aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-vhdl_eval.adb
blob: 7c189720b1caff89e7c95abd07fd71544a6e3e57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
--  Operations synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Types; use Types;
with Types_Utils; use Types_Utils;
with Name_Table;

with Grt.Types; use Grt.Types;
with Grt.Vhdl_Types; use Grt.Vhdl_Types;
with Grt.To_Strings;

with Vhdl.Utils;
with Vhdl.Evaluation;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;

with Elab.Memtype; use Elab.Memtype;
with Elab.Vhdl_Files;
with Elab.Vhdl_Expr; use Elab.Vhdl_Expr;
with Elab.Vhdl_Types;

with Netlists; use Netlists;

with Synth.Errors; use Synth.Errors;
with Synth.Source; use Synth.Source;
with Synth.Vhdl_Expr; use Synth.Vhdl_Expr;
with Synth.Ieee.Std_Logic_1164; use Synth.Ieee.Std_Logic_1164;
with Synth.Ieee.Numeric_Std; use Synth.Ieee.Numeric_Std;
with Synth.Ieee.Std_Logic_Arith; use Synth.Ieee.Std_Logic_Arith;

package body Synth.Vhdl_Eval is
   --  As log2(3m) is directly referenced, the program must be linked with -lm
   --  (math library) on unix systems.
   pragma Linker_Options ("-lm");

   type Tf_Table_2d is array (Boolean, Boolean) of Boolean;

   Tf_2d_And : constant Tf_Table_2d :=
     (False => (others => False),
      True => (True => True, False => False));

   Tf_2d_Nand : constant Tf_Table_2d :=
     (False => (others => True),
      True => (True => False, False => True));

   Tf_2d_Or : constant Tf_Table_2d :=
     (False => (True => True, False => False),
      True => (True => True, False => True));

   Tf_2d_Nor : constant Tf_Table_2d :=
     (False => (True => False, False => True),
      True => (True => False, False => False));

   Tf_2d_Xor : constant Tf_Table_2d :=
     (False => (False => False, True => True),
      True  => (False => True,  True => False));

   Tf_2d_Xnor : constant Tf_Table_2d :=
     (False => (False => True, True => False),
      True  => (False => False,  True => True));

   function Create_Res_Bound (Prev : Type_Acc) return Type_Acc is
   begin
      if Prev.Abound.Dir = Dir_Downto
        and then Prev.Abound.Right = 0
      then
         --  Normalized range
         return Prev;
      end if;

      return Create_Vec_Type_By_Length (Prev.W, Prev.Arr_El);
   end Create_Res_Bound;

   function Eval_Vector_Dyadic (Left, Right : Memtyp;
                                Op : Table_2d;
                                Loc : Syn_Src) return Memtyp
   is
      Res : Memtyp;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return Null_Memtyp;
      end if;

      Res := Create_Memory (Create_Res_Bound (Left.Typ));
      for I in 1 .. Uns32 (Vec_Length (Res.Typ)) loop
         declare
            Ls : constant Std_Ulogic := Read_Std_Logic (Left.Mem, I - 1);
            Rs : constant Std_Ulogic := Read_Std_Logic (Right.Mem, I - 1);
            V : constant Std_Ulogic := Op (Ls, Rs);
         begin
            Write_Std_Logic (Res.Mem, I - 1, V);
         end;
      end loop;

      return Res;
   end Eval_Vector_Dyadic;

   function Eval_Logic_Vector_Scalar (Vect, Scal : Memtyp;
                                      Op : Table_2d) return Memtyp
   is
      Res : Memtyp;
      Vs, Vv, Vr : Std_Ulogic;
   begin
      Res := Create_Memory (Create_Res_Bound (Vect.Typ));
      Vs := Read_Std_Logic (Scal.Mem, 0);
      for I in 1 .. Vect.Typ.Abound.Len loop
         Vv := Read_Std_Logic (Vect.Mem, I - 1);
         Vr := Op (Vs, Vv);
         Write_Std_Logic (Res.Mem, I - 1, Vr);
      end loop;
      return Res;
   end Eval_Logic_Vector_Scalar;

   function Eval_Logic_Scalar (Left, Right : Memtyp;
                               Op : Table_2d;
                               Neg : Boolean := False) return Memtyp
   is
      Res : Std_Ulogic;
   begin
      Res := Op (Read_Std_Logic (Left.Mem, 0), Read_Std_Logic (Right.Mem, 0));
      if Neg then
         Res := Not_Table (Res);
      end if;
      return Create_Memory_U8 (Std_Ulogic'Pos (Res), Left.Typ);
   end Eval_Logic_Scalar;

   function Eval_Vector_Match (Left, Right : Memtyp;
                               Neg : Boolean;
                               Loc : Syn_Src) return Memtyp
   is
      Res : Std_Ulogic;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return Null_Memtyp;
      end if;

