir is
               when Iir_To =>
                  Val.I64 := Val.I64 + 1;
               when Iir_Downto =>
                  Val.I64 := Val.I64 - 1;
            end case;
      end case;
   end Update_Loop_Index;

   procedure Finalize_For_Loop_Statement (Instance : Block_Instance_Acc;
                                          Stmt : Iir)
   is
   begin
      Destroy_Iterator_Declaration
        (Instance, Get_Parameter_Specification (Stmt));
   end Finalize_For_Loop_Statement;

   procedure Finalize_Loop_Statement (Instance : Block_Instance_Acc;
                                      Stmt : Iir)
   is
   begin
      if Get_Kind (Stmt) = Iir_Kind_For_Loop_Statement then
         Finalize_For_Loop_Statement (Instance, Stmt);
      end if;
   end Finalize_Loop_Statement;

   procedure Execute_For_Loop_Statement (Proc : Process_State_Acc)
   is
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Stmt : constant Iir_For_Loop_Statement := Instance.Stmt;
      Iterator : constant Iir := Get_Parameter_Specification (Stmt);
      Bounds : Iir_Value_Literal_Acc;
      Index : Iir_Value_Literal_Acc;
      Stmt_Chain : Iir;
      Is_Nul : Boolean;
      Marker : Mark_Type;
   begin
      --  Elaborate the iterator (and its type).
      Elaborate_Declaration (Instance, Iterator);

      -- Extract bounds.
      Mark (Marker, Expr_Pool);
      Bounds := Execute_Bounds (Instance, Get_Type (Iterator));
      Index := Instance.Objects (Get_Info (Iterator).Slot);
      Store (Index, Bounds.Left);
      Is_Nul := Is_Null_Range (Bounds);
      Release (Marker, Expr_Pool);

      if Is_Nul then
         -- Loop is complete.
         Finalize_For_Loop_Statement (Instance, Stmt);
         Update_Next_Statement (Proc);
      else
         Stmt_Chain := Get_Sequential_Statement_Chain (Stmt);
         if Stmt_Chain = Null_Iir then
            --  Nothing to do for an empty loop.
            Finalize_For_Loop_Statement (Instance, Stmt);
            Update_Next_Statement (Proc);
         else
            Instance.Stmt := Stmt_Chain;
         end if;
      end if;
   end Execute_For_Loop_Statement;

   --  This function is called when there is no more statements to execute
   --  in the statement list of a for_loop.  Returns FALSE in case of end of
   --  loop.
   function Finish_For_Loop_Statement (Instance : Block_Instance_Acc)
                                      return Boolean
   is
      Iterator : constant Iir := Get_Parameter_Specification (Instance.Stmt);
      Bounds : Iir_Value_Literal_Acc;
      Index : Iir_Value_Literal_Acc;
      Marker : Mark_Type;
   begin
      --  FIXME: avoid allocation.
      Mark (Marker, Expr_Pool);
      Bounds := Execute_Bounds (Instance, Get_Type (Iterator));
      Index := Instance.Objects (Get_Info (Iterator).Slot);

      if Is_Equal (Index, Bounds.Right) then
         -- Loop is complete.
         Release (Marker, Expr_Pool);
         Finalize_For_Loop_Statement (Instance, Instance.Stmt);
         return False;
      else
         -- Update the loop index.
         Update_Loop_Index (Index, Bounds);

         Release (Marker, Expr_Pool);

         -- start the loop again.
         Instance.Stmt := Get_Sequential_Statement_Chain (Instance.Stmt);
         return True;
      end if;
   end Finish_For_Loop_Statement;

   --  Evaluate boolean condition COND.  If COND is Null_Iir, returns true.
   function Execute_Condition (Instance : Block_Instance_Acc;
                               Cond : Iir) return Boolean
   is
      V : Iir_Value_Literal_Acc;
      Res : Boolean;
      Marker : Mark_Type;
   begin
      if Cond = Null_Iir then
         return True;
      end if;

