aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-vhdl_stmts.adb
blob: 5f1d4a3fd1dbfef5728ebff5925693f44cca5955 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
--  Statements synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Ada.Unchecked_Deallocation;

with Grt.Types; use Grt.Types;
with Grt.Algos;
with Grt.Severity; use Grt.Severity;
with Areapools;
with Name_Table;
with Std_Names;
with Errorout; use Errorout;
with Files_Map;
with Simple_IO;

with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Sem_Expr;
with Vhdl.Sem_Inst;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Std_Package;
with Vhdl.Evaluation;
with Vhdl.Ieee.Std_Logic_1164;

with PSL.Types;
with PSL.Nodes;
with PSL.Subsets;
with PSL.NFAs;

with Elab.Memtype; use Elab.Memtype;
with Elab.Vhdl_Heap;
with Elab.Vhdl_Types; use Elab.Vhdl_Types;
with Elab.Vhdl_Expr;
with Elab.Debugger;

with Synth.Errors; use Synth.Errors;
with Synth.Vhdl_Decls; use Synth.Vhdl_Decls;
with Synth.Vhdl_Expr; use Synth.Vhdl_Expr;
with Synth.Vhdl_Insts; use Synth.Vhdl_Insts;
with Synth.Source;
with Synth.Vhdl_Static_Proc;
with Synth.Flags;
with Synth.Vhdl_Context; use Synth.Vhdl_Context;

with Netlists.Builders; use Netlists.Builders;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations; use Netlists.Locations;

package body Synth.Vhdl_Stmts is
   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node);

   procedure Set_Location (N : Net; Loc : Node)
     renames Synth.Source.Set_Location;

   function Synth_Waveform (Syn_Inst : Synth_Instance_Acc;
                            Wf : Node;
                            Targ_Type : Type_Acc) return Valtyp
   is
      Res : Valtyp;
   begin
      if Get_Kind (Wf) = Iir_Kind_Unaffected_Waveform then
         --  TODO
         raise Internal_Error;
      end if;
      if Get_Chain (Wf) /= Null_Node then
         --  Warning.
         null;
      end if;
      if Get_Time (Wf) /= Null_Node then
         --  Warning
         null;
      end if;
      if Targ_Type = null then
         return Synth_Expression (Syn_Inst, Get_We_Value (Wf));
      else
         Res := Synth_Expression_With_Type
           (Syn_Inst, Get_We_Value (Wf), Targ_Type);
         Res := Synth_Subtype_Conversion
           (Get_Build (Syn_Inst), Res, Targ_Type, False, Wf);
         return Res;
      end if;
   end Synth_Waveform;

   procedure Synth_Assignment_Prefix (Syn_Inst : Synth_Instance_Acc;
                                      Pfx : Node;
                                      Dest_Base : out Valtyp;
                                      Dest_Typ : out Type_Acc;
                                      Dest_Off : out Value_Offsets;
                                      Dest_Dyn : out Dyn_Name) is
   begin
      case Get_Kind (Pfx) is
         when Iir_Kind_Simple_Name =>
            Synth_Assignment_Prefix (Syn_Inst, Get_Named_Entity (Pfx),
                                     Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Interface_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Interface_Constant_Declaration
           | Iir_Kind_Constant_Declaration
           | Iir_Kind_File_Declaration
           | Iir_Kind_Interface_File_Declaration
           | Iir_Kind_Non_Object_Alias_Declaration
           | Iir_Kind_Object_Alias_Declaration =>
            declare
               Targ : constant Valtyp := Get_Value (Syn_Inst, Pfx);
            begin
               Dest_Dyn := No_Dyn_Name;
               Dest_Typ := Targ.Typ;

               if Targ.Val.Kind = Value_Alias then
                  --  Replace alias by the aliased name.
                  Dest_Base := (Targ.Val.A_Typ, Targ.Val.A_Obj);
                  Dest_Off := Targ.Val.A_Off;
               else
                  Dest_Base := Targ;
                  Dest_Off := (0, 0);
               end if;
            end;
         when Iir_Kind_Function_Call =>
            Dest_Base := Synth_Expression (Syn_Inst, Pfx);
            Dest_Typ := Dest_Base.Typ;
            Dest_Off := (0, 0);
            Dest_Dyn := No_Dyn_Name;

         when Iir_Kind_Indexed_Name =>
            declare
               Voff : Net;
               Off : Value_Offsets;
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
               Strip_Const (Dest_Base);
               Synth_Indexed_Name (Syn_Inst, Pfx, Dest_Typ, Voff, Off);

               if Voff = No_Net then
                  --  Static index.
                  Dest_Off := Dest_Off + Off;
               else
                  --  Dynamic index.
                  if Dest_Dyn.Voff = No_Net then
                     --  The first one.
                     Dest_Dyn := (Pfx_Off => Dest_Off,
                                  Pfx_Typ => Dest_Typ,
                                  Voff => Voff);
                     Dest_Off := Off;
                  else
                     --  Nested one.
                     --  FIXME
                     Dest_Off := Dest_Off + Off;
                  --  if Dest_Off /= (0, 0) then
                  --     Error_Msg_Synth (+Pfx, "nested memory not supported");
                  --  end if;

                     Dest_Dyn.Voff := Build_Addidx
                       (Get_Build (Syn_Inst), Dest_Dyn.Voff, Voff);
                     Set_Location (Dest_Dyn.Voff, Pfx);
                  end if;
               end if;

               Dest_Typ := Get_Array_Element (Dest_Typ);
            end;

         when Iir_Kind_Selected_Element =>
            declare
               Idx : constant Iir_Index32 :=
                 Get_Element_Position (Get_Named_Entity (Pfx));
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
               Dest_Off.Net_Off :=
                 Dest_Off.Net_Off + Dest_Typ.Rec.E (Idx + 1).Boff;
               Dest_Off.Mem_Off :=
                 Dest_Off.Mem_Off + Dest_Typ.Rec.E (Idx + 1).Moff;

               Dest_Typ := Dest_Typ.Rec.E (Idx + 1).Typ;
            end;

         when Iir_Kind_Slice_Name =>
            declare
               Pfx_Bnd : Bound_Type;
               El_Typ : Type_Acc;
               Res_Bnd : Bound_Type;
               Sl_Voff : Net;
               Sl_Off : Value_Offsets;
            begin
               Synth_Assignment_Prefix
                 (Syn_Inst, Get_Prefix (Pfx),
                  Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
               Strip_Const (Dest_Base);

               Get_Onedimensional_Array_Bounds (Dest_Typ, Pfx_Bnd, El_Typ);
               Synth_Slice_Suffix (Syn_Inst, Pfx, Pfx_Bnd, El_Typ,
                                   Res_Bnd, Sl_Voff, Sl_Off);


               if Sl_Voff = No_Net then
                  --  Fixed slice.
                  Dest_Typ := Create_Onedimensional_Array_Subtype
                    (Dest_Typ, Res_Bnd);
                  Dest_Off.Net_Off := Dest_Off.Net_Off + Sl_Off.Net_Off;
                  Dest_Off.Mem_Off := Dest_Off.Mem_Off + Sl_Off.Mem_Off;
               else
                  --  Variable slice.
                  if Dest_Dyn.Voff = No_Net then
                     --  First one.
                     Dest_Dyn := (Pfx_Off => Dest_Off,
                                  Pfx_Typ => Dest_Typ,
                                  Voff => Sl_Voff);
                     Dest_Off := Sl_Off;
                  else
                     --  Nested.
                     if Dest_Off /= (0, 0) then
                        Error_Msg_Synth (+Pfx, "nested memory not supported");
                     end if;

                     Dest_Dyn.Voff := Build_Addidx
                       (Get_Build (Syn_Inst), Dest_Dyn.Voff, Sl_Voff);
                     Set_Location (Dest_Dyn.Voff, Pfx);
                  end if;
                  Dest_Typ := Create_Slice_Type (Res_Bnd.Len, El_Typ);
               end if;
            end;

         when Iir_Kind_Implicit_Dereference
           | Iir_Kind_Dereference =>
            Synth_Assignment_Prefix
              (Syn_Inst, Get_Prefix (Pfx),
               Dest_Base, Dest_Typ, Dest_Off, Dest_Dyn);
            if Dest_Off /= (0, 0) and then Dest_Dyn.Voff /= No_Net then
               raise Internal_Error;
            end if;
            Dest_Base := Elab.Vhdl_Heap.Synth_Dereference
              (Read_Access (Dest_Base));
            Dest_Typ := Dest_Base.Typ;

         when others =>
            Error_Kind ("synth_assignment_prefix", Pfx);
      end case;
   end Synth_Assignment_Prefix;

   type Target_Kind is
     (
      --  The target is an object or a static part of it.
      Target_Simple,

      --  The target is an aggregate.
      Target_Aggregate,

      --  The assignment is dynamically indexed.
      Target_Memory
     );

   type Target_Info (Kind : Target_Kind := Target_Simple) is record
      --  In all cases, the type of the target is known or computed.
      Targ_Type : Type_Acc;

      case Kind is
         when Target_Simple =>
            --  For a simple target, the destination is known.
            Obj : Valtyp;
            Off : Value_Offsets;
         when Target_Aggregate =>
            --  For an aggregate: the type is computed and the details will
            --  be handled at the assignment.
            Aggr : Node;
         when Target_Memory =>
            --  For a memory: the destination is known.
            Mem_Obj : Valtyp;
            --  The dynamic offset.
            Mem_Dyn : Dyn_Name;
            --  Offset of the data to be accessed from the memory.
            Mem_Doff : Uns32;
      end case;
   end record;

   type Target_Info_Array is array (Natural range <>) of Target_Info;

   function Synth_Aggregate_Target_Type (Syn_Inst : Synth_Instance_Acc;
                                         Target : Node) return Type_Acc
   is
      Targ_Type : constant Node := Get_Type (Target);
      Base_Type : constant Node := Get_Base_Type (Targ_Type);
      Base_Typ : Type_Acc;
      Bnd : Bound_Type;
      Len : Uns32;
      Res : Type_Acc;
   begin
      Base_Typ := Get_Subtype_Object (Syn_Inst, Base_Type);
      --  It's a basetype, so not bounded.
      pragma Assert (Base_Typ.Kind = Type_Unbounded_Vector);

      if Is_Fully_Constrained_Type (Targ_Type) then
         --  If the aggregate subtype is known, just use it.
         Bnd := Vhdl_Expr.Synth_Array_Bounds (Syn_Inst, Targ_Type, 1);
      else
         --  Ok, so the subtype of the aggregate is not known, in general
         --  because the length of an element is not known.  That's with
         --  vhdl-2008.
         Len := 0;
         declare
            Choice : Node;
            El : Node;
            El_Typ : Type_Acc;
         begin
            Choice := Get_Association_Choices_Chain (Target);
            while Choice /= Null_Node loop
               pragma Assert (Get_Kind (Choice) = Iir_Kind_Choice_By_None);
               El := Get_Associated_Expr (Choice);
               El_Typ := Elab.Vhdl_Expr.Exec_Type_Of_Object (Syn_Inst, El);
               Bnd := Get_Array_Bound (El_Typ, 1);
               Len := Len + Bnd.Len;
               Choice := Get_Chain (Choice);
            end loop;
         end;

         --  Compute the range.
         declare
            Idx_Type : constant Node := Get_Index_Type (Base_Type, 0);
            Idx_Typ : Type_Acc;
         begin
            Idx_Typ := Get_Subtype_Object (Syn_Inst, Idx_Type);
            Bnd := (Dir => Idx_Typ.Drange.Dir,
                    Left => Int32 (Idx_Typ.Drange.Left),
                    Right => 0,
                    Len => Len);
            case Bnd.Dir is
               when Dir_To =>
                  Bnd.Right := Bnd.Left + Int32 (Len);
               when Dir_Downto =>
                  Bnd.Right := Bnd.Left - Int32 (Len);
            end case;
         end;
      end if;

      --  Compute the type.
      case Base_Typ.Kind is
         when Type_Unbounded_Vector =>
            Res := Create_Vector_Type (Bnd, Base_Typ.Uvec_El);
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Synth_Aggregate_Target_Type;

   function Synth_Target (Syn_Inst : Synth_Instance_Acc;
                          Target : Node) return Target_Info is
   begin
      case Get_Kind (Target) is
         when Iir_Kind_Aggregate =>
            return Target_Info'(Kind => Target_Aggregate,
                                Targ_Type => Synth_Aggregate_Target_Type
                                  (Syn_Inst, Target),
                                Aggr => Target);
         when Iir_Kind_Simple_Name
           | Iir_Kind_Selected_Element
           | Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration
           | Iir_Kind_Indexed_Name
           | Iir_Kind_Slice_Name
           | Iir_Kind_Dereference =>
            declare
               Base : Valtyp;
               Typ : Type_Acc;
               Off : Value_Offsets;

               Dyn : Dyn_Name;
            begin
               Synth_Assignment_Prefix (Syn_Inst, Target, Base, Typ, Off, Dyn);
               if Dyn.Voff = No_Net then
                  --  FIXME: check index.
                  return Target_Info'(Kind => Target_Simple,
                                      Targ_Type => Typ,
                                      Obj => Base,
                                      Off => Off);
               else
                  return Target_Info'(Kind => Target_Memory,
                                      Targ_Type => Typ,
                                      Mem_Obj => Base,
                                      Mem_Dyn => Dyn,
                                      Mem_Doff => Off.Net_Off);
               end if;
            end;
         when others =>
            Error_Kind ("synth_target", Target);
      end case;
   end Synth_Target;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Target_Info;
                               Val : Valtyp;
                               Loc : Node);