      Res := '1';
      for I in 1 .. Left.Typ.Abound.Len loop
         declare
            Ls : constant Std_Ulogic := Read_Std_Logic (Left.Mem, I - 1);
            Rs : constant Std_Ulogic := Read_Std_Logic (Right.Mem, I - 1);
         begin
            Res := And_Table (Res, Match_Eq_Table (Ls, Rs));
         end;
      end loop;

      if Neg then
         Res := Not_Table (Res);
      end if;
      return Create_Memory_U8 (Std_Ulogic'Pos (Res), Left.Typ.Arr_El);
   end Eval_Vector_Match;

   function Eval_TF_Vector_Dyadic (Left, Right : Memtyp;
                                   Op : Tf_Table_2d;
                                   Loc : Syn_Src) return Memtyp
   is
      Res : Memtyp;
      L, R : Boolean;
   begin
      if Left.Typ.Sz /= Right.Typ.Sz then
         Error_Msg_Synth (+Loc, "length mismatch");
         return Null_Memtyp;
      end if;

      Res := Create_Memory (Left.Typ);
      for I in 1 .. Left.Typ.Sz loop
         L := Boolean'Val (Read_U8 (Left.Mem + (I - 1)));
         R := Boolean'Val (Read_U8 (Right.Mem + (I - 1)));
         Write_U8 (Res.Mem + (I - 1), Boolean'Pos (Op (L, R)));
      end loop;
      return Res;
   end Eval_TF_Vector_Dyadic;

   function Eval_TF_Array_Element (El, Arr : Memtyp;
                                   Op : Tf_Table_2d) return Memtyp
   is
      Res : Memtyp;
      Ve, Va : Boolean;
   begin
      Res := Create_Memory (Arr.Typ);
      Ve := Boolean'Val (Read_U8 (El.Mem));
      for I in 1 .. Arr.Typ.Sz loop
         Va := Boolean'Val (Read_U8 (Arr.Mem + (I - 1)));
         Write_U8 (Res.Mem + (I - 1), Boolean'Pos (Op (Ve, Va)));
      end loop;
      return Res;
   end Eval_TF_Array_Element;

   function Compare (L, R : Memtyp) return Order_Type is
   begin
      case L.Typ.Kind is
         when Type_Bit
           | Type_Logic =>
            declare
               Lv : constant Ghdl_U8 := Read_U8 (L.Mem);
               Rv : constant Ghdl_U8 := Read_U8 (R.Mem);
            begin
               if Lv < Rv then
                  return Less;
               elsif Lv > Rv then
                  return Greater;
               else
                  return Equal;
               end if;
            end;
         when Type_Discrete =>
            pragma Assert (L.Typ.Sz = R.Typ.Sz);
            if L.Typ.Sz = 1 then
               declare
                  Lv : constant Ghdl_U8 := Read_U8 (L.Mem);
                  Rv : constant Ghdl_U8 := Read_U8 (R.Mem);
               begin
                  if Lv < Rv then
                     return Less;
                  elsif Lv > Rv then
                     return Greater;
                  else
                     return Equal;
                  end if;
               end;
            elsif L.Typ.Sz = 4 then
               declare
                  Lv : constant Ghdl_I32 := Read_I32 (L.Mem);
                  Rv : constant Ghdl_I32 := Read_I32 (R.Mem);
               begin
                  if Lv < Rv then
                     return Less;
                  elsif Lv > Rv then
                     return Greater;
                  else
                     return Equal;
                  end if;
               end;
            else
               raise Internal_Error;
            end if;
         when others =>
            raise Internal_Error;
      end case;
   end Compare;

   function Compare_Array (L, R : Memtyp) return Order_Type
   is
      Len : Uns32;
      Res : Order_Type;
   begin
      Len := Uns32'Min (L.Typ.Abound.Len, R.Typ.Abound.Len);
      for I in 1 .. Size_Type (Len) loop
         Res := Compare
           ((L.Typ.Arr_El, L.Mem + (I - 1) * L.Typ.Arr_El.Sz),
            (R.Typ.Arr_El, R.Mem + (I - 1) * R.Typ.Arr_El.Sz));
         if Res /= Equal then
            return Res;
         end if;
      end loop;
      if L.Typ.Abound.Len > Len then
         return Greater;
      end if;
      if R.Typ.Abound.Len > Len then
         return Less;
      end if;
      return Equal;
   end Compare_Array;

