1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
|
-- Lexical analysis for numbers.
-- Copyright (C) 2002 - 2014 Tristan Gingold
--
-- GHDL is free software; you can redistribute it and/or modify it under
-- the terms of the GNU General Public License as published by the Free
-- Software Foundation; either version 2, or (at your option) any later
-- version.
--
-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
-- WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with GHDL; see the file COPYING. If not, write to the Free
-- Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-- 02111-1307, USA.
with Ada.Unchecked_Conversion;
separate (Scanner)
-- scan a decimal literal or a based literal.
--
-- LRM93 13.4.1
-- DECIMAL_LITERAL ::= INTEGER [ . INTEGER ] [ EXPONENT ]
-- EXPONENT ::= E [ + ] INTEGER | E - INTEGER
--
-- LRM93 13.4.2
-- BASED_LITERAL ::= BASE # BASED_INTEGER [ . BASED_INTEGER ] # EXPONENT
-- BASE ::= INTEGER
procedure Scan_Literal is
-- The base of an E_NUM is 2**16.
-- Type Uint16 is the type of a digit.
type Uint16 is mod 2 ** 16;
type Uint32 is mod 2 ** 32;
-- Type of the exponent.
type Sint16 is range -2 ** 15 .. 2 ** 15 - 1;
-- Number of digits in a E_NUM.
-- We want at least 64bits of precision, so at least 5 digits of 16 bits
-- are required.
Nbr_Digits : constant Sint16 := 5;
subtype Digit_Range is Sint16 range 0 .. Nbr_Digits - 1;
type Uint16_Array is array (Sint16 range <>) of Uint16;
-- The value of an E_NUM is (S(N-1)|S(N-2) .. |S(0))* 2**(16*E)
-- where '|' is concatenation.
type E_Num is record
S : Uint16_Array (Digit_Range);
E : Sint16;
end record;
E_Zero : constant E_Num := (S => (others => 0), E => 0);
E_One : constant E_Num := (S => (0 => 1, others => 0), E => 0);
-- Compute RES = E * B + V.
-- RES and E can be the same object.
procedure Bmul (Res : out E_Num; E : E_Num; V : Uint16; B : Uint16);
-- Convert to integer.
procedure Fix (Res : out Iir_Int64; Ok : out Boolean; E : E_Num);
-- RES := A * B
-- RES can be A or B.
procedure Mul (Res : out E_Num; A, B : E_Num);
-- RES := A / B.
-- RES can be A.
-- May raise constraint error.
procedure Div (Res : out E_Num; A, B: E_Num);
-- Convert V to an E_Num.
function To_E_Num (V : Uint16) return E_Num;
-- Convert E to RES.
procedure To_Float (Res : out Iir_Fp64; Ok : out Boolean; E : E_Num);
procedure Bmul (Res : out E_Num; E : E_Num; V : Uint16; B : Uint16)
is
-- The carry.
C : Uint32;
begin
-- Only consider V if E is not scaled (otherwise V is not significant).
if E.E = 0 then
C := Uint32 (V);
else
C := 0;
end if;
-- Multiply and propagate the carry.
for I in Digit_Range loop
C := Uint32 (E.S (I)) * Uint32 (B) + C;
Res.S (I) := Uint16 (C mod Uint16'Modulus);
C := C / Uint16'Modulus;
end loop;
-- There is a carry, shift.
if C /= 0 then
-- ERR: Possible overflow.
Res.E := E.E + 1;
for I in 0 .. Nbr_Digits - 2 loop
Res.S (I) := Res.S (I + 1);
end loop;
Res.S (Nbr_Digits - 1) := Uint16 (C);
else
Res.E := E.E;
end if;
end Bmul;
type Uint64 is mod 2 ** 64;
function Shift_Left (Value : Uint64; Amount: Natural) return Uint64;
function Shift_Left (Value : Uint16; Amount: Natural) return Uint16;
pragma Import (Intrinsic, Shift_Left);
function Shift_Right (Value : Uint16; Amount: Natural) return Uint16;
pragma Import (Intrinsic, Shift_Right);
function Unchecked_Conversion is new Ada.Unchecked_Conversion
(Source => Uint64, Target => Iir_Int64);
procedure Fix (Res : out Iir_Int64; Ok : out Boolean; E : E_Num)
is
R : Uint64;
M : Sint16;
begin
-- Find the most significant digit.
M := -1;
for I in reverse Digit_Range loop
if E.S (I) /= 0 then
M := I;
exit;
end if;
end loop;
-- Handle the easy 0 case.
-- The case M = -1 is handled below, in the normal flow.
if M + E.E < 0 then
Res := 0;
Ok := True;
return;
end if;
-- Handle overflow.