   --  Extract a part of VAL from a target aggregate at offset OFF (offset
   --  in the array).
   function Aggregate_Extract (Ctxt : Context_Acc;
                               Val : Valtyp;
                               Off : Uns32;
                               Typ : Type_Acc;
                               Loc : Node) return Valtyp
   is
      El_Typ : constant Type_Acc := Get_Array_Element (Val.Typ);
   begin
      case Val.Val.Kind is
         when Value_Net
           | Value_Wire =>
            declare
               N : Net;
            begin
               N := Build2_Extract
                 (Ctxt, Get_Net (Ctxt, Val), Off * El_Typ.W, Typ.W);
               Set_Location (N, Loc);
               return Create_Value_Net (N, Typ);
            end;
         when Value_Memory =>
            declare
               Res : Valtyp;
            begin
               Res := Create_Value_Memory (Typ);
               --  Need to reverse offsets.
               Copy_Memory
                 (Res.Val.Mem,
                  Val.Val.Mem + (Val.Typ.Sz - Size_Type (Off + 1) * El_Typ.Sz),
                  Typ.Sz);
               return Res;
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Aggregate_Extract;

   procedure Synth_Assignment_Aggregate (Syn_Inst : Synth_Instance_Acc;
                                         Target : Node;
                                         Target_Typ : Type_Acc;
                                         Val : Valtyp;
                                         Loc : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Targ_Bnd : constant Bound_Type := Get_Array_Bound (Target_Typ, 1);
      Choice : Node;
      Assoc : Node;
      Pos : Uns32;
      Targ_Info : Target_Info;
   begin
      Choice := Get_Association_Choices_Chain (Target);
      Pos := Targ_Bnd.Len;
      while Is_Valid (Choice) loop
         Assoc := Get_Associated_Expr (Choice);
         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_None =>
               Targ_Info := Synth_Target (Syn_Inst, Assoc);
               if Get_Element_Type_Flag (Choice) then
                  Pos := Pos - 1;
               else
                  Pos := Pos - Get_Array_Bound (Targ_Info.Targ_Type, 1).Len;
               end if;
               Synth_Assignment
                 (Syn_Inst, Targ_Info,
                  Aggregate_Extract (Ctxt, Val, Pos,
                                     Targ_Info.Targ_Type, Assoc),
                  Loc);
            when others =>
               Error_Kind ("synth_assignment_aggregate", Choice);
         end case;
         Choice := Get_Chain (Choice);
      end loop;
   end Synth_Assignment_Aggregate;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Target_Info;
                               Val : Valtyp;
                               Loc : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      V : Valtyp;
      W : Wire_Id;
   begin
      V := Synth_Subtype_Conversion (Ctxt, Val, Target.Targ_Type, False, Loc);
      pragma Unreferenced (Val);
      if V = No_Valtyp then
         --  In case of error.
         return;
      end if;

      case Target.Kind is
         when Target_Aggregate =>
            Synth_Assignment_Aggregate
              (Syn_Inst, Target.Aggr, Target.Targ_Type, V, Loc);
         when Target_Simple =>
            if V.Typ.Sz = 0 then
               --  If there is nothing to assign (like a null slice),
               --  return now.
               return;
            end if;

            if Target.Obj.Val.Kind = Value_Wire then
               W := Get_Value_Wire (Target.Obj.Val);
               if Is_Static (V.Val)
                 and then V.Typ.Sz = Target.Obj.Typ.Sz
               then
                  pragma Assert (Target.Off = (0, 0));
                  Phi_Assign_Static (W, Unshare (Get_Memtyp (V)));
               else
                  if V.Typ.W = 0 then
                     --  Forget about null wires.
                     return;
                  end if;
                  Phi_Assign_Net
                    (Ctxt, W, Get_Net (Ctxt, V), Target.Off.Net_Off);
               end if;
            else
               if not Is_Static (V.Val) then
                  --  Maybe the error message is too cryptic ?
                  Error_Msg_Synth
                    (+Loc, "cannot assign a net to a static value");
               else
                  Strip_Const (V);
                  Copy_Memory (Target.Obj.Val.Mem + Target.Off.Mem_Off,
                               V.Val.Mem, V.Typ.Sz);
               end if;
            end if;
         when Target_Memory =>
            declare
               Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
               W : constant Wire_Id := Get_Value_Wire (Target.Mem_Obj.Val);
               N : Net;
            begin
               N := Get_Current_Assign_Value
                 (Ctxt, W,
                  Target.Mem_Dyn.Pfx_Off.Net_Off, Target.Mem_Dyn.Pfx_Typ.W);
               N := Build_Dyn_Insert (Ctxt, N, Get_Net (Ctxt, V),
                                      Target.Mem_Dyn.Voff, Target.Mem_Doff);
               Set_Location (N, Loc);
               Phi_Assign_Net (Ctxt, W, N, Target.Mem_Dyn.Pfx_Off.Net_Off);
            end;
      end case;
   end Synth_Assignment;

   procedure Synth_Assignment (Syn_Inst : Synth_Instance_Acc;
                               Target : Node;
                               Val : Valtyp;
                               Loc : Node)
   is
      Info : Target_Info;
   begin
      Info := Synth_Target (Syn_Inst, Target);
      Synth_Assignment (Syn_Inst, Info, Val, Loc);
   end Synth_Assignment;

   function Synth_Read_Memory (Syn_Inst : Synth_Instance_Acc;
                               Obj : Valtyp;
                               Res_Typ : Type_Acc;
                               Off : Uns32;
                               Dyn : Dyn_Name;
                               Loc : Node) return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      N : Net;
   begin
      N := Get_Net (Ctxt, Obj);
      if Dyn.Voff /= No_Net then
         Synth.Source.Set_Location_Maybe (N, Loc);
         if Res_Typ.W /= 0 then
            --  Do not try to extract if the net is null.
            N := Build_Dyn_Extract (Ctxt, N, Dyn.Voff,
                                    Off + Dyn.Pfx_Off.Net_Off, Res_Typ.W);
         end if;
      else
         pragma Assert (not Is_Static (Obj.Val));
         N := Build2_Extract (Ctxt, N, Off, Res_Typ.W);
      end if;
      Set_Location (N, Loc);
      return Create_Value_Net (N, Res_Typ);
   end Synth_Read_Memory;

   function Synth_Read (Syn_Inst : Synth_Instance_Acc;
                        Targ : Target_Info;
                        Loc : Node) return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      N : Net;
   begin
      case Targ.Kind is
         when Target_Simple =>
            N := Build2_Extract (Ctxt, Get_Net (Ctxt, Targ.Obj),
                                 Targ.Off.Net_Off, Targ.Targ_Type.W);
            return Create_Value_Net (N, Targ.Targ_Type);
         when Target_Aggregate =>
            raise Internal_Error;
         when Target_Memory =>
            return Synth_Read_Memory (Syn_Inst, Targ.Mem_Obj, Targ.Targ_Type,
                                      0, Targ.Mem_Dyn, Loc);
      end case;
   end Synth_Read;

   --  Concurrent or sequential simple signal assignment
   procedure Synth_Simple_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Valtyp;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Val := Synth_Waveform
        (Syn_Inst, Get_Waveform_Chain (Stmt), Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Simple_Signal_Assignment;

   procedure Synth_Conditional_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Targ : Target_Info;
      Cond : Node;
      Cwf : Node;
      Inp : Input;
      Val, Cond_Val : Valtyp;
      Cond_Net : Net;
      First, Last : Net;
      V : Net;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Last := No_Net;
      Cwf := Get_Conditional_Waveform_Chain (Stmt);
      Cond := Null_Node;
      while Cwf /= Null_Node loop
         Val := Synth_Waveform
           (Syn_Inst, Get_Waveform_Chain (Cwf), Targ.Targ_Type);
         if Val = No_Valtyp then
            --  Mark the error, but try to continue.
            Set_Error (Syn_Inst);
         else
            V := Get_Net (Ctxt, Val);
            Cond := Get_Condition (Cwf);
            if Cond /= Null_Node then
               Cond_Val := Synth_Expression (Syn_Inst, Cond);
               if Cond_Val = No_Valtyp then
                  Cond_Net := Build_Const_UB32 (Ctxt, 0, 1);
               else
                  Cond_Net := Get_Net (Ctxt, Cond_Val);
               end if;

               V := Build_Mux2 (Ctxt, Cond_Net, No_Net, V);
               Set_Location (V, Cwf);
            end if;

            if Last /= No_Net then
               Inp := Get_Input (Get_Net_Parent (Last), 1);
               Connect (Inp, V);
            else
               First := V;
            end if;
            Last := V;
         end if;
         Cwf := Get_Chain (Cwf);
      end loop;
      if Cond /= Null_Node then
         pragma Assert (Last /= No_Net);
         Inp := Get_Input (Get_Net_Parent (Last), 1);
         if Get_Driver (Inp) = No_Net then
            --  No else.
            Val := Synth_Read (Syn_Inst, Targ, Stmt);
            Connect (Inp, Get_Net (Ctxt, Val));
         end if;
      end if;
      Val := Create_Value_Net (First, Targ.Targ_Type);
      Synth_Assignment (Syn_Inst, Targ, Val, Stmt);
   end Synth_Conditional_Signal_Assignment;

   procedure Synth_Variable_Assignment (C : Seq_Context; Stmt : Node)
   is
      Targ : Target_Info;
      Val : Valtyp;
   begin
      Targ := Synth_Target (C.Inst, Get_Target (Stmt));
      Val := Synth_Expression_With_Type
        (C.Inst, Get_Expression (Stmt), Targ.Targ_Type);
      if Val = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      Synth_Assignment (C.Inst, Targ, Val, Stmt);
   end Synth_Variable_Assignment;

   procedure Synth_Conditional_Variable_Assignment
     (C : Seq_Context; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Target : constant Node := Get_Target (Stmt);
      Targ_Type : Type_Acc;
      Cond : Node;
      Ce : Node;
      Val, Cond_Val : Valtyp;
      V : Net;
      First, Last : Net;
   begin
      Targ_Type := Get_Subtype_Object (C.Inst, Get_Type (Target));
      Last := No_Net;
      Ce := Get_Conditional_Expression_Chain (Stmt);
      while Ce /= Null_Node loop
         Val := Synth_Expression_With_Type
           (C.Inst, Get_Expression (Ce), Targ_Type);
         V := Get_Net (Ctxt, Val);
         Cond := Get_Condition (Ce);
         if Cond /= Null_Node then
            Cond_Val := Synth_Expression (C.Inst, Cond);
            V := Build_Mux2 (Ctxt, Get_Net (Ctxt, Cond_Val), No_Net, V);
            Set_Location (V, Ce);
         end if;

         if Last /= No_Net then
            Connect (Get_Input (Get_Net_Parent (Last), 1), V);
         else
            First := V;
         end if;
         Last := V;
         Ce := Get_Chain (Ce);
      end loop;
      Val := Create_Value_Net (First, Targ_Type);
      Synth_Assignment (C.Inst, Target, Val, Stmt);
   end Synth_Conditional_Variable_Assignment;

   procedure Synth_If_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Els : constant Node := Get_Else_Clause (Stmt);
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Cond_Val : Valtyp;
      Cond_Net : Net;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Cond_Val := Synth_Expression (C.Inst, Cond);
      if Cond_Val = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      if Is_Static_Val (Cond_Val.Val) then
         Strip_Const (Cond_Val);
         if Read_Discrete (Get_Value_Memtyp (Cond_Val)) = 1 then
            --  True.
            Synth_Sequential_Statements
              (C, Get_Sequential_Statement_Chain (Stmt));
         else
            pragma Assert (Read_Discrete (Get_Value_Memtyp (Cond_Val)) = 0);
            if Is_Valid (Els) then
               --  Else part
               if Is_Null (Get_Condition (Els)) then
                  --  Final else part.
                  Synth_Sequential_Statements
                    (C, Get_Sequential_Statement_Chain (Els));
               else
                  --  Elsif.  Handled as a nested if.
                  Synth_If_Statement (C, Els);
               end if;
            end if;
         end if;
      else
         --  The statements for the 'then' part.
         Push_Phi;
         Synth_Sequential_Statements
           (C, Get_Sequential_Statement_Chain (Stmt));
         Pop_Phi (Phi_True);

         Push_Phi;

         if Is_Valid (Els) then
            if Is_Null (Get_Condition (Els)) then
               --  Final else part.
               Synth_Sequential_Statements
                 (C, Get_Sequential_Statement_Chain (Els));
            else
               --  Elsif.  Handled as a nested if.
               Synth_If_Statement (C, Els);
            end if;
         end if;

         Pop_Phi (Phi_False);

         Cond_Net := Get_Net (Ctxt, Cond_Val);
         Merge_Phis (Ctxt, Cond_Net, Phi_True, Phi_False, Get_Location (Stmt));
      end if;
   end Synth_If_Statement;

   type Alternative_Index is new Int32;

   --  Only keep '0' and '1' in choices for std_logic.
   function Ignore_Choice_Logic (V : Ghdl_U8; Loc : Node) return Boolean is
   begin
      case V is
         when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos =>
            return False;
         when Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
            Warning_Msg_Synth
              (+Loc, "choice with 'L' or 'H' value is ignored");
            return True;
         when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
            | Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos =>
            Warning_Msg_Synth (+Loc, "choice with meta-value is ignored");
            return True;
         when others =>
            --  Only 9 values.
            raise Internal_Error;
      end case;
   end Ignore_Choice_Logic;

   function Ignore_Choice_Expression (V : Valtyp; Loc : Node) return Boolean is
   begin
      case V.Typ.Kind is
         when Type_Bit =>
            return False;
         when Type_Logic =>
            if V.Typ = Logic_Type then
               return Ignore_Choice_Logic (Read_U8 (V.Val.Mem), Loc);
            else
               return False;
            end if;
         when Type_Discrete =>
            return False;
         when Type_Vector =>
            if V.Typ.Vec_El = Logic_Type then
               for I in 1 .. Size_Type (V.Typ.Vbound.Len) loop
                  if Ignore_Choice_Logic (Read_U8 (V.Val.Mem + (I - 1)), Loc)
                  then
                     return True;
                  end if;
               end loop;
               return False;
            else
               return False;
            end if;
         when Type_Array =>
            return False;
         when others =>
            raise Internal_Error;
      end case;
   end Ignore_Choice_Expression;

   --  Create the condition for choices of CHOICE chain belonging to the same
   --  alternative.  Update CHOICE to the next alternative.
   procedure Synth_Choice (Syn_Inst : Synth_Instance_Acc;
                           Sel : Net;
                           Choice_Typ : Type_Acc;
                           Nets : in out Net_Array;
                           Other_Choice : in out Nat32;
                           Choice_Idx : in out Nat32;
                           Choice : in out Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Cond : Net;
      Res : Net;
   begin
      Res := No_Net;
      loop
         case Iir_Kinds_Case_Choice (Get_Kind (Choice)) is
            when Iir_Kind_Choice_By_Expression =>
               declare
                  V : Valtyp;
               begin
                  V := Synth_Expression_With_Basetype
                    (Syn_Inst, Get_Choice_Expression (Choice));
                  V := Synth_Subtype_Conversion
                    (Ctxt, V, Choice_Typ, False, Choice);
                  if Ignore_Choice_Expression (V, Choice) then
                     Cond := No_Net;
                  else
                     Cond := Build_Compare
                       (Ctxt, Id_Eq, Sel, Get_Net (Ctxt, V));
                     Set_Location (Cond, Choice);
                  end if;
               end;

            when Iir_Kind_Choice_By_Range =>
               declare
                  Rng : Discrete_Range_Type;
                  Cmp_L, Cmp_R : Module_Id;
                  L, R : Net;
               begin
                  Synth_Discrete_Range
                    (Syn_Inst, Get_Choice_Range (Choice), Rng);

                  if Rng.Is_Signed then
                     case Rng.Dir is
                        when Dir_To =>
                           Cmp_L := Id_Sge;
                           Cmp_R := Id_Sle;
                        when Dir_Downto =>
                           Cmp_L := Id_Sle;
                           Cmp_R := Id_Sge;
                     end case;
                     L := Build2_Const_Int (Ctxt, Rng.Left, Choice_Typ.W);
                     R := Build2_Const_Int (Ctxt, Rng.Right, Choice_Typ.W);
                  else
                     case Rng.Dir is
                        when Dir_To =>
                           Cmp_L := Id_Uge;
                           Cmp_R := Id_Ule;
                        when Dir_Downto =>
                           Cmp_L := Id_Ule;
                           Cmp_R := Id_Uge;
                     end case;
                     L := Build2_Const_Uns
                       (Ctxt, Uns64 (Rng.Left), Choice_Typ.W);
                     R := Build2_Const_Uns
                       (Ctxt, Uns64 (Rng.Right), Choice_Typ.W);
                  end if;

                  L := Build_Compare (Ctxt, Cmp_L, Sel, L);
                  Set_Location (L, Choice);

                  R := Build_Compare (Ctxt, Cmp_R, Sel, R);
                  Set_Location (R, Choice);

                  Cond := Build_Dyadic (Ctxt, Id_And, L, R);
                  Set_Location (Cond, Choice);
               end;

            when Iir_Kind_Choice_By_Others =>
               --  Last and only one.
               pragma Assert (Res = No_Net);
               Other_Choice := Choice_Idx + 1;
               pragma Assert (Get_Chain (Choice) = Null_Node);
               Choice := Null_Node;
               return;
         end case;

         if not Get_Same_Alternative_Flag (Choice) then
            --  First choice.
            Choice_Idx := Choice_Idx + 1;
            Res := Cond;
         else
            if Cond = No_Net then
               --  No new condition.
               null;
            else
               if Res /= No_Net then
                  Res := Build_Dyadic (Ctxt, Id_Or, Res, Cond);
                  Set_Location (Res, Choice);
               else
                  Res := Cond;
               end if;
            end if;
         end if;