   --  Execute shift and rot.
   --  ZERO is the value to be used for '0' (for shifts).
   --  It is 0 for bit, 2 for std_logic.
   function Execute_Shift_Operator (Left : Memtyp;
                                    Count : Int64;
                                    Zero : Ghdl_U8;
                                    Op : Iir_Predefined_Shift_Functions)
                                   return Memtyp
   is
      Cnt : Uns32;
      Len : constant Uns32 := Left.Typ.Abound.Len;
      Dir_Left : Boolean;
      P : Size_Type;
      Res : Memtyp;
      E : Ghdl_U8;
   begin
      --  LRM93 7.2.3
      --  That is, if R is 0 or if L is a null array, the return value is L.
      if Count = 0 or else Len = 0 then
         return Left;
      end if;

      case Op is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Rol =>
            Dir_Left := True;
         when Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sra
           | Iir_Predefined_Array_Ror =>
            Dir_Left := False;
      end case;
      if Count < 0 then
         Cnt := Uns32 (-Count);
         Dir_Left := not Dir_Left;
      else
         Cnt := Uns32 (Count);
      end if;

      case Op is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl =>
            E := Zero;
         when Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               E := Read_U8 (Left.Mem + Size_Type (Len - 1));
            else
               E := Read_U8 (Left.Mem);
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            Cnt := Cnt mod Len;
            if not Dir_Left then
               Cnt := (Len - Cnt) mod Len;
            end if;
      end case;

      Res := Create_Memory (Left.Typ);
      P := 0;

      case Op is
         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Sla
           | Iir_Predefined_Array_Sra =>
            if Dir_Left then
               if Cnt < Len then
                  for I in Cnt .. Len - 1 loop
                     Write_U8 (Res.Mem + P,
                               Read_U8 (Left.Mem + Size_Type (I)));
                     P := P + 1;
                  end loop;
               else
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Write_U8 (Res.Mem + P, E);
                  P := P + 1;
               end loop;
            else
               if Cnt > Len then
                  Cnt := Len;
               end if;
               for I in 0 .. Cnt - 1 loop
                  Write_U8 (Res.Mem + P, E);
                  P := P + 1;
               end loop;
               for I in Cnt .. Len - 1 loop
                  Write_U8 (Res.Mem + P,
                            Read_U8 (Left.Mem + Size_Type (I - Cnt)));
                  P := P + 1;
               end loop;
            end if;
         when Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            for I in 1 .. Len loop
               Write_U8 (Res.Mem + P,
                         Read_U8 (Left.Mem + Size_Type (Cnt)));
               P := P + 1;
               Cnt := Cnt + 1;
               if Cnt = Len then
                  Cnt := 0;
               end if;
            end loop;
      end case;
      return Res;
   end Execute_Shift_Operator;

   procedure Check_Integer_Overflow
     (Val : in out Int64; Typ : Type_Acc; Loc : Syn_Src) is
   begin
      pragma Assert (Typ.Kind = Type_Discrete);
      case Typ.Sz is
         when 4 =>
            if Val < -2**31 or Val >= 2**31 then
               Error_Msg_Synth (+Loc, "integer overflow");
               --  Just keep the lower 32bit (and sign extend).
               Val := Int64
                 (To_Int32 (Uns32 (To_Uns64 (Val) and 16#ffff_ffff#)));
            end if;
         when 8 =>
            null;
         when others =>
            raise Internal_Error;
      end case;
   end Check_Integer_Overflow;

   function Create_Memory_Boolean (V : Boolean) return Memtyp is
   begin
      return Create_Memory_U8 (Boolean'Pos (V), Boolean_Type);
   end Create_Memory_Boolean;

   function Eval_Static_Dyadic_Predefined (Imp : Node;
                                           Res_Typ : Type_Acc;
                                           Left : Memtyp;
                                           Right : Memtyp;
                                           Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      case Def is
         when Iir_Predefined_Error =>
            return Null_Memtyp;