      Mark (Marker, Expr_Pool);
      V := Execute_Expression (Instance, Cond);
      Res := V.B1 = True;
      Release (Marker, Expr_Pool);
      return Res;
   end Execute_Condition;

   --  Start a while loop statement, or return FALSE if the loop is not
   --  executed.
   procedure Execute_While_Loop_Statement (Proc : Process_State_Acc)
   is
      Instance: constant Block_Instance_Acc := Proc.Instance;
      Stmt : constant Iir := Instance.Stmt;
      Cond : Boolean;
   begin
      Cond := Execute_Condition (Instance, Get_Condition (Stmt));
      if Cond then
         Init_Sequential_Statements (Proc, Stmt);
      else
         Update_Next_Statement (Proc);
      end if;
   end Execute_While_Loop_Statement;

   --  This function is called when there is no more statements to execute
   --  in the statement list of a while loop.  Returns FALSE iff loop is
   --  completed.
   function Finish_While_Loop_Statement (Instance : Block_Instance_Acc)
                                        return Boolean
   is
      Cond : Boolean;
   begin
      Cond := Execute_Condition (Instance, Get_Condition (Instance.Stmt));

      if Cond then
         -- start the loop again.
         Instance.Stmt := Get_Sequential_Statement_Chain (Instance.Stmt);
         return True;
      else
         -- Loop is complete.
         return False;
      end if;
   end Finish_While_Loop_Statement;

   --  Return TRUE if the loop must be executed again
   function Finish_Loop_Statement (Instance : Block_Instance_Acc; Stmt : Iir)
                                  return Boolean is
   begin
      Instance.Stmt := Stmt;
      case Get_Kind (Stmt) is
         when Iir_Kind_While_Loop_Statement =>
            return Finish_While_Loop_Statement (Instance);
         when Iir_Kind_For_Loop_Statement =>
            return Finish_For_Loop_Statement (Instance);
         when others =>
            Error_Kind ("finish_loop_statement", Stmt);
      end case;
   end Finish_Loop_Statement;

   --  Return FALSE if the next statement should be executed (possibly
   --  updated).
   procedure Execute_Exit_Next_Statement (Proc : Process_State_Acc;
                                          Is_Exit : Boolean)
   is
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Stmt : constant Iir := Instance.Stmt;
      Label : constant Iir := Get_Named_Entity (Get_Loop_Label (Stmt));
      Cond : Boolean;
      Parent : Iir;
   begin
      Cond := Execute_Condition (Instance, Get_Condition (Stmt));
      if not Cond then
         Update_Next_Statement (Proc);
         return;
      end if;

      Parent := Stmt;
      loop
         Parent := Get_Parent (Parent);
         case Get_Kind (Parent) is
            when Iir_Kind_For_Loop_Statement
              | Iir_Kind_While_Loop_Statement =>
               if Label = Null_Iir or else Label = Parent then
                  --  Target is this statement.
                  if Is_Exit then
                     Finalize_Loop_Statement (Instance, Parent);
                     Instance.Stmt := Parent;
                     Update_Next_Statement (Proc);
                  elsif not Finish_Loop_Statement (Instance, Parent) then
                     Update_Next_Statement (Proc);
                  else
                     Init_Sequential_Statements (Proc, Parent);
                  end if;
                  return;
               else
                  Finalize_Loop_Statement (Instance, Parent);
               end if;
            when others =>
               null;
         end case;
      end loop;
   end Execute_Exit_Next_Statement;

   procedure Execute_Case_Statement (Proc : Process_State_Acc)
   is
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Stmt : constant Iir := Instance.Stmt;
      Assoc: Iir;
      Stmt_Chain : Iir;
   begin
      Assoc := Execute_Choice (Instance, Get_Expression (Stmt),
                               Get_Case_Statement_Alternative_Chain (Stmt));
      Stmt_Chain := Get_Associated_Chain (Assoc);
      if Stmt_Chain = Null_Iir then
         Update_Next_Statement (Proc);
      else
         Instance.Stmt := Stmt_Chain;
      end if;
   end Execute_Case_Statement;