         Choice := Get_Chain (Choice);
         exit when Choice = Null_Node
           or else not Get_Same_Alternative_Flag (Choice);
      end loop;
      if Res = No_Net then
         Res := Build_Const_UB32 (Ctxt, 0, 1);
      end if;
      Nets (Choice_Idx) := Res;
   end Synth_Choice;

   type Alternative_Data_Type is record
      Asgns : Seq_Assign;
      Val : Net;
   end record;
   type Alternative_Data_Array is
     array (Alternative_Index range <>) of Alternative_Data_Type;
   type Alternative_Data_Acc is access Alternative_Data_Array;
   procedure Free_Alternative_Data_Array is new Ada.Unchecked_Deallocation
     (Alternative_Data_Array, Alternative_Data_Acc);

   type Wire_Id_Array is array (Natural range <>) of Wire_Id;
   type Wire_Id_Array_Acc is access Wire_Id_Array;
   procedure Free_Wire_Id_Array is new Ada.Unchecked_Deallocation
     (Wire_Id_Array, Wire_Id_Array_Acc);

   procedure Sort_Wire_Id_Array (Arr : in out Wire_Id_Array)
   is
      function Lt (Op1, Op2 : Natural) return Boolean is
      begin
         return Is_Lt (Arr (Op1), Arr (Op2));
      end Lt;

      procedure Swap (From : Natural; To : Natural)
      is
         T : Wire_Id;
      begin
         T := Arr (From);
         Arr (From) := Arr (To);
         Arr (To) := T;
      end Swap;

      procedure Wid_Heap_Sort is
         new Grt.Algos.Heap_Sort (Lt => Lt, Swap => Swap);
   begin
      Wid_Heap_Sort (Arr'Length);
   end Sort_Wire_Id_Array;

   --  Count the number of wires used in all the alternatives.
   function Count_Wires_In_Alternatives (Alts : Alternative_Data_Array)
                                        return Natural
   is
      Res : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Res := 0;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if not Get_Wire_Mark (W) then
               Res := Res + 1;
               Set_Wire_Mark (W, True);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      return Res;
   end Count_Wires_In_Alternatives;

   --  Fill ARR from wire_id of ALTS.
   procedure Fill_Wire_Id_Array (Arr : out Wire_Id_Array;
                                 Alts : Alternative_Data_Array)
   is
      Idx : Natural;
      Asgn : Seq_Assign;
      W : Wire_Id;
   begin
      Idx := Arr'First;
      for I in Alts'Range loop
         Asgn := Alts (I).Asgns;
         while Asgn /= No_Seq_Assign loop
            W := Get_Wire_Id (Asgn);
            if Get_Wire_Mark (W) then
               Arr (Idx) := W;
               Idx := Idx + 1;
               Set_Wire_Mark (W, False);
            end if;
            Asgn := Get_Assign_Chain (Asgn);
         end loop;
      end loop;
      pragma Assert (Idx = Arr'Last + 1);
   end Fill_Wire_Id_Array;

   type Seq_Assign_Value_Array_Acc is access Seq_Assign_Value_Array;
   procedure Free_Seq_Assign_Value_Array is new Ada.Unchecked_Deallocation
     (Seq_Assign_Value_Array, Seq_Assign_Value_Array_Acc);

   function Is_Assign_Value_Array_Static
     (Wid : Wire_Id; Arr : Seq_Assign_Value_Array) return Memtyp
   is
      Res : Memtyp;
      Prev_Val : Memtyp;
   begin
      Prev_Val := Null_Memtyp;
      for I in Arr'Range loop
         case Arr (I).Is_Static is
            when False =>
               --  A value is not static.
               return Null_Memtyp;
            when Unknown =>
               if Prev_Val = Null_Memtyp then
                  --  First use of previous value.
                  if Get_Kind (Wid) /= Wire_Variable
                    or else not Is_Static_Wire (Wid)
                  then
                     --  The previous value is not static.
                     return Null_Memtyp;
                  end if;
                  Prev_Val := Get_Static_Wire (Wid);
                  if Res /= Null_Memtyp then
                     --  There is already a result.
                     if not Is_Equal (Res, Prev_Val) then
                        --  The previous value is different from the result.
                        return Null_Memtyp;
                     end if;
                  else
                     Res := Prev_Val;
                  end if;
               end if;
            when True =>
               if Res = Null_Memtyp then
                  --  First value.  Keep it.
                  Res := Arr (I).Val;
               else
                  if not Is_Equal (Res, Arr (I).Val) then
                     --  Value is different.
                     return  Null_Memtyp;
                  end if;
               end if;
         end case;
      end loop;
      return Res;
   end Is_Assign_Value_Array_Static;

   procedure Synth_Case_Statement_Dynamic
     (C : in out Seq_Context; Stmt : Node; Sel : Valtyp)
   is
      use Vhdl.Sem_Expr;
      Ctxt : constant Context_Acc := Get_Build (C.Inst);

      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);

      Case_Info : Choice_Info_Type;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      Nbr_Choices : Nat32;

      Pasgns : Seq_Assign_Value_Array_Acc;
      Nets : Net_Array_Acc;

      Nbr_Wires : Natural;
      Wires : Wire_Id_Array_Acc;

      Sel_Net : Net;
   begin
      --  Strategies to synthesize a case statement.  Assume the selector is
      --  a net of W bits
      --  - a large mux, with 2**W inputs
      --    - if the number of choices is dense
      --    - if W is small
      --  - a onehot mux.  Each choice is converted to an single bit condition
      --    by adding a comparison operator (equal for single choice,
      --    inequalities for ranges, or for multiple choices). Only one of
      --    these conditions is true (plus 'others').
      --    - if the number of choices is sparse
      --    - large range choices
      --  - a tree of mux/mux2
      --    - large number of choices, densily grouped but sparsed compared
      --       to 2**W (eg: a partially filled memory)
      --    - divide and conquier

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      --Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));

      --  Compute number of non-default alternatives.
      Nbr_Choices := Nat32 (Case_Info.Nbr_Alternatives);
      if Case_Info.Others_Choice /= Null_Node then
         Nbr_Choices := Nbr_Choices - 1;
      end if;

      Nets := new Net_Array (1 .. Int32 (Alts'Last));

      Sel_Net := Get_Net (Ctxt, Sel);

      --  Synth statements and keep list of assignments.
      --  Also synth choices.
      declare
         Choice : Node;
         Choice_Idx, Other_Choice : Nat32;
         Phi : Phi_Type;
      begin
         Alt_Idx := 0;
         Choice_Idx := 0;
         Other_Choice := 0;

         Choice := Choices;
         while Is_Valid (Choice) loop
            --  Must be a choice for a new alternative.
            pragma Assert (not Get_Same_Alternative_Flag (Choice));

            --  A new sequence of statements.
            Alt_Idx := Alt_Idx + 1;

            Push_Phi;
            Synth_Sequential_Statements (C, Get_Associated_Chain (Choice));
            Pop_Phi (Phi);
            Alts (Alt_Idx).Asgns := Sort_Phi (Phi);

            Synth_Choice (C.Inst, Sel_Net, Sel.Typ,
                          Nets.all, Other_Choice, Choice_Idx, Choice);
         end loop;
         pragma Assert (Choice_Idx = Nbr_Choices);
         Others_Alt_Idx := Alternative_Index (Other_Choice);
      end;

      --  Create the one-hot vector.
      if Nbr_Choices = 0 then
         Sel_Net := No_Net;
      else
         Sel_Net := Build2_Concat (Ctxt, Nets (1 .. Nbr_Choices));
      end if;

      --  Create list of wire_id, sort it.
      Nbr_Wires := Count_Wires_In_Alternatives (Alts.all);
      Wires := new Wire_Id_Array (1 .. Nbr_Wires);
      Fill_Wire_Id_Array (Wires.all, Alts.all);
      Sort_Wire_Id_Array (Wires.all);

      --  Associate each choice with the assign node
      --  For each wire_id:
      --    Build mux2/mux4 tree (group by 4)
      Pasgns := new Seq_Assign_Value_Array (1 .. Int32 (Alts'Last));

      --  For each wire, compute the result.
      for I in Wires'Range loop
         declare
            Wi : constant Wire_Id := Wires (I);
            Last_Val : Net;
            Res_Inst : Instance;
            Res : Net;
            Default : Net;
            Min_Off, Off : Uns32;
            Wd : Width;
            List : Partial_Assign_List;
            Sval : Memtyp;
         begin
            --  Extract the value for each branch.
            for I in Alts'Range loop
               --  If there is an assignment to Wi in Alt, it will define the
               --  value.
               if Get_Wire_Id (Alts (I).Asgns) = Wi then
                  Pasgns (Int32 (I)) :=
                    Get_Seq_Assign_Value (Alts (I).Asgns);
                  Alts (I).Asgns := Get_Assign_Chain (Alts (I).Asgns);
               else
                  Pasgns (Int32 (I)) := (Is_Static => Unknown);
               end if;
            end loop;

            --  If:
            --  1) All present values in PASGNS are static
            --  2) There is no missing values *or* the previous value is
            --     static.
            --  3) The default value is unused *or* it is static
            --  4) All the values are equal.
            --  then assign directly.
            Sval := Is_Assign_Value_Array_Static (Wi, Pasgns.all);
            if Sval /= Null_Memtyp then
               --  Use static assignment.
               Phi_Assign_Static (Wi, Sval);
            else
               --  Compute the final value for each partial part of the wire.
               Partial_Assign_Init (List);
               Min_Off := 0;
               loop
                  Off := Min_Off;

                  --  Extract value of partial assignments to NETS.
                  Extract_Merge_Partial_Assigns
                    (Ctxt, Pasgns.all, Nets.all, Off, Wd);
                  exit when Off = Uns32'Last and Wd = Width'Last;

                  --  If a branch has no value, use the value before the case.
                  --  Also do it for the default value!
                  Last_Val := No_Net;
                  for I in Nets'Range loop
                     if Nets (I) = No_Net then
                        if Last_Val = No_Net then
                           Last_Val := Get_Current_Assign_Value
                             (Ctxt, Wi, Off, Wd);
                        end if;
                        Nets (I) := Last_Val;
                     end if;
                  end loop;

                  --  Extract default value (for missing alternative).
                  if Others_Alt_Idx /= 0 then
                     Default := Nets (Int32 (Others_Alt_Idx));
                  else
                     Default := Build_Const_X (Ctxt, Wd);
                  end if;

                  if Nbr_Choices = 0 then
                     Res := Default;
                  else
                     Res := Build_Pmux (Ctxt, Sel_Net, Default);
                     Res_Inst := Get_Net_Parent (Res);
                     Set_Location (Res_Inst, Get_Location (Stmt));

                     for I in 1 .. Nbr_Choices loop
                        Connect
                          (Get_Input (Res_Inst, Port_Nbr (2 + I - Nets'First)),
                           Nets (I));
                     end loop;
                  end if;

                  Partial_Assign_Append (List, New_Partial_Assign (Res, Off));
                  Min_Off := Off + Wd;
               end loop;

               Merge_Partial_Assigns (Ctxt, Wi, List);
            end if;
         end;
      end loop;

      --  free.
      Free_Wire_Id_Array (Wires);
      Free_Alternative_Data_Array (Alts);
      Free_Seq_Assign_Value_Array (Pasgns);
      Free_Net_Array (Nets);
   end Synth_Case_Statement_Dynamic;

   procedure Synth_Case_Statement_Static_Array
     (C : in out Seq_Context; Stmt : Node; Sel : Valtyp)
   is
      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
      Choice : Node;
      Stmts : Node;
      Sel_Expr : Node;
      Sel_Val : Valtyp;
   begin
      --  Synth statements, extract choice value.
      Stmts := Null_Node;
      Choice := Choices;
      loop
         pragma Assert (Is_Valid (Choice));
         if not Get_Same_Alternative_Flag (Choice) then
            Stmts := Get_Associated_Chain (Choice);
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Sel_Expr := Get_Choice_Expression (Choice);
               Sel_Val := Synth_Expression_With_Basetype (C.Inst, Sel_Expr);
               if Is_Equal (Sel_Val, Sel) then
                  Synth_Sequential_Statements (C, Stmts);
                  exit;
               end if;
            when Iir_Kind_Choice_By_Others =>
               Synth_Sequential_Statements (C, Stmts);
               exit;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
   end Synth_Case_Statement_Static_Array;

   procedure Synth_Case_Statement_Static_Scalar
     (C : in out Seq_Context; Stmt : Node; Sel : Int64)
   is
      Choices : constant Node := Get_Case_Statement_Alternative_Chain (Stmt);
      Choice : Node;
      Stmts : Node;
      Sel_Expr : Node;
   begin
      --  Synth statements, extract choice value.
      Stmts := Null_Node;
      Choice := Choices;
      loop
         pragma Assert (Is_Valid (Choice));
         if not Get_Same_Alternative_Flag (Choice) then
            Stmts := Get_Associated_Chain (Choice);
         end if;

         case Get_Kind (Choice) is
            when Iir_Kind_Choice_By_Expression =>
               Sel_Expr := Get_Choice_Expression (Choice);
               if Vhdl.Evaluation.Eval_Pos (Sel_Expr) = Sel then
                  Synth_Sequential_Statements (C, Stmts);
                  exit;
               end if;
            when Iir_Kind_Choice_By_Others =>
               Synth_Sequential_Statements (C, Stmts);
               exit;
            when Iir_Kind_Choice_By_Range =>
               declare
                  Bnd : Discrete_Range_Type;
                  Is_In : Boolean;
               begin
                  Synth_Discrete_Range
                    (C.Inst, Get_Choice_Range (Choice), Bnd);
                  case Bnd.Dir is
                     when Dir_To =>
                        Is_In := Sel >= Bnd.Left and Sel <= Bnd.Right;
                     when Dir_Downto =>
                        Is_In := Sel <= Bnd.Left and Sel >= Bnd.Right;
                  end case;
                  if Is_In then
                     Synth_Sequential_Statements (C, Stmts);
                     exit;
                  end if;
               end;
            when others =>
               raise Internal_Error;
         end case;
         Choice := Get_Chain (Choice);
      end loop;
   end Synth_Case_Statement_Static_Scalar;

   procedure Synth_Case_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Expr : constant Node := Get_Expression (Stmt);
      Sel : Valtyp;
   begin
      Sel := Synth_Expression_With_Basetype (C.Inst, Expr);
      Strip_Const (Sel);
      if Is_Static (Sel.Val) then
         case Sel.Typ.Kind is
            when Type_Bit
              | Type_Logic
              | Type_Discrete =>
               Synth_Case_Statement_Static_Scalar (C, Stmt,
                                                   Read_Discrete (Sel));
            when Type_Vector
              | Type_Array =>
               Synth_Case_Statement_Static_Array (C, Stmt, Sel);
            when others =>
               raise Internal_Error;
         end case;
      else
         Synth_Case_Statement_Dynamic (C, Stmt, Sel);
      end if;
   end Synth_Case_Statement;

   procedure Synth_Selected_Signal_Assignment
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use Vhdl.Sem_Expr;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);

      Expr : constant Node := Get_Expression (Stmt);
      Choices : constant Node := Get_Selected_Waveform_Chain (Stmt);

      Targ : Target_Info;
      Targ_Type : Type_Acc;

      Case_Info : Choice_Info_Type;

      --  Array of alternatives
      Alts : Alternative_Data_Acc;
      Alt_Idx : Alternative_Index;
      Others_Alt_Idx : Alternative_Index;

      --  Array of choices.  Contains tuple of (Value, Alternative).
      Nbr_Choices : Nat32;

      Nets : Net_Array_Acc;


      Sel : Valtyp;
      Sel_Net : Net;
   begin
      Targ := Synth_Target (Syn_Inst, Get_Target (Stmt));
      Targ_Type := Targ.Targ_Type;

      --  Create a net for the expression.
      Sel := Synth_Expression_With_Basetype (Syn_Inst, Expr);
      Sel_Net := Get_Net (Ctxt, Sel);

      --  Count choices and alternatives.
      Count_Choices (Case_Info, Choices);
      --  Fill_Choices_Array (Case_Info, Choices);