         when Iir_Predefined_Boolean_Xor
            | Iir_Predefined_Bit_Xor =>
            return Create_Memory_U8
              (Boolean'Pos (Boolean'Val (Read_Discrete (Left))
                              xor Boolean'Val (Read_Discrete (Right))),
               Res_Typ);

         when Iir_Predefined_Integer_Plus
           | Iir_Predefined_Physical_Plus =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) + Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Minus
            | Iir_Predefined_Physical_Minus =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) - Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Mul
           | Iir_Predefined_Physical_Integer_Mul
           | Iir_Predefined_Integer_Physical_Mul =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) * Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Div
           | Iir_Predefined_Physical_Physical_Div
           | Iir_Predefined_Physical_Integer_Div =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) / Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Mod =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) mod Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;
         when Iir_Predefined_Integer_Rem =>
            declare
               Res : Int64;
            begin
               Res := Read_Discrete (Left) rem Read_Discrete (Right);
               Check_Integer_Overflow (Res, Res_Typ, Expr);
               return Create_Memory_Discrete (Res, Res_Typ);
            end;

         when Iir_Predefined_Integer_Exp =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) ** Natural (Read_Discrete (Right)),
               Res_Typ);

         when Iir_Predefined_Integer_Less_Equal
            | Iir_Predefined_Physical_Less_Equal
            | Iir_Predefined_Enum_Less_Equal =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) <= Read_Discrete (Right));
         when Iir_Predefined_Integer_Less
            | Iir_Predefined_Physical_Less
            | Iir_Predefined_Enum_Less =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) < Read_Discrete (Right));
         when Iir_Predefined_Integer_Greater_Equal
            | Iir_Predefined_Physical_Greater_Equal
            | Iir_Predefined_Enum_Greater_Equal =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) >= Read_Discrete (Right));
         when Iir_Predefined_Integer_Greater
            | Iir_Predefined_Physical_Greater
            | Iir_Predefined_Enum_Greater =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) > Read_Discrete (Right));
         when Iir_Predefined_Integer_Equality
            | Iir_Predefined_Physical_Equality
            | Iir_Predefined_Enum_Equality
            | Iir_Predefined_Bit_Match_Equality =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) = Read_Discrete (Right));
         when Iir_Predefined_Integer_Inequality
            | Iir_Predefined_Physical_Inequality
            | Iir_Predefined_Enum_Inequality
            | Iir_Predefined_Bit_Match_Inequality =>
            return Create_Memory_Boolean
              (Read_Discrete (Left) /= Read_Discrete (Right));

         when Iir_Predefined_Physical_Real_Mul =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) * Read_Fp64 (Right)),
               Res_Typ);
         when Iir_Predefined_Real_Physical_Mul =>
            return Create_Memory_Discrete
              (Int64 (Read_Fp64 (Left) * Fp64 (Read_Discrete (Right))),
               Res_Typ);
         when Iir_Predefined_Physical_Real_Div =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) / Read_Fp64 (Right)),
               Res_Typ);

         when Iir_Predefined_Floating_Less =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) < Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Less_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) <= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) = Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) /= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) > Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) >= Read_Fp64 (Right)),
               Boolean_Type);

         when Iir_Predefined_Floating_Plus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) + Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Minus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) - Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Mul =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) * Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Div =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) / Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Exp =>
            return Create_Memory_Fp64
              (Read_Fp64 (Left) ** Integer (Read_Discrete (Right)), Res_Typ);