-- 4 is the number of uint16 in a uint64.
if M + E.E >= 4 then
Ok := False;
return;
end if;
-- Convert
R := 0;
for I in 0 .. M loop
R := R or Shift_Left (Uint64 (E.S (I)), 16 * Natural (E.E + I));
end loop;
-- Check the sign bit is 0.
if (R and Shift_Left (1, 63)) /= 0 then
Ok := False;
else
Ok := True;
Res := Unchecked_Conversion (R);
end if;
end Fix;
-- Return the position of the most non-null digit, -1 if V is 0.
function First_Digit (V : E_Num) return Sint16 is
begin
for I in reverse Digit_Range loop
if V.S (I) /= 0 then
return I;
end if;
end loop;
return -1;
end First_Digit;
procedure Mul (Res : out E_Num; A, B : E_Num)
is
T : Uint16_Array (0 .. 2 * Nbr_Digits - 1);
V : Uint32;
Max : Sint16;
begin
V := 0;
for I in 0 .. Nbr_Digits - 1 loop
for J in 0 .. I loop
V := V + Uint32 (A.S (J)) * Uint32 (B.S (I - J));
end loop;
T (I) := Uint16 (V mod Uint16'Modulus);
V := V / Uint16'Modulus;
end loop;
for I in Nbr_Digits .. 2 * Nbr_Digits - 2 loop
for J in I - Nbr_Digits + 1 .. Nbr_Digits - 1 loop
V := V + Uint32 (A.S (J)) * Uint32 (B.S (I - J));
end loop;
T (I) := Uint16 (V mod Uint16'Modulus);
V := V / Uint16'Modulus;
end loop;
T (T'Last) := Uint16 (V);
-- Search the leading non-nul.
Max := -1;
for I in reverse T'Range loop
if T (I) /= 0 then
Max := I;
exit;
end if;
end loop;
if Max > Nbr_Digits - 1 then
-- Loss of precision.
-- Round.
if T (Max - Nbr_Digits) >= Uint16 (Uint16'Modulus / 2) then
V := 1;
for I in Max - (Nbr_Digits - 1) .. Max loop
V := V + Uint32 (T (I));
T (I) := Uint16 (V mod Uint16'Modulus);
V := V / Uint16'Modulus;
exit when V = 0;
end loop;
if V /= 0 then
Max := Max + 1;
T (Max) := Uint16 (V);
end if;
end if;
Res.S := T (Max - (Nbr_Digits - 1) .. Max);
-- This may overflow.
Res.E := A.E + B.E + Max - (Nbr_Digits - 1);
else
Res.S (0 .. Max) := T (0 .. Max);
Res.S (Max + 1 .. Nbr_Digits - 1) := (others => 0);
-- This may overflow.
Res.E := A.E + B.E;
end if;
end Mul;
procedure Div (Res : out E_Num; A, B: E_Num)
is
Dividend : Uint16_Array (0 .. Nbr_Digits);
A_F : constant Sint16 := First_Digit (A);
B_F : constant Sint16 := First_Digit (B);
-- Digit corresponding to the first digit of B.
Doff : constant Sint16 := Dividend'Last - B_F;
Q : Uint16;
C, N_C : Uint16;
begin
-- Check for division by 0.
if B_F < 0 then
raise Constraint_Error;
end if;
-- Copy and shift dividend.
-- Bit 15 of the most significant digit of A becomes bit 0 of the
-- most significant digit of DIVIDEND. Therefore we are sure
-- DIVIDEND < B (after realignment).
C := 0;
for K in 0 .. A_F loop
N_C := Shift_Right (A.S (K), 15);
Dividend (Dividend'Last - A_F - 1 + K)
:= Shift_Left (A.S (K), 1) or C;
C := N_C;
end loop;
Dividend (Nbr_Digits) := C;
Dividend (0 .. Dividend'last - 2 - A_F) := (others => 0);
-- Algorithm is the same as division by hand.