      --  Allocate structures.
      --  Because there is no 1-1 link between choices and alternatives,
      --  create an array for the choices and an array for the alternatives.
      Alts := new Alternative_Data_Array
        (1 .. Alternative_Index (Case_Info.Nbr_Alternatives));

      --  Compute number of non-default alternatives.
      Nbr_Choices := Nat32 (Case_Info.Nbr_Alternatives);
      if Case_Info.Others_Choice /= Null_Node then
         Nbr_Choices := Nbr_Choices - 1;
      end if;

      Nets := new Net_Array (1 .. Nbr_Choices);

      --  Synth statements, extract choice value.
      declare
         Choice, Wf : Node;
         Val : Valtyp;
         Choice_Idx, Other_Choice : Nat32;
      begin
         Alt_Idx := 0;
         Choice_Idx := 0;
         Other_Choice := 0;

         Choice := Choices;
         while Is_Valid (Choice) loop
            pragma Assert (not Get_Same_Alternative_Flag (Choice));

            Wf := Get_Associated_Chain (Choice);
            Val := Synth_Waveform (Syn_Inst, Wf, Targ_Type);

            Alt_Idx := Alt_Idx + 1;
            Alts (Alt_Idx).Val := Get_Net (Ctxt, Val);

            Synth_Choice (Syn_Inst, Sel_Net, Sel.Typ,
                          Nets.all, Other_Choice, Choice_Idx, Choice);
         end loop;
         pragma Assert (Choice_Idx = Nbr_Choices);
         Others_Alt_Idx := Alternative_Index (Other_Choice);
      end;

      --  Create the one-hot vector.
      if Nbr_Choices = 0 then
         Sel_Net := No_Net;
      else
         Sel_Net := Build2_Concat (Ctxt, Nets (1 .. Nbr_Choices));
      end if;

      declare
         Res : Net;
         Res_Inst : Instance;
         Default : Net;
      begin
         --  Extract default value (for missing alternative).
         if Others_Alt_Idx /= 0 then
            Default := Alts (Others_Alt_Idx).Val;
         else
            Default := Build_Const_X (Ctxt, Targ_Type.W);
         end if;

         if Nbr_Choices = 0 then
            Res := Default;
         else
            Res := Build_Pmux (Ctxt, Sel_Net, Default);
            Res_Inst := Get_Net_Parent (Res);
            Set_Location (Res_Inst, Get_Location (Stmt));

            for I in 1 .. Nbr_Choices loop
               Connect
                 (Get_Input (Res_Inst, Port_Nbr (2 + I - Nets'First)),
                  Alts (Alternative_Index (I)).Val);
            end loop;
         end if;

         Synth_Assignment
           (Syn_Inst, Targ, Create_Value_Net (Res, Targ_Type), Stmt);
      end;

      --  free.
      Free_Alternative_Data_Array (Alts);
      Free_Net_Array (Nets);
   end Synth_Selected_Signal_Assignment;

   function Synth_Label (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
                         return Sname
   is
      Label : constant Name_Id := Get_Label (Stmt);
   begin
      if Label = Null_Identifier then
         return No_Sname;
      else
         return New_Sname_User (Label, Get_Sname (Syn_Inst));
      end if;
   end Synth_Label;

   function Is_Copyback_Interface (Inter : Node) return Boolean is
   begin
      case Iir_Parameter_Modes (Get_Mode (Inter)) is
         when Iir_In_Mode =>
            return False;
         when Iir_Out_Mode | Iir_Inout_Mode =>
            return Get_Kind (Inter) = Iir_Kind_Interface_Variable_Declaration;
      end case;
   end Is_Copyback_Interface;

   type Association_Iterator_Kind is
     (Association_Function,
      Association_Operator);

   type Association_Iterator_Init
     (Kind : Association_Iterator_Kind := Association_Function) is
   record
      Inter_Chain : Node;
      case Kind is
         when Association_Function =>
            Assoc_Chain : Node;
         when Association_Operator =>
            Left : Node;
            Right : Node;
      end case;
   end record;

   function Association_Iterator_Build (Inter_Chain : Node; Assoc_Chain : Node)
                                       return Association_Iterator_Init is
   begin
      return Association_Iterator_Init'(Kind => Association_Function,
                                        Inter_Chain => Inter_Chain,
                                        Assoc_Chain => Assoc_Chain);
   end Association_Iterator_Build;

   function Association_Iterator_Build
     (Inter_Chain : Node; Left : Node; Right : Node)
     return Association_Iterator_Init is
   begin
      return Association_Iterator_Init'(Kind => Association_Operator,
                                        Inter_Chain => Inter_Chain,
                                        Left => Left,
                                        Right => Right);
   end Association_Iterator_Build;

   function Count_Associations (Init : Association_Iterator_Init)
                               return Natural
   is
      Assoc : Node;
      Assoc_Inter : Node;
      Inter : Node;
      Nbr_Inout : Natural;
   begin
      case Init.Kind is
         when Association_Function =>
            Nbr_Inout := 0;

            Assoc := Init.Assoc_Chain;
            Assoc_Inter := Init.Inter_Chain;
            while Is_Valid (Assoc) loop
               Inter := Get_Association_Interface (Assoc, Assoc_Inter);

               if Is_Copyback_Interface (Inter) then
                  Nbr_Inout := Nbr_Inout + 1;
               end if;

               Next_Association_Interface (Assoc, Assoc_Inter);
            end loop;

            return Nbr_Inout;
         when Association_Operator =>
            return 0;
      end case;
   end Count_Associations;

   type Association_Iterator
     (Kind : Association_Iterator_Kind := Association_Function) is
   record
      Inter : Node;
      case Kind is
         when Association_Function =>
            First_Named_Assoc : Node;
            Next_Assoc : Node;
         when Association_Operator =>
            Op1 : Node;
            Op2 : Node;
      end case;
   end record;

   procedure Association_Iterate_Init (Iterator : out Association_Iterator;
                                       Init : Association_Iterator_Init) is
   begin
      case Init.Kind is
         when Association_Function =>
            Iterator := (Kind => Association_Function,
                         Inter => Init.Inter_Chain,
                         First_Named_Assoc => Null_Node,
                         Next_Assoc => Init.Assoc_Chain);
         when Association_Operator =>
            Iterator := (Kind => Association_Operator,
                         Inter => Init.Inter_Chain,
                         Op1 => Init.Left,
                         Op2 => Init.Right);
      end case;
   end Association_Iterate_Init;

   --  Return the next association.
   --  ASSOC can be:
   --  * an Iir_Kind_Association_By_XXX node (normal case)
   --  * Null_Iir if INTER is not associated (and has a default value).
   --  * an expression (for operator association).
   procedure Association_Iterate_Next (Iterator : in out Association_Iterator;
                                       Inter : out Node;
                                       Assoc : out Node)
   is
      Formal : Node;
   begin
      Inter := Iterator.Inter;
      if Inter = Null_Node then
         --  End of iterator.
         Assoc := Null_Node;
         return;
      else
         --  Advance to the next interface for the next call.
         Iterator.Inter := Get_Chain (Iterator.Inter);
      end if;

      case Iterator.Kind is
         when Association_Function =>
            if Iterator.First_Named_Assoc = Null_Node then
               Assoc := Iterator.Next_Assoc;
               if Assoc = Null_Node then
                  --  No more association: open association.
                  return;
               end if;
               Formal := Get_Formal (Assoc);
               if Formal = Null_Node then
                  --  Association by position.
                  --  Update for the next call.
                  Iterator.Next_Assoc := Get_Chain (Assoc);
                  return;
               end if;
               Iterator.First_Named_Assoc := Assoc;
            end if;

            --  Search by name.
            Assoc := Iterator.First_Named_Assoc;
            while Assoc /= Null_Node loop
               Formal := Get_Formal (Assoc);
               pragma Assert (Formal /= Null_Node);
               Formal := Get_Interface_Of_Formal (Formal);
               if Formal = Inter then
                  --  Found.
                  --  Optimize in case assocs are in order.
                  if Assoc = Iterator.First_Named_Assoc then
                     Iterator.First_Named_Assoc := Get_Chain (Assoc);
                  end if;
                  return;
               end if;
               Assoc := Get_Chain (Assoc);
            end loop;

            --  Not found: open association.
            return;

         when Association_Operator =>
            Assoc := Iterator.Op1;
            Iterator.Op1 := Iterator.Op2;
            Iterator.Op2 := Null_Node;
      end case;
   end Association_Iterate_Next;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Init : Association_Iterator_Init;
                                           Infos : out Target_Info_Array)
   is
      pragma Assert (Infos'First = 1);
      Ctxt : constant Context_Acc := Get_Build (Caller_Inst);
      Inter : Node;
      Inter_Type : Type_Acc;
      Assoc : Node;
      Actual : Node;
      Val : Valtyp;
      Nbr_Inout : Natural;
      Iterator : Association_Iterator;
      Info : Target_Info;
   begin
      Set_Instance_Const (Subprg_Inst, True);

      Nbr_Inout := 0;

      --  Process in INTER order.
      Association_Iterate_Init (Iterator, Init);
      loop
         Association_Iterate_Next (Iterator, Inter, Assoc);
         exit when Inter = Null_Node;

         Inter_Type := Get_Subtype_Object (Caller_Inst, Get_Type (Inter));

         case Iir_Parameter_Modes (Get_Mode (Inter)) is
            when Iir_In_Mode =>
               if Assoc = Null_Node
                 or else Get_Kind (Assoc) = Iir_Kind_Association_Element_Open
               then
                  Actual := Get_Default_Value (Inter);
                  Val := Synth_Expression_With_Type
                    (Subprg_Inst, Actual, Inter_Type);
               else
                  if Get_Kind (Assoc) =
                    Iir_Kind_Association_Element_By_Expression
                  then
                     Actual := Get_Actual (Assoc);
                  else
                     Actual := Assoc;
                  end if;
                  Val := Synth_Expression_With_Type
                    (Caller_Inst, Actual, Inter_Type);
               end if;
            when Iir_Out_Mode | Iir_Inout_Mode =>
               Actual := Get_Actual (Assoc);
               Info := Synth_Target (Caller_Inst, Actual);

               case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter))
                  is
                  when Iir_Kind_Interface_Constant_Declaration =>
                     raise Internal_Error;
                  when Iir_Kind_Interface_Variable_Declaration =>
                     --  Always pass by value.
                     Nbr_Inout := Nbr_Inout + 1;
                     Infos (Nbr_Inout) := Info;
                     if Info.Kind /= Target_Memory
                       and then Is_Static (Info.Obj.Val)
                     then
                        Val := Create_Value_Memory (Info.Targ_Type);
                        Copy_Memory (Val.Val.Mem,
                                     Info.Obj.Val.Mem + Info.Off.Mem_Off,
                                     Info.Targ_Type.Sz);
                     else
                        Val := Synth_Read (Caller_Inst, Info, Assoc);
                     end if;
                  when Iir_Kind_Interface_Signal_Declaration =>
                     --  Always pass by reference (use an alias).
                     if Info.Kind = Target_Memory then
                        raise Internal_Error;
                     end if;
                     Val := Create_Value_Alias
                       (Info.Obj, Info.Off, Info.Targ_Type);
                  when Iir_Kind_Interface_File_Declaration =>
                     Val := Info.Obj;
                  when Iir_Kind_Interface_Quantity_Declaration =>
                     raise Internal_Error;
               end case;
         end case;

         if Val = No_Valtyp then
            Set_Error (Subprg_Inst);
            return;
         end if;

         --  FIXME: conversion only for constants, reshape for all.
         Val := Synth_Subtype_Conversion (Ctxt, Val, Inter_Type, True, Assoc);

         if Get_Instance_Const (Subprg_Inst) and then not Is_Static (Val.Val)
         then
            Set_Instance_Const (Subprg_Inst, False);
         end if;

         case Iir_Kinds_Interface_Object_Declaration (Get_Kind (Inter)) is
            when Iir_Kind_Interface_Constant_Declaration =>
               --  Pass by reference.
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Variable_Declaration =>
               --  Arguments are passed by copy.
               if Is_Static (Val.Val) or else Get_Mode (Inter) = Iir_In_Mode
               then
                  Val := Unshare (Val, Current_Pool);
               else
                  --  Will be changed to a wire.
                  null;
               end if;
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Signal_Declaration =>
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_File_Declaration =>
               Create_Object (Subprg_Inst, Inter, Val);
            when Iir_Kind_Interface_Quantity_Declaration =>
               raise Internal_Error;
         end case;
      end loop;
   end Synth_Subprogram_Association;

   procedure Synth_Subprogram_Association (Subprg_Inst : Synth_Instance_Acc;
                                           Caller_Inst : Synth_Instance_Acc;
                                           Inter_Chain : Node;
                                           Assoc_Chain : Node)
   is
      Infos : Target_Info_Array (1 .. 0);
      pragma Unreferenced (Infos);
      Init : Association_Iterator_Init;
   begin
      Init := Association_Iterator_Build (Inter_Chain, Assoc_Chain);
      Synth_Subprogram_Association (Subprg_Inst, Caller_Inst, Init, Infos);
   end Synth_Subprogram_Association;

   --  Create wires for out and inout interface variables.
   procedure Synth_Subprogram_Association_Wires
     (Subprg_Inst : Synth_Instance_Acc; Init : Association_Iterator_Init)
   is
      Ctxt : constant Context_Acc := Get_Build (Subprg_Inst);
      Inter : Node;
      Assoc : Node;
      Val : Valtyp;
      Iterator : Association_Iterator;
      Wire : Wire_Id;
   begin
      --  Process in INTER order.
      Association_Iterate_Init (Iterator, Init);
      loop
         Association_Iterate_Next (Iterator, Inter, Assoc);
         exit when Inter = Null_Node;

         if Get_Mode (Inter) in Iir_Out_Modes
           and then Get_Kind (Inter) = Iir_Kind_Interface_Variable_Declaration
         then
            Val := Get_Value (Subprg_Inst, Inter);
            --  Arguments are passed by copy.
            Wire := Alloc_Wire (Wire_Variable, (Inter, Val.Typ));
            Set_Wire_Gate (Wire, Get_Net (Ctxt, Val));

            Val := Create_Value_Wire (Wire, Val.Typ);
            Create_Object_Force (Subprg_Inst, Inter, No_Valtyp);
            Create_Object_Force (Subprg_Inst, Inter, Val);
         end if;
      end loop;
   end Synth_Subprogram_Association_Wires;

   procedure Synth_Subprogram_Back_Association
     (Subprg_Inst : Synth_Instance_Acc;
      Caller_Inst : Synth_Instance_Acc;
      Init : Association_Iterator_Init;
      Infos : Target_Info_Array)
   is
      pragma Assert (Infos'First = 1);
      Inter : Node;
      Assoc : Node;
      Assoc_Inter : Node;
      Val : Valtyp;
      Nbr_Inout : Natural;
      W : Wire_Id;
   begin
      Nbr_Inout := 0;
      pragma Assert (Init.Kind = Association_Function);
      Assoc := Init.Assoc_Chain;
      Assoc_Inter := Init.Inter_Chain;
      while Is_Valid (Assoc) loop
         Inter := Get_Association_Interface (Assoc, Assoc_Inter);

         if Is_Copyback_Interface (Inter) then
            if not Get_Whole_Association_Flag (Assoc) then
               raise Internal_Error;
            end if;
            Nbr_Inout := Nbr_Inout + 1;
            Val := Get_Value (Subprg_Inst, Inter);
            Synth_Assignment (Caller_Inst, Infos (Nbr_Inout), Val, Assoc);

            --  Free wire used for out/inout interface variables.
            if Val.Val.Kind = Value_Wire then
               W := Get_Value_Wire (Val.Val);
               Phi_Discard_Wires (W, No_Wire_Id);
               Free_Wire (W);
            end if;
         end if;