         when Iir_Predefined_Array_Array_Concat =>
            declare
               L_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ));
               R_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ));
               Le_Typ : constant Type_Acc := Get_Array_Element (Left.Typ);
               Re_Typ : constant Type_Acc := Get_Array_Element (Right.Typ);
               El_Typ : Type_Acc;
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Le_Typ, Re_Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, L_Len + R_Len);
               El_Typ := Unshare_Type (Le_Typ, Get_Array_Element (Res_Typ));
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, El_Typ);
               Res := Create_Memory (Res_St);
               if Left.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               end if;
               if Right.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem + Left.Typ.Sz, Right.Mem, Right.Typ.Sz);
               end if;
               return Res;
            end;
         when Iir_Predefined_Element_Array_Concat =>
            declare
               Rlen : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ));
               Re_Typ : constant Type_Acc := Get_Array_Element (Right.Typ);
               El_Typ : Type_Acc;
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Left.Typ, Re_Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, 1 + Rlen);
               El_Typ := Unshare_Type (Re_Typ, Get_Array_Element (Res_Typ));
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, El_Typ);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;
         when Iir_Predefined_Array_Element_Concat =>
            declare
               Llen : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ));
               Le_Typ : constant Type_Acc := Get_Array_Element (Left.Typ);
               El_Typ : Type_Acc;
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Le_Typ, Right.Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, Llen + 1);
               El_Typ := Unshare_Type (Le_Typ, Get_Array_Element (Res_Typ));
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, El_Typ);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;
         when Iir_Predefined_Element_Element_Concat =>
            declare
               Le_Typ : constant Type_Acc := Left.Typ;
               El_Typ : Type_Acc;
               Bnd : Bound_Type;
               Res_St : Type_Acc;
               Res : Memtyp;
            begin
               Check_Matching_Bounds (Left.Typ, Right.Typ, Expr);
               Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
                 (Get_Uarray_Index (Res_Typ).Drange, 2);
               El_Typ := Unshare_Type (Le_Typ, Get_Array_Element (Res_Typ));
               Res_St := Create_Onedimensional_Array_Subtype
                 (Res_Typ, Bnd, El_Typ);
               Res := Create_Memory (Res_St);
               Copy_Memory (Res.Mem, Left.Mem, El_Typ.Sz);
               Copy_Memory (Res.Mem + El_Typ.Sz,
                            Right.Mem, El_Typ.Sz);
               return Res;
            end;

         when Iir_Predefined_Array_Equality
            | Iir_Predefined_Record_Equality
            | Iir_Predefined_Bit_Array_Match_Equality =>
            return Create_Memory_Boolean (Is_Equal (Left, Right));
         when Iir_Predefined_Array_Inequality
            | Iir_Predefined_Record_Inequality
            | Iir_Predefined_Bit_Array_Match_Inequality =>
            return Create_Memory_Boolean (not Is_Equal (Left, Right));

         when Iir_Predefined_Access_Equality =>
            return Create_Memory_Boolean
              (Read_Access (Left) = Read_Access (Right));
         when Iir_Predefined_Access_Inequality =>
            return Create_Memory_Boolean
              (Read_Access (Left) /= Read_Access (Right));

         when Iir_Predefined_Array_Less =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) = Less);
         when Iir_Predefined_Array_Less_Equal =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) <= Equal);
         when Iir_Predefined_Array_Greater =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) = Greater);
         when Iir_Predefined_Array_Greater_Equal =>
            return Create_Memory_Boolean
              (Compare_Array (Left, Right) >= Equal);

         when Iir_Predefined_Array_Maximum =>
            --  IEEE 1076-2008 5.3.2.4 Predefined operations on array types
            if Compare_Array (Left, Right) = Less then
               return Right;
            else
               return Left;
            end if;
         when Iir_Predefined_Array_Minimum =>
            --  IEEE 1076-2008 5.3.2.4 Predefined operations on array types
            if Compare_Array (Left, Right) = Less then
               return Left;
            else
               return Right;
            end if;

         when Iir_Predefined_Array_Sll
           | Iir_Predefined_Array_Srl
           | Iir_Predefined_Array_Rol
           | Iir_Predefined_Array_Ror =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), 0, Def);

         when Iir_Predefined_TF_Array_And =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_And, Expr);
         when Iir_Predefined_TF_Array_Or =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Or, Expr);
         when Iir_Predefined_TF_Array_Xor =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Xor, Expr);
         when Iir_Predefined_TF_Array_Nand =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Nand, Expr);
         when Iir_Predefined_TF_Array_Nor =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Nor, Expr);
         when Iir_Predefined_TF_Array_Xnor =>
            return Eval_TF_Vector_Dyadic (Left, Right, Tf_2d_Xnor, Expr);

         when Iir_Predefined_TF_Element_Array_Or =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Or);
         when Iir_Predefined_TF_Array_Element_Or =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Or);

         when Iir_Predefined_TF_Element_Array_Nor =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Nor);
         when Iir_Predefined_TF_Array_Element_Nor =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Nor);

         when Iir_Predefined_TF_Element_Array_And =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_And);
         when Iir_Predefined_TF_Array_Element_And =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_And);

         when Iir_Predefined_TF_Element_Array_Nand =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Nand);
         when Iir_Predefined_TF_Array_Element_Nand =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Nand);

         when Iir_Predefined_TF_Element_Array_Xor =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Xor);
         when Iir_Predefined_TF_Array_Element_Xor =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Xor);