   procedure Execute_Call_Statement (Proc : Process_State_Acc)
   is
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Stmt : constant Iir := Instance.Stmt;
      Call : constant Iir := Get_Procedure_Call (Stmt);
      Imp  : constant Iir := Get_Implementation (Call);
      Subprg_Instance : Block_Instance_Acc;
      Prot_Block : Block_Instance_Acc;
      Assoc_Chain: Iir;
      Inter_Chain : Iir;
   begin
      if Get_Implicit_Definition (Imp) in Iir_Predefined_Implicit then
         Execute_Implicit_Procedure (Instance, Call);
         Update_Next_Statement (Proc);
      elsif Get_Foreign_Flag (Imp) then
         Execute_Foreign_Procedure (Instance, Call);
         Update_Next_Statement (Proc);
      else
         Mark (Instance.Marker, Instance_Pool.all);
         Prot_Block := Get_Protected_Object_Instance (Instance, Call);
         Subprg_Instance :=
           Create_Subprogram_Instance (Instance, Prot_Block, Imp);
         Assoc_Chain := Get_Parameter_Association_Chain (Call);
         Inter_Chain := Get_Interface_Declaration_Chain (Imp);
         Execute_Association
           (Instance, Subprg_Instance, Inter_Chain, Assoc_Chain);

         Current_Process.Instance := Subprg_Instance;
         Elaborate_Declarative_Part
           (Subprg_Instance, Get_Declaration_Chain (Subprg_Instance.Bod));

         Init_Sequential_Statements (Proc, Subprg_Instance.Bod);
      end if;
   end Execute_Call_Statement;

   procedure Finish_Procedure_Frame (Proc : Process_State_Acc)
   is
      Old_Instance : constant Block_Instance_Acc := Proc.Instance;
   begin
      Execute_Back_Association (Old_Instance);
      Proc.Instance := Old_Instance.Parent;
      Execute_Subprogram_Call_Final (Old_Instance);
      Release (Proc.Instance.Marker, Instance_Pool.all);
   end Finish_Procedure_Frame;

   procedure Execute_If_Statement (Proc : Process_State_Acc; Stmt : Iir)
   is
      Clause: Iir;
      Cond: Boolean;
   begin
      Clause := Stmt;
      loop
         Cond := Execute_Condition (Proc.Instance, Get_Condition (Clause));
         if Cond then
            Init_Sequential_Statements (Proc, Clause);
            return;
         end if;
         Clause := Get_Else_Clause (Clause);
         exit when Clause = Null_Iir;
      end loop;
      Update_Next_Statement (Proc);
   end Execute_If_Statement;

   procedure Execute_Variable_Assignment (Proc : Process_State_Acc; Stmt : Iir)
   is
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Target : constant Iir := Get_Target (Stmt);
      Target_Type : constant Iir := Get_Type (Target);
      Expr : constant Iir := Get_Expression (Stmt);
      Expr_Type : constant Iir := Get_Type (Expr);
      Target_Val: Iir_Value_Literal_Acc;
      Res : Iir_Value_Literal_Acc;
      Marker : Mark_Type;
   begin
      Mark (Marker, Expr_Pool);
      Target_Val := Execute_Expression (Instance, Target);