         Next_Association_Interface (Assoc, Assoc_Inter);
      end loop;
      pragma Assert (Nbr_Inout = Infos'Last);
   end Synth_Subprogram_Back_Association;

   function Build_Control_Signal (Syn_Inst : Synth_Instance_Acc;
                                  W : Width;
                                  Loc : Source.Syn_Src) return Net
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Res : Net;
   begin
      Res := Build_Signal (Ctxt, New_Internal_Name (Ctxt), W);
      Set_Location (Res, Loc);
      return Res;
   end Build_Control_Signal;

   function Synth_Dynamic_Subprogram_Call (Syn_Inst : Synth_Instance_Acc;
                                           Sub_Inst : Synth_Instance_Acc;
                                           Call : Node;
                                           Init : Association_Iterator_Init;
                                           Infos : Target_Info_Array)
                                          return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Bod : constant Node := Vhdl.Sem_Inst.Get_Subprogram_Body_Origin (Imp);
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Res : Valtyp;
      C : Seq_Context (Mode_Dynamic);
      Wire_Mark : Wire_Id;
      Subprg_Phi : Phi_Type;
   begin
      Mark (Wire_Mark);
      C := (Mode => Mode_Dynamic,
            Inst => Sub_Inst,
            Cur_Loop => null,
            W_En => No_Wire_Id,
            W_Ret => No_Wire_Id,
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => No_Valtyp,
            Ret_Typ => null,
            Nbr_Ret => 0);

      C.W_En := Alloc_Wire (Wire_Variable, (Imp, Bit_Type));
      C.W_Ret := Alloc_Wire (Wire_Variable, (Imp, Bit_Type));

      if Is_Func then
         C.W_Val := Alloc_Wire (Wire_Variable, (Imp, null));
      end if;

      --  Create a phi so that all assignments are gathered.
      Push_Phi;

      Synth_Subprogram_Association_Wires (Sub_Inst, Init);

      if Is_Func then
         --  Set a default value for the return.
         C.Ret_Typ := Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));

         Set_Wire_Gate (C.W_Val,
                        Build_Control_Signal (Sub_Inst, C.Ret_Typ.W, Imp));
         C.Ret_Init := Build_Const_X (Ctxt, C.Ret_Typ.W);
         Phi_Assign_Net (Ctxt, C.W_Val, C.Ret_Init, 0);
      end if;

      Set_Wire_Gate
        (C.W_En, Build_Control_Signal (Sub_Inst, 1, Imp));
      Phi_Assign_Static (C.W_En, Bit1);

      Set_Wire_Gate
        (C.W_Ret, Build_Control_Signal (Sub_Inst, 1, Imp));
      Phi_Assign_Static (C.W_Ret, Bit1);

      Vhdl_Decls.Synth_Declarations
        (C.Inst, Get_Declaration_Chain (Bod), True);
      if not Is_Error (C.Inst) then
         Synth_Sequential_Statements (C, Get_Sequential_Statement_Chain (Bod));
      end if;

      if Is_Error (C.Inst) then
         Res := No_Valtyp;
      else
         if Is_Func then
            if C.Nbr_Ret = 0 then
               raise Internal_Error;
            elsif C.Nbr_Ret = 1 and then Is_Static (C.Ret_Value.Val) then
               Res := C.Ret_Value;
            else
               Res := Create_Value_Net
                 (Get_Current_Value (Ctxt, C.W_Val), C.Ret_Value.Typ);
            end if;
         else
            Res := No_Valtyp;
            Synth_Subprogram_Back_Association (C.Inst, Syn_Inst, Init, Infos);
         end if;
      end if;

      Pop_Phi (Subprg_Phi);

      Vhdl_Decls.Finalize_Declarations
        (C.Inst, Get_Declaration_Chain (Bod), True);
      pragma Unreferenced (Infos);

      --  Propagate assignments.
      --  Wires that have been created for this subprogram will be destroyed.
      --  But assignment for outer wires (passed through parameters) have
      --  to be kept.  We cannot merge phi because this won't be allowed for
      --  local wires.
      Propagate_Phi_Until_Mark (Ctxt, Subprg_Phi, Wire_Mark);

      --  Free wires.
      --  These wires are currently unassigned because they were created
      --  within the Phi.
      Free_Wire (C.W_En);
      Free_Wire (C.W_Ret);
      if Is_Func then
         Free_Wire (C.W_Val);
      end if;

      Release (Wire_Mark);

      return Res;
   end Synth_Dynamic_Subprogram_Call;

   function Synth_Static_Subprogram_Call (Syn_Inst : Synth_Instance_Acc;
                                          Sub_Inst : Synth_Instance_Acc;
                                          Call     : Node;
                                          Bod      : Node;
                                          Init : Association_Iterator_Init;
                                          Infos : Target_Info_Array)
                                         return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Res : Valtyp;
      C : Seq_Context (Mode_Static);
   begin
      C := (Mode_Static,
            Inst => Sub_Inst,
            Cur_Loop => null,
            S_En => True,
            Ret_Value => No_Valtyp,
            Ret_Typ => null,
            Nbr_Ret => 0);

      if Is_Func then
         --  Set a default value for the return.
         C.Ret_Typ := Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));
      end if;

      Synth_Declarations (C.Inst, Get_Declaration_Chain (Bod), True);

      if not Is_Error (C.Inst) then
         Synth_Sequential_Statements (C, Get_Sequential_Statement_Chain (Bod));
      end if;

      if Is_Error (C.Inst) then
         Res := No_Valtyp;
      else
         if Is_Func then
            if C.Nbr_Ret = 0 then
               Error_Msg_Synth
                 (+Call, "function call completed without a return statement");
               Res := No_Valtyp;
            else
               pragma Assert (C.Nbr_Ret = 1);
               pragma Assert (Is_Static (C.Ret_Value.Val));
               Res := C.Ret_Value;
            end if;
         else
            Res := No_Valtyp;
            Synth_Subprogram_Back_Association (C.Inst, Syn_Inst, Init, Infos);
         end if;
      end if;

      Vhdl_Decls.Finalize_Declarations
        (C.Inst, Get_Declaration_Chain (Bod), True);
      pragma Unreferenced (Infos);

      return Res;
   end Synth_Static_Subprogram_Call;

   function Synth_Subprogram_Call (Syn_Inst : Synth_Instance_Acc;
                                   Call : Node;
                                   Init : Association_Iterator_Init)
                                  return Valtyp
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Imp  : constant Node := Get_Implementation (Call);
      Is_Func : constant Boolean := Is_Function_Declaration (Imp);
      Bod : constant Node := Vhdl.Sem_Inst.Get_Subprogram_Body_Origin (Imp);
      Nbr_Inout : constant Natural := Count_Associations (Init);
      Infos : Target_Info_Array (1 .. Nbr_Inout);
      Area_Mark : Areapools.Mark_Type;
      Res : Valtyp;
      Sub_Inst : Synth_Instance_Acc;
      Up_Inst : Synth_Instance_Acc;
   begin
      Areapools.Mark (Area_Mark, Instance_Pool.all);

      Up_Inst := Get_Instance_By_Scope (Syn_Inst, Get_Parent_Scope (Imp));
      Sub_Inst := Make_Elab_Instance (Up_Inst, Bod, Config => Null_Node);
      if Ctxt /= null then
         Set_Extra (Sub_Inst, Syn_Inst, New_Internal_Name (Ctxt));
      end if;

      Synth_Subprogram_Association (Sub_Inst, Syn_Inst, Init, Infos);

      if Is_Error (Sub_Inst) then
         Res := No_Valtyp;
      else
         if not Is_Func then
            if Ctxt /= null and then Get_Purity_State (Imp) /= Pure then
               Set_Instance_Const (Sub_Inst, False);
            end if;
         end if;

         if Get_Instance_Const (Sub_Inst) then
            Res := Synth_Static_Subprogram_Call
              (Syn_Inst, Sub_Inst, Call, Bod, Init, Infos);
         else
            Res := Synth_Dynamic_Subprogram_Call
              (Syn_Inst, Sub_Inst, Call, Init, Infos);
         end if;
      end if;

      --  Propagate error.
      if Is_Error (Sub_Inst) then
         Set_Error (Syn_Inst);
      end if;

      if Elab.Debugger.Flag_Need_Debug then
         Elab.Debugger.Debug_Leave (Sub_Inst);
      end if;

      Free_Instance (Sub_Inst);
      Areapools.Release (Area_Mark, Instance_Pool.all);

      return Res;
   end Synth_Subprogram_Call;

   function Synth_Subprogram_Call
     (Syn_Inst : Synth_Instance_Acc; Call : Node) return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Call);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Init : Association_Iterator_Init;
   begin
      Init := Association_Iterator_Build (Inter_Chain, Assoc_Chain);
      return Synth_Subprogram_Call (Syn_Inst, Call, Init);
   end Synth_Subprogram_Call;

   function Synth_User_Operator (Syn_Inst : Synth_Instance_Acc;
                                 Left_Expr : Node;
                                 Right_Expr : Node;
                                 Expr : Node) return Valtyp
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Init : Association_Iterator_Init;
   begin
      Init := Association_Iterator_Build (Inter_Chain, Left_Expr, Right_Expr);
      return Synth_Subprogram_Call (Syn_Inst, Expr, Init);
   end Synth_User_Operator;

   procedure Synth_Implicit_Procedure_Call
     (Syn_Inst : Synth_Instance_Acc; Call : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Imp  : constant Node := Get_Implementation (Call);
      Assoc_Chain : constant Node := Get_Parameter_Association_Chain (Call);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Init : constant Association_Iterator_Init :=
        Association_Iterator_Build (Inter_Chain, Assoc_Chain);
      Nbr_Inout : constant Natural := Count_Associations (Init);
      Infos : Target_Info_Array (1 .. Nbr_Inout);
      Area_Mark : Areapools.Mark_Type;
      Sub_Inst : Synth_Instance_Acc;
   begin
      Areapools.Mark (Area_Mark, Instance_Pool.all);
      Sub_Inst := Make_Elab_Instance (Syn_Inst, Imp, Null_Node);

      if Ctxt /= null then
         Set_Extra (Sub_Inst, Syn_Inst, New_Internal_Name (Ctxt));
      end if;

      Synth_Subprogram_Association (Sub_Inst, Syn_Inst, Init, Infos);

      Synth.Vhdl_Static_Proc.Synth_Static_Procedure (Sub_Inst, Imp, Call);

      Synth_Subprogram_Back_Association (Sub_Inst, Syn_Inst, Init, Infos);

      Free_Instance (Sub_Inst);
      Areapools.Release (Area_Mark, Instance_Pool.all);
   end Synth_Implicit_Procedure_Call;

   procedure Synth_Procedure_Call
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Call : constant Node := Get_Procedure_Call (Stmt);
      Imp  : constant Node := Get_Implementation (Call);
      Res : Valtyp;
   begin
      case Get_Implicit_Definition (Imp) is
         when Iir_Predefined_None =>
            if Get_Foreign_Flag (Imp) then
               Error_Msg_Synth
                 (+Stmt, "call to foreign %n is not supported", +Imp);
            else
               Res := Synth_Subprogram_Call (Syn_Inst, Call);
               pragma Assert (Res = No_Valtyp);
            end if;
         when others =>
            Synth_Implicit_Procedure_Call (Syn_Inst, Call);
      end case;
   end Synth_Procedure_Call;

   --  Return True iff WID is a static wire and its value is V.
   function Is_Static_Bit (Wid : Wire_Id; V : Ghdl_U8) return Boolean
   is
      M : Memtyp;
   begin
      pragma Assert (Get_Kind (Wid) = Wire_Variable);
      if not Is_Static_Wire (Wid) then
         return False;
      end if;
      M := Get_Static_Wire (Wid);
      return Read_U8 (M) = V;
   end Is_Static_Bit;

   function Is_Static_Bit0 (Wid : Wire_Id) return Boolean is
   begin
      return Is_Static_Bit (Wid, 0);
   end Is_Static_Bit0;

   function Is_Static_Bit1 (Wid : Wire_Id) return Boolean is
   begin
      return Is_Static_Bit (Wid, 1);
   end Is_Static_Bit1;

   pragma Inline (Is_Static_Bit0);
   pragma Inline (Is_Static_Bit1);

   procedure Loop_Control_Init (C : Seq_Context; Stmt : Node)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
   begin
      --  We might create new wires that will be destroy at the end of the
      --  loop.  Use mark and sweep to control their lifetime.
      Mark (C.Cur_Loop.Wire_Mark);

      if Lc.Prev_Loop /= null and then Lc.Prev_Loop.Need_Quit then
         --  An exit or next statement that targets an outer loop may suspend
         --  the execution of this loop.
         Lc.W_Quit := Alloc_Wire (Wire_Variable, (Lc.Loop_Stmt, Bit_Type));
         Set_Wire_Gate (Lc.W_Quit, Build_Control_Signal (C.Inst, 1, Stmt));
         Phi_Assign_Static (Lc.W_Quit, Bit1);
      end if;

      if Get_Exit_Flag (Stmt) or else Get_Next_Flag (Stmt) then
         --  There is an exit or next statement that target this loop.
         --  We need to save W_En, as if the execution is suspended due to
         --  exit or next, it will resume at the end of the loop.
         if Is_Static_Wire (C.W_En) then
            pragma Assert (Is_Static_Bit1 (C.W_En));
            Lc.Saved_En := No_Net;
         else
            Lc.Saved_En := Get_Current_Value (null, C.W_En);
         end if;
         --  Subloops may be suspended if there is an exit or a next statement
         --  for this loop within subloops.
         Lc.Need_Quit := True;
      end if;

      if Get_Exit_Flag (Stmt) then
         --  There is an exit statement for this loop.  Create the wire.
         Lc.W_Exit := Alloc_Wire (Wire_Variable, (Lc.Loop_Stmt, Bit_Type));
         Set_Wire_Gate (Lc.W_Exit, Build_Control_Signal (C.Inst, 1, Stmt));
         Phi_Assign_Static (Lc.W_Exit, Bit1);
      end if;
   end Loop_Control_Init;

   procedure Loop_Control_And_Start (Is_Net : out Boolean;
                                 S      : out Boolean;
                                 N      : out Net;
                                 En     : Net) is
   begin
      if En = No_Net then
         Is_Net := False;
         N := No_Net;
         S := True;
      else
         Is_Net := True;
         N := En;
         S := True;
      end if;
   end Loop_Control_And_Start;

   procedure Loop_Control_And (C : Seq_Context;
                               Is_Net : in out Boolean;
                               S      : in out Boolean;
                               N      : in out Net;
                               R : Wire_Id)
   is
      Res : Net;
   begin
      if R = No_Wire_Id or else Is_Static_Bit1 (R) then
         --  No change.
         return;
      end if;

      if Is_Static_Bit0 (R) then
         --  Stays 0.
         Is_Net := False;
         S := False;
         N := No_Net;
         return;
      end if;

      if not Is_Net and then not S then
         --  Was 0, remains 0.
         return;
      end if;

      pragma Assert (Is_Net or else S);

      --  Optimize common cases.
      Res := Get_Current_Value (null, R);

      if Is_Net then
         N := Build_Dyadic (Get_Build (C.Inst), Id_And, N, Res);
         Set_Location (N, C.Cur_Loop.Loop_Stmt);
      else
         N := Res;
      end if;

      Is_Net := True;
   end Loop_Control_And;

   procedure Loop_Control_And_Assign (C : Seq_Context;
                                      Is_Net : Boolean;
                                      S      : Boolean;
                                      N      : Net;
                                      W      : Wire_Id) is
   begin
      if Is_Net then
         Phi_Assign_Net (Get_Build (C.Inst), W, N, 0);
      else
         if S then
            Phi_Assign_Static (W, Bit1);
         else
            Phi_Assign_Static (W, Bit0);
         end if;
      end if;
   end Loop_Control_And_Assign;

   procedure Loop_Control_Update (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      N  : Net;
      S  : Boolean;
      Is_Net : Boolean;
   begin
      if not Lc.Need_Quit then
         --  No next/exit statement for this loop.  So no control.
         return;
      end if;