         when Iir_Predefined_TF_Element_Array_Xnor =>
            return Eval_TF_Array_Element (Left, Right, Tf_2d_Xnor);
         when Iir_Predefined_TF_Array_Element_Xnor =>
            return Eval_TF_Array_Element (Right, Left, Tf_2d_Xnor);

         when Iir_Predefined_Ieee_1164_Vector_And
           | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, And_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Nand
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Nand_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Or
           | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Or_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Nor
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Nor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xor
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Xor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xnor
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Sgn_Sgn =>
            return Eval_Vector_Dyadic (Left, Right, Xnor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Scalar_And =>
            return Eval_Logic_Scalar (Left, Right, And_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Or =>
            return Eval_Logic_Scalar (Left, Right, Or_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Eval_Logic_Scalar (Left, Right, Xor_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Nand =>
            return Eval_Logic_Scalar (Left, Right, Nand_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Nor =>
            return Eval_Logic_Scalar (Left, Right, Nor_Table);
         when Iir_Predefined_Ieee_1164_Scalar_Xnor =>
            return Eval_Logic_Scalar (Left, Right, Xnor_Table);

         when Iir_Predefined_Std_Ulogic_Match_Equality =>
            return Eval_Logic_Scalar (Left, Right, Match_Eq_Table);
         when Iir_Predefined_Std_Ulogic_Match_Inequality =>
            return Eval_Logic_Scalar (Left, Right, Match_Eq_Table, True);
         when Iir_Predefined_Std_Ulogic_Match_Greater =>
            return Eval_Logic_Scalar (Left, Right, Match_Gt_Table);
         when Iir_Predefined_Std_Ulogic_Match_Greater_Equal =>
            return Eval_Logic_Scalar (Left, Right, Match_Ge_Table);
         when Iir_Predefined_Std_Ulogic_Match_Less_Equal =>
            return Eval_Logic_Scalar (Left, Right, Match_Le_Table);
         when Iir_Predefined_Std_Ulogic_Match_Less =>
            return Eval_Logic_Scalar (Left, Right, Match_Lt_Table);

         when Iir_Predefined_Std_Ulogic_Array_Match_Equality =>
            return Eval_Vector_Match (Left, Right, False, Expr);
         when Iir_Predefined_Std_Ulogic_Array_Match_Inequality =>
            return Eval_Vector_Match (Left, Right, True, Expr);

         when Iir_Predefined_Ieee_1164_And_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, And_Table);
         when Iir_Predefined_Ieee_1164_Or_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Or_Table);
         when Iir_Predefined_Ieee_1164_Xor_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Xor_Table);
         when Iir_Predefined_Ieee_1164_Nand_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Nand_Table);
         when Iir_Predefined_Ieee_1164_Nor_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Nor_Table);
         when Iir_Predefined_Ieee_1164_Xnor_Suv_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Uns_Log
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Sgn_Log =>
            return Eval_Logic_Vector_Scalar (Left, Right, Xnor_Table);

         when Iir_Predefined_Ieee_1164_And_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_And_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, And_Table);
         when Iir_Predefined_Ieee_1164_Or_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Or_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Or_Table);
         when Iir_Predefined_Ieee_1164_Xor_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Xor_Table);
         when Iir_Predefined_Ieee_1164_Nand_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nand_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Nand_Table);
         when Iir_Predefined_Ieee_1164_Nor_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Nor_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Nor_Table);
         when Iir_Predefined_Ieee_1164_Xnor_Log_Suv
           | Iir_Predefined_Ieee_Numeric_Std_Xnor_Log_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xnor_Log_Sgn =>
            return Eval_Logic_Vector_Scalar (Right, Left, Xnor_Table);