      --  If the type of the target is not static and the value is
      --  an aggregate, then the aggregate may be contrained by the
      --  target.
      if Get_Kind (Expr) = Iir_Kind_Aggregate
        and then Get_Kind (Expr_Type) in Iir_Kinds_Array_Type_Definition
      then
         Res := Copy_Array_Bound (Target_Val);
         Fill_Array_Aggregate (Instance, Expr, Res);
      else
         Res := Execute_Expression (Instance, Expr);
      end if;
      if Get_Kind (Target_Type) in Iir_Kinds_Array_Type_Definition then
         --  Note: target_type may be dynamic (slice case), so
         --  check_constraints is not called.
         Implicit_Array_Conversion (Res, Target_Val, Stmt);
      else
         Check_Constraints (Instance, Res, Target_Type, Stmt);
      end if;

      --  Note: we need to unshare before copying to avoid
      --  overwrites (in assignments like: v (1 to 4) := v (3 to 6)).
      --  FIXME: improve that handling (detect overlaps before).
      Store (Target_Val, Unshare (Res, Expr_Pool'Access));

      Release (Marker, Expr_Pool);
   end Execute_Variable_Assignment;

   function Execute_Return_Statement (Proc : Process_State_Acc)
                                     return Boolean
   is
      Res : Iir_Value_Literal_Acc;
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Stmt : constant Iir := Instance.Stmt;
      Expr : constant Iir := Get_Expression (Stmt);
   begin
      if Expr /= Null_Iir then
         Res := Execute_Expression (Instance, Expr);
         Implicit_Array_Conversion (Instance, Res, Get_Type (Stmt), Stmt);
         Check_Constraints (Instance, Res, Get_Type (Stmt), Stmt);
         Instance.Result := Res;
      end if;

      case Get_Kind (Instance.Label) is
         when Iir_Kind_Procedure_Declaration =>
            Finish_Procedure_Frame (Proc);
            Update_Next_Statement (Proc);
            return False;
         when Iir_Kind_Function_Declaration =>
            return True;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Return_Statement;

   procedure Finish_Sequential_Statements
     (Proc : Process_State_Acc; Complex_Stmt : Iir)
   is
      Instance : Block_Instance_Acc := Proc.Instance;
      Stmt : Iir;
   begin
      Stmt := Complex_Stmt;
      loop
         Instance.Stmt := Stmt;
         case Get_Kind (Stmt) is
            when Iir_Kind_For_Loop_Statement =>
               if Finish_For_Loop_Statement (Instance) then
                  return;
               end if;
            when Iir_Kind_While_Loop_Statement =>
               if Finish_While_Loop_Statement (Instance) then
                  return;
               end if;
            when Iir_Kind_Case_Statement
              | Iir_Kind_If_Statement =>
               null;
            when Iir_Kind_Sensitized_Process_Statement =>
               Instance.Stmt := Null_Iir;
               return;
            when Iir_Kind_Process_Statement =>
               --  Start again.
               Instance.Stmt := Get_Sequential_Statement_Chain (Stmt);
               return;
            when Iir_Kind_Procedure_Body =>
               Finish_Procedure_Frame (Proc);
               Instance := Proc.Instance;
            when Iir_Kind_Function_Body =>
               Error_Msg_Exec ("missing return statement in function", Stmt);
            when others =>
               Error_Kind ("execute_next_statement", Stmt);
         end case;
         Stmt := Get_Chain (Instance.Stmt);
         if Stmt /= Null_Iir then
            Instance.Stmt := Stmt;
            return;
         end if;
         Stmt := Get_Parent (Instance.Stmt);
      end loop;
   end Finish_Sequential_Statements;

   procedure Init_Sequential_Statements
     (Proc : Process_State_Acc; Complex_Stmt : Iir)
   is
      Stmt : Iir;
   begin
      Stmt := Get_Sequential_Statement_Chain (Complex_Stmt);
      if Stmt /= Null_Iir then
         Proc.Instance.Stmt := Stmt;
      else
         Finish_Sequential_Statements (Proc, Complex_Stmt);
      end if;
   end Init_Sequential_Statements;