      --  Execution continue iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Loop_Control_And_Start (Is_Net, S, N, Lc.Saved_En);

      --  2. No return (C.W_Ret)
      Loop_Control_And (C, Is_Net, S, N, C.W_Ret);

      --  3. No exit.
      Loop_Control_And (C, Is_Net, S, N, Lc.W_Exit);

      --  4. No quit.
      Loop_Control_And (C, Is_Net, S, N, Lc.W_Quit);

      Loop_Control_And_Assign (C, Is_Net, S, N, C.W_En);
   end Loop_Control_Update;

   procedure Loop_Control_Finish (C : Seq_Context)
   is
      Lc : constant Loop_Context_Acc := C.Cur_Loop;
      N   : Net;
      S  : Boolean;
      Is_Net : Boolean;
   begin
      --  Execution continue after this loop iff:
      --  1. Loop was enabled (Lc.Saved_En)
      Loop_Control_And_Start (Is_Net, S, N, Lc.Saved_En);

      --  2. No return (C.W_Ret)
      Loop_Control_And (C, Is_Net, S, N, C.W_Ret);

      --  3. No quit (C.W_Quit)
      Loop_Control_And (C, Is_Net, S, N, Lc.W_Quit);

      Phi_Discard_Wires (Lc.W_Quit, Lc.W_Exit);

      if Lc.W_Quit /= No_Wire_Id then
         Free_Wire (Lc.W_Quit);
      end if;

      if Lc.W_Exit /= No_Wire_Id then
         Free_Wire (Lc.W_Exit);
      end if;

      Release (C.Cur_Loop.Wire_Mark);

      Loop_Control_And_Assign (C, Is_Net, S, N, C.W_En);
   end Loop_Control_Finish;

   procedure Synth_Dynamic_Exit_Next_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Cond : constant Node := Get_Condition (Stmt);
      Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
      Static_Cond : Boolean;
      Loop_Label : Node;
      Lc : Loop_Context_Acc;
      Cond_Val : Valtyp;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      if Cond /= Null_Node then
         Cond_Val := Synth_Expression (C.Inst, Cond);
         Static_Cond := Is_Static_Val (Cond_Val.Val);
         if Static_Cond then
            if Get_Static_Discrete (Cond_Val) = 0 then
               --  Not executed.
               return;
            end if;
         else
            --  Create a branch for the True case.
            Push_Phi;
         end if;
      end if;

      --  Execution is suspended for the current sequence of statements.
      Phi_Assign_Static (C.W_En, Bit0);

      Lc := C.Cur_Loop;

      --  Compute the loop statement indicated by the exit/next statement.
      Loop_Label := Get_Loop_Label (Stmt);
      if Loop_Label = Null_Node then
         Loop_Label := Lc.Loop_Stmt;
      else
         Loop_Label := Get_Named_Entity (Loop_Label);
      end if;

      --  Update the W_Exit and W_Quit flags for the loops.  All the loops
      --  until the label are canceled.
      loop
         if Lc.Loop_Stmt = Loop_Label then
            --  Final loop.
            if Is_Exit then
               Phi_Assign_Static (Lc.W_Exit, Bit0);
            end if;
            exit;
         else
            Phi_Assign_Static (Lc.W_Quit, Bit0);
         end if;
         Lc := Lc.Prev_Loop;
      end loop;

      if Cond /= Null_Node and not Static_Cond then
         Pop_Phi (Phi_True);

         --  If the condition is false, do nothing.
         Push_Phi;
         Pop_Phi (Phi_False);

         Merge_Phis (Ctxt, Get_Net (Ctxt, Cond_Val), Phi_True, Phi_False,
                     Get_Location (Stmt));
      end if;
   end Synth_Dynamic_Exit_Next_Statement;

   procedure Synth_Static_Exit_Next_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Cond : constant Node := Get_Condition (Stmt);
      Is_Exit : constant Boolean := Get_Kind (Stmt) = Iir_Kind_Exit_Statement;
      Loop_Label : Node;
      Lc : Loop_Context_Acc;
      Cond_Val : Valtyp;
   begin
      if Cond /= Null_Node then
         Cond_Val := Synth_Expression (C.Inst, Cond);
         if Cond_Val = No_Valtyp then
            Set_Error (C.Inst);
            return;
         end if;
         pragma Assert (Is_Static_Val (Cond_Val.Val));
         if Get_Static_Discrete (Cond_Val) = 0 then
            --  Not executed.
            return;
         end if;
      end if;

      --  Execution is suspended.
      C.S_En := False;

      Lc := C.Cur_Loop;

      Loop_Label := Get_Loop_Label (Stmt);
      if Loop_Label = Null_Node then
         Loop_Label := Lc.Loop_Stmt;
      else
         Loop_Label := Get_Named_Entity (Loop_Label);
      end if;

      loop
         if Lc.Loop_Stmt = Loop_Label then
            if Is_Exit then
               Lc.S_Exit := True;
            end if;
            exit;
         else
            Lc.S_Quit := True;
         end if;
         Lc := Lc.Prev_Loop;
      end loop;
   end Synth_Static_Exit_Next_Statement;

   procedure Init_For_Loop_Statement (C : in out Seq_Context;
                                      Stmt : Node;
                                      Val : out Valtyp)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
      It_Rng : Type_Acc;
   begin
      if It_Type /= Null_Node then
         Synth_Subtype_Indication (C.Inst, It_Type);
      end if;

      --  Initial value.
      It_Rng := Get_Subtype_Object (C.Inst, Get_Type (Iterator));
      Val := Create_Value_Discrete (It_Rng.Drange.Left, It_Rng);
      Create_Object (C.Inst, Iterator, Val);
   end Init_For_Loop_Statement;

   procedure Finish_For_Loop_Statement (C : in out Seq_Context;
                                        Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      It_Type : constant Node := Get_Declaration_Type (Iterator);
   begin
      Destroy_Object (C.Inst, Iterator);
      if It_Type /= Null_Node then
         Destroy_Object (C.Inst, It_Type);
      end if;
   end Finish_For_Loop_Statement;

   procedure Synth_Dynamic_For_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Dynamic);
   begin
      Lc := (Mode => Mode_Dynamic,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Loop_Control_Init (C, Stmt);

      Init_For_Loop_Statement (C, Stmt, Val);

      while In_Range (Val.Typ.Drange, Read_Discrete (Val)) loop
         Synth_Sequential_Statements (C, Stmts);

         Update_Index (Val.Typ.Drange, Val);
         Loop_Control_Update (C);

         --  Constant exit.
         exit when Is_Static_Bit0 (C.W_En);

         --  FIXME: dynamic exits.
      end loop;
      Loop_Control_Finish (C);

      Finish_For_Loop_Statement (C, Stmt);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Dynamic_For_Loop_Statement;

   procedure Synth_Static_For_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Static);
   begin
      Lc := (Mode_Static,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             S_Exit => False,
             S_Quit => False);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Init_For_Loop_Statement (C, Stmt, Val);

      while In_Range (Val.Typ.Drange, Read_Discrete (Val)) loop
         Synth_Sequential_Statements (C, Stmts);
         C.S_En := True;

         Update_Index (Val.Typ.Drange, Val);

         exit when Lc.S_Exit or Lc.S_Quit or C.Nbr_Ret > 0;
      end loop;

      Finish_For_Loop_Statement (C, Stmt);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Static_For_Loop_Statement;

   procedure Synth_Dynamic_While_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Cond : constant Node := Get_Condition (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Dynamic);
      Iter_Nbr : Natural;
   begin
      Lc := (Mode => Mode_Dynamic,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             Need_Quit => False,
             Saved_En => No_Net,
             W_Exit => No_Wire_Id,
             W_Quit => No_Wire_Id,
             Wire_Mark => No_Wire_Id);
      C.Cur_Loop := Lc'Unrestricted_Access;

      Iter_Nbr := 0;

      Loop_Control_Init (C, Stmt);

      loop
         if Cond /= Null_Node then
            Val := Synth_Expression_With_Type (C.Inst, Cond, Boolean_Type);
            if not Is_Static (Val.Val) then
               Error_Msg_Synth (+Cond, "loop condition must be static");
               exit;
            end if;
            exit when Read_Discrete (Val) = 0;
         end if;

         Synth_Sequential_Statements (C, Stmts);

         Loop_Control_Update (C);

         --  Exit from the loop if W_Exit/W_Ret/W_Quit = 0
         exit when Lc.W_Exit /= No_Wire_Id and then Is_Static_Bit0 (Lc.W_Exit);
         exit when C.W_Ret /= No_Wire_Id and then Is_Static_Bit0 (C.W_Ret);
         exit when Lc.W_Quit /= No_Wire_Id and then Is_Static_Bit0 (Lc.W_Quit);

         Iter_Nbr := Iter_Nbr + 1;
         if Iter_Nbr > Flags.Flag_Max_Loop and Flags.Flag_Max_Loop /= 0 then
            Error_Msg_Synth
              (+Stmt, "maximum number of iterations (%v) reached",
               +Uns32 (Flags.Flag_Max_Loop));
            exit;
         end if;
      end loop;
      Loop_Control_Finish (C);

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Dynamic_While_Loop_Statement;

   procedure Synth_Static_While_Loop_Statement
     (C : in out Seq_Context; Stmt : Node)
   is
      Stmts : constant Node := Get_Sequential_Statement_Chain (Stmt);
      Cond : constant Node := Get_Condition (Stmt);
      Val : Valtyp;
      Lc : aliased Loop_Context (Mode_Static);
   begin
      Lc := (Mode => Mode_Static,
             Prev_Loop => C.Cur_Loop,
             Loop_Stmt => Stmt,
             S_Exit => False,
             S_Quit => False);
      C.Cur_Loop := Lc'Unrestricted_Access;

      loop
         if Cond /= Null_Node then
            Val := Synth_Expression_With_Type (C.Inst, Cond, Boolean_Type);
            pragma Assert (Is_Static (Val.Val));
            exit when Read_Discrete (Val) = 0;
         end if;

         Synth_Sequential_Statements (C, Stmts);
         C.S_En := True;

         --  Exit from the loop if S_Exit/S_Quit
         exit when Lc.S_Exit or Lc.S_Quit or C.Nbr_Ret > 0;
      end loop;

      C.Cur_Loop := Lc.Prev_Loop;
   end Synth_Static_While_Loop_Statement;

   procedure Synth_Return_Statement (C : in out Seq_Context; Stmt : Node)
   is
      Is_Dyn : constant Boolean := not Get_Instance_Const (C.Inst);
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Val : Valtyp;
      Expr : constant Node := Get_Expression (Stmt);
   begin
      if Expr /= Null_Node then
         --  Return in function.
         Val := Synth_Expression_With_Type (C.Inst, Expr, C.Ret_Typ);
         if Val = No_Valtyp then
            Set_Error (C.Inst);
            return;
         end if;

         Val := Synth_Subtype_Conversion (Ctxt, Val, C.Ret_Typ, True, Stmt);

         if C.Nbr_Ret = 0 then
            C.Ret_Value := Val;
            if not Is_Bounded_Type (C.Ret_Typ) then
               --  The function was declared with an unconstrained return type.
               --  Now that a value has been returned, we know the subtype of
               --  the returned values.  So adjust it.
               --  All the returned values must have the same length.
               C.Ret_Typ := Val.Typ;
               if Is_Dyn then
                  Set_Width (Get_Wire_Gate (C.W_Val), C.Ret_Typ.W);
                  Set_Width (C.Ret_Init, C.Ret_Typ.W);
               end if;
            end if;
         end if;
         if Is_Dyn then
            Phi_Assign_Net (Ctxt, C.W_Val, Get_Net (Ctxt, Val), 0);
         end if;
      end if;

      if Is_Dyn then
         --  The subprogram has returned.  Do not execute further statements.
         Phi_Assign_Static (C.W_En, Bit0);

         if C.W_Ret /= No_Wire_Id then
            Phi_Assign_Static (C.W_Ret, Bit0);
         end if;
      end if;

      C.Nbr_Ret := C.Nbr_Ret + 1;
   end Synth_Return_Statement;

   procedure Synth_Static_Report (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use Simple_IO;

      Is_Report : constant Boolean :=
        Get_Kind (Stmt) = Iir_Kind_Report_Statement;
      Rep_Expr : constant Node := Get_Report_Expression (Stmt);
      Sev_Expr : constant Node := Get_Severity_Expression (Stmt);
      Rep : Valtyp;
      Sev : Valtyp;
      Sev_V : Natural;
   begin
      if Rep_Expr /= Null_Node then
         Rep := Synth_Expression_With_Basetype (Syn_Inst, Rep_Expr);
         if Rep = No_Valtyp then
            Set_Error (Syn_Inst);
            return;
         end if;
         Strip_Const (Rep);
      end if;
      if Sev_Expr /= Null_Node then
         Sev := Synth_Expression (Syn_Inst, Sev_Expr);
         if Sev = No_Valtyp then
            Set_Error (Syn_Inst);
            return;
         end if;
         Strip_Const (Sev);
      end if;

      Put_Err (Disp_Location (Stmt));
      Put_Err (":(");
      if Is_Report then
         Put_Err ("report");
      else
         Put_Err ("assertion");
      end if;
      Put_Err (' ');
      if Sev = No_Valtyp then
         if Is_Report then
            Sev_V := 0;
         else
            Sev_V := 2;
         end if;
      else
         Sev_V := Natural (Read_Discrete (Sev));
      end if;
      case Sev_V is
         when Note_Severity =>
            Put_Err ("note");
         when Warning_Severity =>
            Put_Err ("warning");
         when Error_Severity =>
            Put_Err ("error");
         when Failure_Severity =>
            Put_Err ("failure");
         when others =>
            Put_Err ("??");
      end case;
      Put_Err ("): ");

      if Rep = No_Valtyp then
         Put_Line_Err ("assertion failure");
      else
         Put_Line_Err (Value_To_String (Rep));
      end if;

      if Sev_V >= Flags.Severity_Level then
         Error_Msg_Synth (+Stmt, "error due to assertion failure");
         Elab.Debugger.Debug_Error (Syn_Inst, Stmt);
      end if;
   end Synth_Static_Report;

   procedure Synth_Static_Report_Statement (C : Seq_Context; Stmt : Node) is
   begin
      Synth_Static_Report (C.Inst, Stmt);
   end Synth_Static_Report_Statement;

   procedure Synth_Static_Assertion_Statement (C : Seq_Context; Stmt : Node)
   is
      Cond : Valtyp;
   begin
      Cond := Synth_Expression (C.Inst, Get_Assertion_Condition (Stmt));
      if Cond = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      pragma Assert (Is_Static (Cond.Val));
      Strip_Const (Cond);
      if Read_Discrete (Cond) = 1 then
         return;
      end if;
      Synth_Static_Report (C.Inst, Stmt);
   end Synth_Static_Assertion_Statement;

   procedure Synth_Dynamic_Assertion_Statement (C : Seq_Context; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Loc : constant Location_Type := Get_Location (Stmt);
      Cond : Valtyp;
      N : Net;
      En : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      Cond := Synth_Expression (C.Inst, Get_Assertion_Condition (Stmt));
      if Cond = No_Valtyp then
         Set_Error (C.Inst);
         return;
      end if;
      N := Get_Net (Ctxt, Cond);
      En := Phi_Enable (Ctxt, (Stmt, Bit_Type), Bit0, Bit1,
                        Get_Location (Stmt));
      if En /= No_Net then
         --  Build: En -> Cond
         N := Build2_Imp (Ctxt, En, N, Loc);
      end if;
      Inst := Build_Assert (Ctxt, Synth_Label (C.Inst, Stmt), N);
      Set_Location (Inst, Loc);
   end Synth_Dynamic_Assertion_Statement;