         when Iir_Predefined_Ieee_1164_Vector_Sll
            | Iir_Predefined_Ieee_Numeric_Std_Sla_Uns_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Sll);
         when Iir_Predefined_Ieee_1164_Vector_Srl
            | Iir_Predefined_Ieee_Numeric_Std_Sra_Uns_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Srl);
         when Iir_Predefined_Ieee_Numeric_Std_Sra_Sgn_Int =>
            declare
               Cnt : constant Int64 := Read_Discrete (Right);
            begin
               if Cnt >= 0 then
                  return Execute_Shift_Operator
                    (Left, Cnt, Std_Ulogic'Pos('0'), Iir_Predefined_Array_Sra);
               else
                  return Execute_Shift_Operator
                    (Left, -Cnt, Std_Ulogic'Pos('0'),
                     Iir_Predefined_Array_Sll);
               end if;
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Sla_Sgn_Int =>
            declare
               Cnt : Int64;
               Op : Iir_Predefined_Shift_Functions;
            begin
               Cnt := Read_Discrete (Right);
               if Cnt >= 0 then
                  Op := Iir_Predefined_Array_Sll;
               else
                  Cnt := -Cnt;
                  Op :=Iir_Predefined_Array_Sra;
               end if;
               return Execute_Shift_Operator
                 (Left, Cnt, Std_Ulogic'Pos('0'), Op);
            end;

         when Iir_Predefined_Ieee_1164_Vector_Rol
            | Iir_Predefined_Ieee_Numeric_Std_Rol_Uns_Int
            | Iir_Predefined_Ieee_Numeric_Std_Rol_Sgn_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Rol);
         when Iir_Predefined_Ieee_1164_Vector_Ror
            | Iir_Predefined_Ieee_Numeric_Std_Ror_Uns_Int
            | Iir_Predefined_Ieee_Numeric_Std_Ror_Sgn_Int =>
            return Execute_Shift_Operator
              (Left, Read_Discrete (Right), Std_Ulogic'Pos('0'),
               Iir_Predefined_Array_Ror);

         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Right, Left, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) = Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Ne_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Right, Left, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ne_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) /= Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Less, +Expr) = Greater;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Ge_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Ge_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Le_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Le_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Le_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Less, +Expr) >= Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Arith_Le_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) <= Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Uns (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Uns_Nat (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Nat_Uns (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Sgn_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Sgn (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Int_Sgn =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Right, Left, Less, +Expr) > Equal;
               return Create_Memory_Boolean (Res);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Sgn_Int
            | Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Sgn_Int =>
            declare
               Res : Boolean;
            begin
               Res := Compare_Sgn_Int (Left, Right, Greater, +Expr) < Equal;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Uns_Sgn =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Left, Right, +Expr);
               return Create_Memory_Boolean (Res < Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Sgn_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Right, Left, +Expr);
               return Create_Memory_Boolean (Res > Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Uns_Int =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Left, Read_Discrete (Right), +Expr);
               return Create_Memory_Boolean (Res < Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Lt_Int_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Right, Read_Discrete (Left), +Expr);
               return Create_Memory_Boolean (Res > Equal);
            end;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Le_Uns_Sgn =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Left, Right, +Expr);
               return Create_Memory_Boolean (Res <= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Le_Sgn_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Right, Left, +Expr);
               return Create_Memory_Boolean (Res >= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Le_Uns_Int =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Left, Read_Discrete (Right), +Expr);
               return Create_Memory_Boolean (Res <= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Le_Int_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Right, Read_Discrete (Left), +Expr);
               return Create_Memory_Boolean (Res >= Equal);
            end;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Uns_Sgn =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Left, Right, +Expr);
               return Create_Memory_Boolean (Res > Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Sgn_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Right, Left, +Expr);
               return Create_Memory_Boolean (Res < Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Uns_Int =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Left, Read_Discrete (Right), +Expr);
               return Create_Memory_Boolean (Res > Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Gt_Int_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Right, Read_Discrete (Left), +Expr);
               return Create_Memory_Boolean (Res < Equal);
            end;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Uns_Sgn =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Left, Right, +Expr);
               return Create_Memory_Boolean (Res >= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Sgn_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Right, Left, +Expr);
               return Create_Memory_Boolean (Res <= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Uns_Int =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Left, Read_Discrete (Right), +Expr);
               return Create_Memory_Boolean (Res >= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Ge_Int_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Right, Read_Discrete (Left), +Expr);
               return Create_Memory_Boolean (Res <= Equal);
            end;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Uns_Sgn =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Left, Right, +Expr);
               return Create_Memory_Boolean (Res = Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Sgn_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Right, Left, +Expr);
               return Create_Memory_Boolean (Res = Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Uns_Int =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Left, Read_Discrete (Right), +Expr);
               return Create_Memory_Boolean (Res = Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Eq_Int_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Right, Read_Discrete (Left), +Expr);
               return Create_Memory_Boolean (Res = Equal);
            end;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Uns_Sgn =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Left, Right, +Expr);
               return Create_Memory_Boolean (Res /= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Sgn_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Sgn (Right, Left, +Expr);
               return Create_Memory_Boolean (Res /= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Uns_Int =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Left, Read_Discrete (Right), +Expr);
               return Create_Memory_Boolean (Res /= Equal);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Ne_Int_Uns =>
            declare
               Res : Order_Type;
            begin
               Res := Compare_Uns_Int (Right, Read_Discrete (Left), +Expr);
               return Create_Memory_Boolean (Res /= Equal);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Add_Slv_Slv =>
            return Add_Uns_Uns (Left, Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Log
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Log =>
            return Add_Uns_Uns (Left, Log_To_Vec (Right, Left), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Log_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Log_Slv =>
            return Add_Uns_Uns (Log_To_Vec (Left, Right), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Int
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Add_Slv_Nat =>
            return Add_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Nat_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Add_Nat_Slv
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Int_Slv =>
            return Add_Uns_Nat (Right, To_Uns64 (Read_Discrete (Left)), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Sgn_Slv =>
            return Add_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int =>
            return Add_Sgn_Int (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Int_Sgn =>
            return Add_Sgn_Int (Right, Read_Discrete (Left), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Log =>
            return Add_Sgn_Sgn (Left, Log_To_Vec (Right, Left), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Add_Log_Sgn =>
            return Add_Sgn_Sgn (Log_To_Vec (Left, Right), Right, +Expr);