C := 0;
for I in reverse Digit_Range loop
Q := 0;
for J in 0 .. 15 loop
declare
Borrow : Uint32;
Tmp : Uint16_Array (0 .. B_F);
V : Uint32;
V16 : Uint16;
begin
-- Compute TMP := dividend - B;
Borrow := 0;
for K in 0 .. B_F loop
V := Uint32 (B.S (K)) + Borrow;
V16 := Uint16 (V mod Uint16'Modulus);
if V16 > Dividend (Doff + K) then
Borrow := 1;
else
Borrow := 0;
end if;
Tmp (K) := Dividend (Doff + K) - V16;
end loop;
-- If the last shift creates a carry, we are sure Dividend > B
if C /= 0 then
Borrow := 0;
end if;
Q := Q * 2;
-- Begin of : Dividend = Dividend * 2
C := 0;
for K in 0 .. Doff - 1 loop
N_C := Shift_Right (Dividend (K), 15);
Dividend (K) := Shift_Left (Dividend (K), 1) or C;
C := N_C;
end loop;
if Borrow = 0 then
-- Dividend > B
Q := Q + 1;
-- Dividend = Tmp * 2
-- = (Dividend - B) * 2
for K in Doff .. Nbr_Digits loop
N_C := Shift_Right (Tmp (K - Doff), 15);
Dividend (K) := Shift_Left (Tmp (K - Doff), 1) or C;
C := N_C;
end loop;
else
-- Dividend = Dividend * 2
for K in Doff .. Nbr_Digits loop
N_C := Shift_Right (Dividend (K), 15);
Dividend (K) := Shift_Left (Dividend (K), 1) or C;
C := N_C;
end loop;
end if;
end;
end loop;
Res.S (I) := Q;
end loop;
Res.E := A.E - B.E + (A_F - B_F) - (Nbr_Digits - 1);
end Div;
procedure To_Float (Res : out Iir_Fp64; Ok : out Boolean; E : E_Num)
is
V : Iir_Fp64;
P : Iir_Fp64;
begin
Res := 0.0;
P := Iir_Fp64'Scaling (1.0, 16 * E.E);
for I in Digit_Range loop
V := Iir_Fp64 (E.S (I)) * P;
P := Iir_Fp64'Scaling (P, 16);
Res := Res + V;
end loop;
Ok := True;
end To_Float;
function To_E_Num (V : Uint16) return E_Num
is
Res : E_Num;
begin
Res.E := 0;
Res.S := (0 => V, others => 0);
return Res;
end To_E_Num;
-- Numbers of digits.
Scale : Integer;
Res : E_Num;
-- LRM 13.4.1
-- INTEGER ::= DIGIT { [ UNDERLINE ] DIGIT }
--
-- Update SCALE, RES.
-- The first character must be a digit.
procedure Scan_Integer
is
C : Character;
begin
C := Source (Pos);
loop
-- C is a digit.
Bmul (Res, Res, Character'Pos (C) - Character'Pos ('0'), 10);
Scale := Scale + 1;
Pos := Pos + 1;
C := Source (Pos);
if C = '_' then
loop
Pos := Pos + 1;
C := Source (Pos);
exit when C /= '_';
Error_Msg_Scan ("double underscore in number");
end loop;
if C not in '0' .. '9' then
Error_Msg_Scan ("underscore must be followed by a digit");
end if;
end if;
exit when C not in '0' .. '9';
end loop;
end Scan_Integer;
C : Character;
D : Uint16;
Ok : Boolean;
Has_Dot : Boolean;
Exp : Integer;
Exp_Neg : Boolean;
Base : Uint16;
begin
-- Start with a simple and fast conversion.
C := Source (Pos);
D := 0;
loop
D := D * 10 + Character'Pos (C) - Character'Pos ('0');
Pos := Pos + 1;
C := Source (Pos);
if C = '_' then
loop
Pos := Pos + 1;
C := Source (Pos);
exit when C /= '_';
Error_Msg_Scan ("double underscore in number");
end loop;
if C not in '0' .. '9' then
Error_Msg_Scan ("underscore must be followed by a digit");
end if;
end if;
if C not in '0' .. '9' then
if C = '.' or else C = '#' or else (C = 'e' or C = 'E' or C = ':')
then
-- Continue scanning.
Res := To_E_Num (D);
exit;
end if;
-- Finished.
-- a universal integer.
Current_Token := Tok_Integer;
-- No possible overflow.
Current_Context.Int64 := Iir_Int64 (D);
return;
elsif D >= 6552 then
-- Number may be greather than the uint16 limit.
Scale := 0;
Res := To_E_Num (D);
Scan_Integer;
exit;
end if;
end loop;
Has_Dot := False;
Base := 10;
C := Source (Pos);
if C = '.' then
-- Decimal integer.
Has_Dot := True;
Scale := 0;
Pos := Pos + 1;
C := Source (Pos);
if C not in '0' .. '9' then
Error_Msg_Scan ("a dot must be followed by a digit");
return;
end if;
Scan_Integer;
elsif C = '#'
or else (C = ':' and then (Source (Pos + 1) in '0' .. '9'
or else Source (Pos + 1) in 'a' .. 'f'
or else Source (Pos + 1) in 'A' .. 'F'))
then
-- LRM 13.10
-- The number sign (#) of a based literal can be replaced by colon (:),
-- provided that the replacement is done for both occurrences.
-- GHDL: correctly handle 'variable v : integer range 0 to 7:= 3'.
-- Is there any other places where a digit can be followed
-- by a colon ? (See IR 1093).
-- Based integer.
declare
Number_Sign : constant Character := C;
Res_Int : Iir_Int64;
begin
Fix (Res_Int, Ok, Res);
if not Ok or else Res_Int > 16 then
-- LRM 13.4.2
-- The base must be [...] at most sixteen.