   procedure Synth_Sequential_Statements
     (C : in out Seq_Context; Stmts : Node)
   is
      Is_Dyn : constant Boolean := not Get_Instance_Const (C.Inst);
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Stmt : Node;
      Phi_T, Phi_F : Phi_Type;
      Has_Phi : Boolean;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         if Is_Dyn then
            pragma Assert (not Is_Static_Bit0 (C.W_En));
            Has_Phi := not Is_Static_Bit1 (C.W_En);
            if Has_Phi then
               Push_Phi;
            end if;
         end if;

         if Flags.Flag_Trace_Statements then
            declare
               Name : Name_Id;
               Line : Natural;
               Col : Natural;
            begin
               Files_Map.Location_To_Position
                 (Get_Location (Stmt), Name, Line, Col);
               Simple_IO.Put_Line ("Execute statement at "
                                     & Name_Table.Image (Name)
                                     & Natural'Image (Line));
            end;
         end if;
         if Elab.Debugger.Flag_Need_Debug then
            Elab.Debugger.Debug_Break (C.Inst, Stmt);
         end if;

         case Get_Kind (Stmt) is
            when Iir_Kind_If_Statement =>
               Synth_If_Statement (C, Stmt);
            when Iir_Kind_Simple_Signal_Assignment_Statement =>
               Synth_Simple_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Conditional_Signal_Assignment_Statement =>
               Synth_Conditional_Signal_Assignment (C.Inst, Stmt);
            when Iir_Kind_Variable_Assignment_Statement =>
               Synth_Variable_Assignment (C, Stmt);
            when Iir_Kind_Conditional_Variable_Assignment_Statement =>
               Synth_Conditional_Variable_Assignment (C, Stmt);
            when Iir_Kind_Case_Statement =>
               Synth_Case_Statement (C, Stmt);
            when Iir_Kind_For_Loop_Statement =>
               if Is_Dyn then
                  Synth_Dynamic_For_Loop_Statement (C, Stmt);
               else
                  Synth_Static_For_Loop_Statement (C, Stmt);
               end if;
            when Iir_Kind_While_Loop_Statement =>
               if Is_Dyn then
                  Synth_Dynamic_While_Loop_Statement (C, Stmt);
               else
                  Synth_Static_While_Loop_Statement (C, Stmt);
               end if;
            when Iir_Kind_Null_Statement =>
               --  Easy
               null;
            when Iir_Kind_Return_Statement =>
               Synth_Return_Statement (C, Stmt);
            when Iir_Kind_Procedure_Call_Statement =>
               Synth_Procedure_Call (C.Inst, Stmt);
            when Iir_Kind_Report_Statement =>
               if not Is_Dyn then
                  Synth_Static_Report_Statement (C, Stmt);
               end if;
            when Iir_Kind_Assertion_Statement =>
               if not Is_Dyn then
                  Synth_Static_Assertion_Statement (C, Stmt);
               else
                  Synth_Dynamic_Assertion_Statement (C, Stmt);
               end if;
            when Iir_Kind_Exit_Statement
              | Iir_Kind_Next_Statement =>
               if Is_Dyn then
                  Synth_Dynamic_Exit_Next_Statement (C, Stmt);
               else
                  Synth_Static_Exit_Next_Statement (C, Stmt);
               end if;
            when Iir_Kind_Wait_Statement =>
               Error_Msg_Synth
                 (+Stmt, "wait statement not allowed for synthesis");
            when others =>
               Error_Kind ("synth_sequential_statements", Stmt);
         end case;
         if Is_Dyn then
            if Has_Phi then
               Pop_Phi (Phi_T);
               Push_Phi;
               Pop_Phi (Phi_F);
               Merge_Phis (Ctxt, Get_Current_Value (Ctxt, C.W_En),
                           Phi_T, Phi_F, Get_Location (Stmt));
            end if;
            if Is_Static_Bit0 (C.W_En) then
               --  Not more execution.
               return;
            end if;
         else
            if not C.S_En or C.Nbr_Ret /= 0 then
               return;
            end if;
         end if;
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Sequential_Statements;

   Proc_Pool : aliased Areapools.Areapool;

   --  Synthesis of statements of a non-sensitized process.
   procedure Synth_Process_Sequential_Statements
     (C : in out Seq_Context; Proc : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (C.Inst);
      Stmt : Node;
      Cond : Node;
      Cond_Val : Valtyp;
      Phi_True : Phi_Type;
      Phi_False : Phi_Type;
   begin
      Stmt := Get_Sequential_Statement_Chain (Proc);

      --  The first statement must be a wait statement.
      if Get_Kind (Stmt) /= Iir_Kind_Wait_Statement then
         Error_Msg_Synth (+Stmt, "expect wait as the first statement");
         return;
      end if;

      --  Handle the condition as an if.
      Cond := Get_Condition_Clause (Stmt);
      if Cond = Null_Node then
         Error_Msg_Synth (+Stmt, "expect wait condition");
         return;
      end if;
      Cond_Val := Synth_Expression (C.Inst, Cond);

      Push_Phi;
      Synth_Sequential_Statements (C, Get_Chain (Stmt));
      Pop_Phi (Phi_True);
      Push_Phi;
      Pop_Phi (Phi_False);

      Merge_Phis (Ctxt, Get_Net (Ctxt, Cond_Val), Phi_True, Phi_False,
                  Get_Location (Stmt));
   end Synth_Process_Sequential_Statements;

   procedure Synth_Process_Statement
     (Syn_Inst : Synth_Instance_Acc; Proc : Node)
   is
      use Areapools;
      Label : constant Name_Id := Get_Identifier (Proc);
      Decls_Chain : constant Node := Get_Declaration_Chain (Proc);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      M : Areapools.Mark_Type;
      C_Sname : Sname;
      C : Seq_Context (Mode_Dynamic);
   begin
      if Label = Null_Identifier then
         C_Sname := New_Internal_Name (Ctxt, Get_Sname (Syn_Inst));
      else
         C_Sname := New_Sname_User (Label, Get_Sname (Syn_Inst));
      end if;
      C := (Mode => Mode_Dynamic,
            Inst => Make_Instance (Syn_Inst, Proc, C_Sname),
            Cur_Loop => null,
            W_En => Alloc_Wire (Wire_Variable, (Proc, Bit_Type)),
            W_Ret => No_Wire_Id,
            W_Val => No_Wire_Id,
            Ret_Init => No_Net,
            Ret_Value => No_Valtyp,
            Ret_Typ => null,
            Nbr_Ret => 0);

      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Push_Phi;

      Synth_Declarations (C.Inst, Decls_Chain);

      Set_Wire_Gate (C.W_En, Build_Control_Signal (Syn_Inst, 1, Proc));
      Phi_Assign_Static (C.W_En, Bit1);

      if not Is_Error (C.Inst) then
         case Iir_Kinds_Process_Statement (Get_Kind (Proc)) is
            when Iir_Kind_Sensitized_Process_Statement =>
               Synth_Sequential_Statements
                 (C, Get_Sequential_Statement_Chain (Proc));
               --  FIXME: check sensitivity list.
            when Iir_Kind_Process_Statement =>
               Synth_Process_Sequential_Statements (C, Proc);
         end case;
      end if;

      Pop_And_Merge_Phi (Ctxt, Get_Location (Proc));

      Finalize_Declarations (C.Inst, Decls_Chain);

      Free_Instance (C.Inst);
      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;

      Finalize_Assignment (Ctxt, C.W_En);
      Free_Wire (C.W_En);
   end Synth_Process_Statement;

   function Synth_User_Function_Call
     (Syn_Inst : Synth_Instance_Acc; Expr : Node) return Valtyp is
   begin
      --  Is it a call to an ieee function ?
      declare
         Imp  : constant Node := Get_Implementation (Expr);
         Pkg : constant Node := Get_Parent (Imp);
         Unit : Node;
         Lib : Node;
      begin
         if Get_Kind (Pkg) = Iir_Kind_Package_Declaration
           and then not Is_Uninstantiated_Package (Pkg)
         then
            Unit := Get_Parent (Pkg);
            if Get_Kind (Unit) = Iir_Kind_Design_Unit then
               Lib := Get_Library (Get_Design_File (Unit));
               if Get_Identifier (Lib) = Std_Names.Name_Ieee then
                  Error_Msg_Synth
                    (+Expr, "unhandled call to ieee function %i", +Imp);
                  Set_Error (Syn_Inst);
                  return No_Valtyp;
               end if;
            end if;
         end if;
      end;

      return Synth_Subprogram_Call (Syn_Inst, Expr);
   end Synth_User_Function_Call;

   procedure Synth_Concurrent_Assertion_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Cond : constant Node := Get_Assertion_Condition (Stmt);
      Val : Valtyp;
      Inst : Instance;
   begin
      Val := Synth_Expression (Syn_Inst, Cond);
      if Val = No_Valtyp then
         Set_Error (Syn_Inst);
         return;
      end if;
      if Is_Static (Val.Val) then
         if Read_Discrete (Val) /= 1 then
            Synth_Static_Report (Syn_Inst, Stmt);
         end if;
         return;
      end if;

      if not Flags.Flag_Formal then
         --  Ignore the net.
         return;
      end if;

      Inst := Build_Assert
        (Ctxt, Synth_Label (Syn_Inst, Stmt), Get_Net (Ctxt, Val));
      Set_Location (Inst, Get_Location (Stmt));
   end Synth_Concurrent_Assertion_Statement;

   procedure Synth_Block_Statement (Syn_Inst : Synth_Instance_Acc; Blk : Node)
   is
      use Areapools;
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Blk_Inst : constant Synth_Instance_Acc :=
        Get_Sub_Instance (Syn_Inst, Blk);
      Decls_Chain : constant Node := Get_Declaration_Chain (Blk);
      Blk_Sname : Sname;
      M : Areapools.Mark_Type;
   begin
      Blk_Sname := New_Sname_User (Get_Identifier (Blk), Get_Sname (Syn_Inst));
      Set_Extra (Blk_Inst, Syn_Inst, Blk_Sname);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Synth_Concurrent_Declarations (Blk_Inst, Decls_Chain);
      Synth_Concurrent_Statements
        (Blk_Inst, Get_Concurrent_Statement_Chain (Blk));

      Synth_Attribute_Values (Blk_Inst, Blk);

      Finalize_Declarations (Blk_Inst, Decls_Chain);

      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Block_Statement;

   function Synth_Psl_NFA (Syn_Inst : Synth_Instance_Acc;
                           NFA : PSL.Types.PSL_NFA;
                           Nbr_States : Int32;
                           States : Net;
                           Loc : Source.Syn_Src) return Net
   is
      use PSL.NFAs;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      S : NFA_State;
      S_Num : Int32;
      D_Num : Int32;
      I : Net;
      Cond : Net;
      E : NFA_Edge;
      D_Arr : Net_Array_Acc;
      Res : Net;
   begin
      D_Arr := new Net_Array'(0 .. Nbr_States - 1 => No_Net);

      --  For each state:
      S := Get_First_State (NFA);
      while S /= No_State loop
         S_Num := Get_State_Label (S);
         I := Build_Extract_Bit (Ctxt, States, Uns32 (S_Num));
         Set_Location (I, Loc);

         --  For each edge:
         E := Get_First_Src_Edge (S);
         while E /= No_Edge loop
            --  Edge condition.
            Cond := Build_Dyadic
              (Ctxt, Id_And,
               I, Synth_PSL_Expression (Syn_Inst, Get_Edge_Expr (E)));
            Set_Location (Cond, Loc);

            --  TODO: if EOS is present, then this is a live state.

            --  Reverse order for final concatenation.
            D_Num := Nbr_States - 1 - Get_State_Label (Get_Edge_Dest (E));
            if D_Arr (D_Num) /= No_Net then
               Cond := Build_Dyadic (Ctxt, Id_Or, D_Arr (D_Num), Cond);
               Set_Location (Cond, Loc);
            end if;
            D_Arr (D_Num) := Cond;

            E := Get_Next_Src_Edge (E);
         end loop;

         S := Get_Next_State (S);
      end loop;

      --  Maybe there is no edge to the first state (common for restrict).
      if D_Arr (Nbr_States - 1) = No_Net then
         D_Arr (Nbr_States - 1) := Build_Const_UB32 (Ctxt, 0, 1);
      end if;

      --  Maybe there is no edge to the final state.
      if D_Arr (0) = No_Net then
         D_Arr (0) := Build_Const_UB32 (Ctxt, 0, 1);
      end if;

      Concat_Array (Ctxt, D_Arr.all, Res);
      Free_Net_Array (D_Arr);

      return Res;
   end Synth_Psl_NFA;

   procedure Synth_Psl_Dff (Syn_Inst : Synth_Instance_Acc;
                            Stmt : Node;
                            Next_States : out Net)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Nbr_States : constant Int32 := Get_PSL_Nbr_States (Stmt);
      Has_Async_Abort : Boolean;
      States : Net;
      Init : Net;
      Rst  : Net;
      Clk : Net;
      Clk_Inst : Instance;
   begin
      --  create init net, clock net
      Init := Build_Const_UB32 (Ctxt, 1, Uns32 (Nbr_States));
      Set_Location (Init, Stmt);
      Clk := Synth_PSL_Expression (Syn_Inst, Get_PSL_Clock (Stmt));

      --  Check the clock is an edge and extract it.
      Clk_Inst := Get_Net_Parent (Clk);
      if Get_Id (Clk_Inst) not in Edge_Module_Id then
         Error_Msg_Synth (+Stmt, "clock is not an edge");
         Next_States := No_Net;
         return;
      end if;

      Rst := No_Net;
      Has_Async_Abort := False;
      if Get_Kind (Stmt) in Iir_Kinds_Psl_Property_Directive
        and then Get_PSL_Abort_Flag (Stmt)
      then
         declare
            use PSL.Types;
            use PSL.Subsets;
            use PSL.Nodes;
            Abort_Prop : constant PSL_Node := Get_Psl_Property (Stmt);
         begin
            Rst := Synth_PSL_Expression (Syn_Inst, Get_Boolean (Abort_Prop));
            Has_Async_Abort := Is_Async_Abort (Abort_Prop);
         end;
      end if;

      --  build idff
      if Rst /= No_Net and then Has_Async_Abort then
         --  In case of async_abort.
         States := Build_Iadff (Ctxt, Clk, No_Net, Rst, Init, Init);
      else
         States := Build_Idff (Ctxt, Clk, No_Net, Init);
      end if;
      Set_Location (States, Stmt);

      --  create update nets
      --  For each state: if set, evaluate all outgoing edges.
      Next_States :=
        Synth_Psl_NFA (Syn_Inst, Get_PSL_NFA (Stmt), Nbr_States, States, Stmt);

      --  Handle sync_abort.
      if Rst /= No_Net and then not Has_Async_Abort then
         Next_States := Build_Mux2 (Ctxt, Rst, Next_States, Init);
         Set_Location (Next_States, Stmt);
      end if;