   procedure Update_Next_Statement (Proc : Process_State_Acc)
   is
      Instance : constant Block_Instance_Acc := Proc.Instance;
      Stmt : Iir;
   begin
      Stmt := Get_Chain (Instance.Stmt);
      if Stmt /= Null_Iir then
         Instance.Stmt := Stmt;
         return;
      end if;
      Finish_Sequential_Statements (Proc, Get_Parent (Instance.Stmt));
   end Update_Next_Statement;

   procedure Execute_Sequential_Statements (Proc : Process_State_Acc)
   is
      Instance : Block_Instance_Acc;
      Stmt: Iir;
   begin
      loop
         Instance := Proc.Instance;
         Stmt := Instance.Stmt;

         --  End of process or subprogram.
         exit when Stmt = Null_Iir;

         if Trace_Statements then
            declare
               Name : Name_Id;
               Line : Natural;
               Col : Natural;
            begin
               Files_Map.Location_To_Position
                 (Get_Location (Stmt), Name, Line, Col);
               Put_Line ("Execute statement at "
                           & Name_Table.Image (Name)
                           & Natural'Image (Line));
            end;
         end if;

         if Flag_Need_Debug then
            Debug (Reason_Break);
         end if;

         -- execute statement STMT.
         case Get_Kind (Stmt) is
            when Iir_Kind_Null_Statement =>
               Update_Next_Statement (Proc);

            when Iir_Kind_If_Statement =>
               Execute_If_Statement (Proc, Stmt);

            when Iir_Kind_Simple_Signal_Assignment_Statement =>
               Execute_Signal_Assignment
                 (Instance, Stmt, Get_Waveform_Chain (Stmt));
               Update_Next_Statement (Proc);

            when Iir_Kind_Selected_Waveform_Assignment_Statement =>
               declare
                  Assoc : Iir;
               begin
                  Assoc := Execute_Choice (Instance, Get_Expression (Stmt),
                                           Get_Selected_Waveform_Chain (Stmt));
                  Execute_Signal_Assignment
                    (Instance, Stmt, Get_Associated_Chain (Assoc));
                  Update_Next_Statement (Proc);
               end;
            when Iir_Kind_Assertion_Statement =>
               declare
                  Res : Boolean;
               begin
                  Res := Execute_Condition
                    (Instance, Get_Assertion_Condition (Stmt));
                  if not Res then
                     Execute_Failed_Assertion (Instance, "assertion", Stmt,
                                               "Assertion violation.", 2);
                  end if;
               end;
               Update_Next_Statement (Proc);

            when Iir_Kind_Report_Statement =>
               Execute_Failed_Assertion (Instance, "report", Stmt,
                                         "Assertion violation.", 0);
               Update_Next_Statement (Proc);

            when Iir_Kind_Variable_Assignment_Statement =>
               Execute_Variable_Assignment (Proc, Stmt);
               Update_Next_Statement (Proc);

            when Iir_Kind_Return_Statement =>
               if Execute_Return_Statement (Proc) then
                  return;
               end if;

            when Iir_Kind_For_Loop_Statement =>
               Execute_For_Loop_Statement (Proc);

            when Iir_Kind_While_Loop_Statement =>
               Execute_While_Loop_Statement (Proc);

            when Iir_Kind_Case_Statement =>
               Execute_Case_Statement (Proc);

            when Iir_Kind_Wait_Statement =>
               if Execute_Wait_Statement (Instance, Stmt) then
                  return;
               end if;
               Update_Next_Statement (Proc);

            when Iir_Kind_Procedure_Call_Statement =>
               Execute_Call_Statement (Proc);

            when Iir_Kind_Exit_Statement =>
               Execute_Exit_Next_Statement (Proc, True);
            when Iir_Kind_Next_Statement =>
               Execute_Exit_Next_Statement (Proc, False);

            when others =>
               Error_Kind ("execute_sequential_statements", Stmt);
         end case;
      end loop;
   end Execute_Sequential_Statements;
end Simul.Execution;