Error_Msg_Scan ("base must be at most 16");
-- Fallback.
Base := 16;
elsif Res_Int < 2 then
-- LRM 13.4.2
-- The base must be at least two [...].
Error_Msg_Scan ("base must be at least 2");
-- Fallback.
Base := 2;
else
Base := Uint16 (Res_Int);
end if;
Pos := Pos + 1;
Res := E_Zero;
C := Source (Pos);
loop
if C >= '0' and C <= '9' then
D := Character'Pos (C) - Character'Pos ('0');
elsif C >= 'A' and C <= 'F' then
D := Character'Pos (C) - Character'Pos ('A') + 10;
elsif C >= 'a' and C <= 'f' then
D := Character'Pos (C) - Character'Pos ('a') + 10;
else
Error_Msg_Scan ("bad extended digit");
exit;
end if;
if D >= Base then
-- LRM 13.4.2
-- The conventional meaning of base notation is
-- assumed; in particular the value of each extended
-- digit of a based literal must be less then the base.
Error_Msg_Scan ("digit beyond base");
D := 1;
end if;
Pos := Pos + 1;
Bmul (Res, Res, D, Base);
Scale := Scale + 1;
C := Source (Pos);
if C = '_' then
loop
Pos := Pos + 1;
C := Source (Pos);
exit when C /= '_';
Error_Msg_Scan ("double underscore in based integer");
end loop;
elsif C = '.' then
if Has_Dot then
Error_Msg_Scan ("double dot ignored");
else
Has_Dot := True;
Scale := 0;
end if;
Pos := Pos + 1;
C := Source (Pos);
elsif C = Number_Sign then
Pos := Pos + 1;
exit;
elsif C = '#' or C = ':' then
Error_Msg_Scan ("bad number sign replacement character");
exit;
end if;
end loop;
end;
end if;
C := Source (Pos);
Exp := 0;
if C = 'E' or else C = 'e' then
Pos := Pos + 1;
C := Source (Pos);
Exp_Neg := False;
if C = '+' then
Pos := Pos + 1;
C := Source (Pos);
elsif C = '-' then
if Has_Dot then
Exp_Neg := True;
else
-- LRM 13.4.1
-- An exponent for an integer literal must not have a minus sign.
--
-- LRM 13.4.2
-- An exponent for a based integer literal must not have a minus
-- sign.
Error_Msg_Scan
("negative exponent not allowed for integer literal");
end if;
Pos := Pos + 1;
C := Source (Pos);
end if;
if C not in '0' .. '9' then
Error_Msg_Scan ("digit expected after exponent");
else
loop
-- C is a digit.
Exp := Exp * 10 + (Character'Pos (C) - Character'Pos ('0'));
Pos := Pos + 1;
C := Source (Pos);
if C = '_' then
loop
Pos := Pos + 1;
C := Source (Pos);
exit when C /= '_';
Error_Msg_Scan ("double underscore not allowed in integer");
end loop;
if C not in '0' .. '9' then
Error_Msg_Scan ("digit expected after underscore");
exit;
end if;
elsif C not in '0' .. '9' then
exit;
end if;
end loop;
end if;
if Exp_Neg then
Exp := -Exp;
end if;
end if;
if Has_Dot then
Scale := Scale - Exp;
else
Scale := -Exp;
end if;
if Scale /= 0 then
declare
Scale_Neg : Boolean;
Val_Exp : E_Num;
Val_Pow : E_Num;
begin
if Scale > 0 then
Scale_Neg := True;
else
Scale_Neg := False;
Scale := -Scale;
end if;
Val_Pow := To_E_Num (Base);
Val_Exp := E_One;
while Scale /= 0 loop
if Scale mod 2 = 1 then
Mul (Val_Exp, Val_Exp, Val_Pow);
end if;
Scale := Scale / 2;
Mul (Val_Pow, Val_Pow, Val_Pow);
end loop;
if Scale_Neg then
Div (Res, Res, Val_Exp);
else
Mul (Res, Res, Val_Exp);
end if;
end;
end if;
if Has_Dot then
-- a universal real.
Current_Token := Tok_Real;
-- Set to a valid literal, in case of constraint error.
To_Float (Current_Context.Fp64, Ok, Res);
if not Ok then
Error_Msg_Scan ("literal beyond real bounds");
end if;
else
-- a universal integer.
Current_Token := Tok_Integer;
-- Set to a valid literal, in case of constraint error.
Fix (Current_Context.Int64, Ok, Res);
if not Ok then
Error_Msg_Scan ("literal beyond integer bounds");
end if;
end if;
exception
when Constraint_Error =>
Error_Msg_Scan ("literal overflow");
end Scan_Literal;
|