      Connect (Get_Input (Get_Net_Parent (States), 1), Next_States);
   end Synth_Psl_Dff;

   function Synth_Psl_Final
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node; Next_States : Net) return Net
   is
      use PSL.Types;
      use PSL.NFAs;
      NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
      Res : Net;
   begin
      Res := Build_Extract_Bit
        (Get_Build (Syn_Inst), Next_States,
         Uns32 (Get_State_Label (Get_Final_State (NFA))));
      Set_Location (Res, Stmt);
      return Res;
   end Synth_Psl_Final;

   function Synth_Psl_Not_Final
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node; Next_States : Net)
     return Net
   is
      Res : Net;
   begin
      Res := Build_Monadic (Get_Build (Syn_Inst), Id_Not,
                            Synth_Psl_Final (Syn_Inst, Stmt, Next_States));
      Set_Location (Res, Stmt);
      return Res;
   end Synth_Psl_Not_Final;

   procedure Synth_Psl_Restrict_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Next_States : Net;
      Res : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States /= No_Net then
         --  The restriction holds as long as there is a 1 in the NFA state.
         Res := Build_Reduce (Ctxt, Id_Red_Or, Next_States);
         Set_Location (Res, Stmt);
         Inst := Build_Assume (Ctxt, Synth_Label (Syn_Inst, Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Restrict_Directive;

   procedure Synth_Psl_Cover_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Next_States : Net;
      Res : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build cover gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States /= No_Net then
         --  The sequence is covered as soon as the final state is reached.
         Res := Synth_Psl_Final (Syn_Inst, Stmt, Next_States);
         Inst := Build_Cover
           (Get_Build (Syn_Inst), Synth_Label (Syn_Inst, Stmt), Res);
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Cover_Directive;

   procedure Synth_Psl_Assume_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      Next_States : Net;
      Inst : Instance;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build assume gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assume on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States /= No_Net then
         Inst := Build_Assume
           (Ctxt, Synth_Label (Syn_Inst, Stmt),
            Synth_Psl_Not_Final (Syn_Inst, Stmt, Next_States));
         Set_Location (Inst, Get_Location (Stmt));
      end if;
   end Synth_Psl_Assume_Directive;

   procedure Synth_Psl_Assert_Directive
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      use PSL.Types;
      use PSL.NFAs;
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
      NFA : constant PSL_NFA := Get_PSL_NFA (Stmt);
      Active : NFA_State;
      Next_States : Net;
      Inst : Instance;
      Lab : Sname;
   begin
      if not Flags.Flag_Formal then
         return;
      end if;

      --  Build assert gate.
      --  Note: for synthesis, we assume the next state will be correct.
      --  (If we assert on States, then the first cycle is ignored).
      Synth_Psl_Dff (Syn_Inst, Stmt, Next_States);
      if Next_States = No_Net then
         return;
      end if;
      Lab := Synth_Label (Syn_Inst, Stmt);

      Inst := Build_Assert
        (Ctxt, Lab, Synth_Psl_Not_Final (Syn_Inst, Stmt, Next_States));
      Set_Location (Inst, Get_Location (Stmt));

      --  Also add a cover gate to cover assertion activation.
      if Flags.Flag_Assert_Cover then
         Active := Get_Active_State (NFA);
         if Active /= No_State then
            if Lab /= No_Sname then
               Lab := New_Sname_User (Std_Names.Name_Cover, Lab);
            end if;
            Inst := Build_Assert_Cover
              (Get_Build (Syn_Inst), Lab,
               Build_Extract_Bit (Get_Build (Syn_Inst), Next_States,
                                  Uns32 (Get_State_Label (Active))));
            Set_Location (Inst, Get_Location (Stmt));
         end if;
      end if;
   end Synth_Psl_Assert_Directive;

   procedure Synth_Generate_Statement_Body
     (Syn_Inst : Synth_Instance_Acc; Bod : Node)
   is
      use Areapools;
      Decls_Chain : constant Node := Get_Declaration_Chain (Bod);
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      M : Areapools.Mark_Type;
   begin
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Synth_Concurrent_Declarations (Syn_Inst, Decls_Chain);

      Synth_Concurrent_Statements
        (Syn_Inst, Get_Concurrent_Statement_Chain (Bod));

      Synth_Attribute_Values (Syn_Inst, Bod);

      Finalize_Declarations (Syn_Inst, Decls_Chain);

      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Generate_Statement_Body;

   procedure Synth_If_Generate_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Sub_Inst : Synth_Instance_Acc;
      Name : Sname;
   begin
      Sub_Inst := Get_Sub_Instance (Syn_Inst, Stmt);
      if Sub_Inst = null then
         return;
      end if;

      Name := New_Sname_User (Get_Identifier (Stmt), Get_Sname (Syn_Inst));
      Set_Extra (Sub_Inst, Syn_Inst, Name);
      Synth_Generate_Statement_Body (Sub_Inst, Get_Source_Scope (Sub_Inst));
   end Synth_If_Generate_Statement;

   procedure Synth_For_Generate_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Iterator : constant Node := Get_Parameter_Specification (Stmt);
      Bod : constant Node := Get_Generate_Statement_Body (Stmt);
      It_Rng : Type_Acc;
      Sub_Inst : Synth_Instance_Acc;
      Gen_Inst : Synth_Instance_Acc;
      Name : Sname;
      Lname : Sname;
   begin
      It_Rng := Get_Subtype_Object (Syn_Inst, Get_Type (Iterator));
      Gen_Inst := Get_Sub_Instance (Syn_Inst, Stmt);

      Name := New_Sname_User (Get_Identifier (Stmt), Get_Sname (Syn_Inst));
      Set_Extra (Gen_Inst, Syn_Inst, Name);

      for I in 1 .. Get_Range_Length (It_Rng.Drange) loop
         --  FIXME: get position ?
         Lname := New_Sname_Version (Uns32 (I), Name);

         Sub_Inst := Get_Generate_Sub_Instance (Gen_Inst, Positive (I));
         Set_Extra (Sub_Inst, Gen_Inst, Lname);

         Synth_Generate_Statement_Body (Sub_Inst, Bod);
      end loop;
   end Synth_For_Generate_Statement;

   procedure Synth_Concurrent_Statement
     (Syn_Inst : Synth_Instance_Acc; Stmt : Node)
   is
      Ctxt : constant Context_Acc := Get_Build (Syn_Inst);
   begin
      case Get_Kind (Stmt) is
         when Iir_Kind_Concurrent_Simple_Signal_Assignment =>
            Push_Phi;
            Synth_Simple_Signal_Assignment (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kind_Concurrent_Conditional_Signal_Assignment =>
            Push_Phi;
            Synth_Conditional_Signal_Assignment (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kind_Concurrent_Selected_Signal_Assignment =>
            Push_Phi;
            Synth_Selected_Signal_Assignment (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kind_Concurrent_Procedure_Call_Statement =>
            Push_Phi;
            Synth_Procedure_Call (Syn_Inst, Stmt);
            Pop_And_Merge_Phi (Ctxt, Get_Location (Stmt));
         when Iir_Kinds_Process_Statement =>
            Synth_Process_Statement (Syn_Inst, Stmt);
         when Iir_Kind_If_Generate_Statement =>
            Synth_If_Generate_Statement (Syn_Inst, Stmt);
         when Iir_Kind_For_Generate_Statement =>
            Synth_For_Generate_Statement (Syn_Inst, Stmt);
         when Iir_Kind_Component_Instantiation_Statement =>
            if Is_Component_Instantiation (Stmt) then
               declare
                  Comp_Inst : constant Synth_Instance_Acc :=
                    Get_Sub_Instance (Syn_Inst, Stmt);
                  Comp_Config : constant Node :=
                    Get_Instance_Config (Comp_Inst);
               begin
                  if Comp_Config = Null_Node
                    or else Get_Binding_Indication (Comp_Config) = Null_Node
                  then
                     --  Not bound.
                     Synth_Blackbox_Instantiation_Statement (Syn_Inst, Stmt);
                  else
                     Synth_Component_Instantiation_Statement (Syn_Inst, Stmt);
                  end if;
               end;
               --  Un-apply configuration.
               Set_Component_Configuration (Stmt, Null_Node);
            else
               Synth_Design_Instantiation_Statement (Syn_Inst, Stmt);
            end if;
         when Iir_Kind_Block_Statement =>
            Synth_Block_Statement (Syn_Inst, Stmt);
         when Iir_Kind_Psl_Default_Clock
           | Iir_Kind_Psl_Declaration =>
            null;
         when Iir_Kind_Psl_Restrict_Directive =>
            Synth_Psl_Restrict_Directive (Syn_Inst, Stmt);
         when Iir_Kind_Psl_Assume_Directive =>
            if Flags.Flag_Assume_As_Assert then
               Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
            else
               Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
            end if;
         when Iir_Kind_Psl_Cover_Directive =>
            Synth_Psl_Cover_Directive (Syn_Inst, Stmt);
         when Iir_Kind_Psl_Assert_Directive =>
            if Flags.Flag_Assert_As_Assume then
               Synth_Psl_Assume_Directive (Syn_Inst, Stmt);
            else
               Synth_Psl_Assert_Directive (Syn_Inst, Stmt);
            end if;
         when Iir_Kind_Concurrent_Assertion_Statement =>
            --  Passive statement.
            Synth_Concurrent_Assertion_Statement (Syn_Inst, Stmt);
         when others =>
            Error_Kind ("synth_concurrent_statement", Stmt);
      end case;
   end Synth_Concurrent_Statement;

   procedure Synth_Concurrent_Statements
     (Syn_Inst : Synth_Instance_Acc; Stmts : Node)
   is
      Stmt : Node;
   begin
      Stmt := Stmts;
      while Is_Valid (Stmt) loop
         Synth_Concurrent_Statement (Syn_Inst, Stmt);
         Stmt := Get_Chain (Stmt);
      end loop;
   end Synth_Concurrent_Statements;

   --  For allconst/allseq/...
   procedure Synth_Attribute_Formal (Syn_Inst : Synth_Instance_Acc;
                                     Val : Node;
                                     Id : Formal_Module_Id)
   is
      Spec : constant Node := Get_Attribute_Specification (Val);
      Sig : constant Node := Get_Designated_Entity (Val);
      V : Valtyp;
   begin
      --  The type must be boolean
      if (Get_Base_Type (Get_Type (Val)) /=
            Vhdl.Std_Package.Boolean_Type_Definition)
      then
         Error_Msg_Synth (+Val, "type of attribute %i must be boolean",
                          (1 => +Get_Attribute_Designator (Spec)));
         return;
      end if;

      --  The designated entity must be a signal.
      if Get_Kind (Sig) /= Iir_Kind_Signal_Declaration then
         Error_Msg_Synth (+Val, "attribute %i only applies to signals",
                          (1 => +Get_Attribute_Designator (Spec)));
         return;
      end if;

      --  The value must be true
      V := Synth_Expression_With_Type
        (Syn_Inst, Get_Expression (Spec), Boolean_Type);
      if Read_Discrete (V) /= 1 then
         return;
      end if;

      declare
         Off : Value_Offsets;
         Dyn : Dyn_Name;
         N : Net;
         Base : Valtyp;
         Typ : Type_Acc;
      begin
         Synth_Assignment_Prefix (Syn_Inst, Sig, Base, Typ, Off, Dyn);
         pragma Assert (Off = (0, 0));
         pragma Assert (Dyn.Voff = No_Net);
         pragma Assert (Base.Val.Kind = Value_Wire);
         pragma Assert (Base.Typ = Typ);

         N := Build_Formal_Input (Get_Build (Syn_Inst), Id, Typ.W);
         Set_Location (N, Val);
         Add_Conc_Assign (Get_Value_Wire (Base.Val), N, 0);
      end;
   end Synth_Attribute_Formal;

   procedure Synth_Attribute_Values
     (Syn_Inst : Synth_Instance_Acc; Unit : Node)
   is
      use Std_Names;

      Val : Node;
      Spec : Node;
      Id : Name_Id;
   begin
      Val := Get_Attribute_Value_Chain (Unit);
      while Val /= Null_Node loop
         Spec := Get_Attribute_Specification (Val);
         Id := Get_Identifier (Get_Attribute_Designator (Spec));
         case Id is
            when Name_Allconst =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Allconst);
            when Name_Allseq =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Allseq);
            when Name_Anyconst =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Anyconst);
            when Name_Anyseq =>
               Synth_Attribute_Formal (Syn_Inst, Val, Id_Anyseq);
            when Name_Loc
               | Name_Keep =>
               --  Applies to nets/ports.
               null;
            when others =>
               Warning_Msg_Synth (+Spec, "unhandled attribute %i", (1 => +Id));
         end case;
         Val := Get_Value_Chain (Val);
      end loop;
   end Synth_Attribute_Values;

   procedure Synth_Verification_Unit (Syn_Inst : Synth_Instance_Acc;
                                      Unit : Node;
                                      Parent_Inst : Synth_Instance_Acc)
   is
      use Areapools;
      Prev_Instance_Pool : constant Areapool_Acc := Instance_Pool;
      Unit_Sname : Sname;
      M : Areapools.Mark_Type;
      Item : Node;
   begin
      Unit_Sname := New_Sname_User (Get_Identifier (Unit),
                                    Get_Sname (Syn_Inst));
      Set_Extra (Syn_Inst, Parent_Inst, Unit_Sname);
      Mark (M, Proc_Pool);
      Instance_Pool := Proc_Pool'Access;

      Item := Get_Vunit_Item_Chain (Unit);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Psl_Default_Clock
               | Iir_Kind_Psl_Declaration
               | Iir_Kind_PSL_Inherit_Spec =>
               null;
            when Iir_Kind_Psl_Assert_Directive =>
               Synth_Psl_Assert_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Assume_Directive =>
               Synth_Psl_Assume_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Restrict_Directive =>
               Synth_Psl_Restrict_Directive (Syn_Inst, Item);
            when Iir_Kind_Psl_Cover_Directive =>
               Synth_Psl_Cover_Directive (Syn_Inst, Item);
            when Iir_Kind_Signal_Declaration
              | Iir_Kind_Constant_Declaration
              | Iir_Kind_Function_Declaration
              | Iir_Kind_Procedure_Declaration
              | Iir_Kind_Function_Body
              | Iir_Kind_Procedure_Body
              | Iir_Kind_Attribute_Declaration
              | Iir_Kind_Attribute_Specification
              | Iir_Kind_Object_Alias_Declaration
              | Iir_Kind_Non_Object_Alias_Declaration =>
               Synth_Concurrent_Declaration (Syn_Inst, Item);
            when Iir_Kinds_Concurrent_Signal_Assignment
               | Iir_Kinds_Process_Statement
               | Iir_Kinds_Generate_Statement
               | Iir_Kind_Block_Statement
               | Iir_Kind_Concurrent_Procedure_Call_Statement
               | Iir_Kind_Component_Instantiation_Statement =>
               Synth_Concurrent_Statement (Syn_Inst, Item);
            when others =>
               Error_Kind ("synth_verification_unit", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;

      Synth_Attribute_Values (Syn_Inst, Unit);

      --  Finalize
      Item := Get_Vunit_Item_Chain (Unit);
      while Item /= Null_Node loop
         case Get_Kind (Item) is
            when Iir_Kind_Psl_Default_Clock
               | Iir_Kind_Psl_Assert_Directive
               | Iir_Kind_Psl_Assume_Directive
               | Iir_Kind_Psl_Restrict_Directive
               | Iir_Kind_Psl_Cover_Directive
               | Iir_Kind_Psl_Declaration
               | Iir_Kind_PSL_Inherit_Spec =>
               null;
            when Iir_Kinds_Concurrent_Signal_Assignment
               | Iir_Kinds_Process_Statement
               | Iir_Kinds_Generate_Statement
               | Iir_Kind_Block_Statement
               | Iir_Kind_Concurrent_Procedure_Call_Statement
               | Iir_Kind_Component_Instantiation_Statement =>
               null;
            when Iir_Kind_Signal_Declaration
               | Iir_Kind_Constant_Declaration
               | Iir_Kind_Function_Declaration
               | Iir_Kind_Procedure_Declaration
               | Iir_Kind_Function_Body
               | Iir_Kind_Procedure_Body
               | Iir_Kind_Attribute_Declaration
               | Iir_Kind_Attribute_Specification
               | Iir_Kind_Object_Alias_Declaration
               | Iir_Kind_Non_Object_Alias_Declaration =>
               Finalize_Declaration (Syn_Inst, Item, False);
            when others =>
               Error_Kind ("synth_verification_unit(2)", Item);
         end case;
         Item := Get_Chain (Item);
      end loop;

      Release (M, Proc_Pool);
      Instance_Pool := Prev_Instance_Pool;
   end Synth_Verification_Unit;
end Synth.Vhdl_Stmts;