         --  std_logic_arith."+"
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Sgn_Slv =>
            return Add_Uns_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Uns_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Uns_Slv =>
            return Add_Sgn_Uns_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Int_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Int_Slv =>
            return Add_Uns_Int_Uns (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Int_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Int_Uns_Slv =>
            return Add_Uns_Int_Uns (Right, Read_Discrete (Left), +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Int_Slv =>
            return Add_Sgn_Int_Sgn (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Int_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Int_Sgn_Slv =>
            return Add_Sgn_Int_Sgn (Right, Read_Discrete (Left), +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Log_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Log_Slv =>
            return Add_Uns_Log_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Log_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Log_Uns_Slv =>
            return Add_Uns_Log_Uns (Right, Left, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Log_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Sgn_Log_Slv =>
            return Add_Sgn_Log_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Add_Log_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Log_Sgn_Slv =>
            return Add_Sgn_Log_Sgn (Right, Left, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Sub_Slv_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Uns_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Slv_Slv =>
            return Sub_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Sub_Slv_Nat
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Slv_Int =>
            return Sub_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Nat_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Sub_Nat_Slv
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Int_Slv =>
            return Sub_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Log
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Slv_Log =>
            return Sub_Uns_Uns (Left, Log_To_Vec (Right, Left), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Log_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Sub_Log_Slv =>
            return Sub_Uns_Uns (Log_To_Vec (Left, Right), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Sgn_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Sgn_Sgn =>
            return Sub_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Int =>
            return Sub_Sgn_Int (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Int_Sgn =>
            return Sub_Int_Sgn (Read_Discrete (Left), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Sgn_Log =>
            return Sub_Sgn_Sgn (Left, Log_To_Vec (Right, Left), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Log_Sgn =>
            return Sub_Sgn_Sgn (Log_To_Vec (Left, Right), Right, +Expr);

         --  std_logic_arith."-"
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Sgn_Slv =>
            return Sub_Uns_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Uns_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Uns_Slv =>
            return Sub_Sgn_Uns_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Int_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Int_Slv =>
            return Sub_Uns_Int_Uns (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Int_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Int_Uns_Slv =>
            return Sub_Int_Uns_Uns (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Int_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Int_Slv =>
            return Sub_Sgn_Int_Sgn (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Int_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Int_Sgn_Slv =>
            return Sub_Int_Sgn_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Log_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Uns_Log_Slv =>
            return Sub_Uns_Log_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Log_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Log_Uns_Slv =>
            return Sub_Log_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Log_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Sgn_Log_Slv =>
            return Sub_Sgn_Log_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Log_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Sub_Log_Sgn_Slv =>
            return Sub_Log_Sgn_Sgn (Left, Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns =>
            return Mul_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Nat_Uns =>
            return Mul_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Nat =>
            return Mul_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn =>
            return Mul_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Int =>
            return Mul_Sgn_Int (Left, Read_Discrete (Right), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Int_Sgn =>
            return Mul_Int_Sgn (Read_Discrete (Left), Right, +Expr);

         --  std_logic_arith."*"
         when Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Uns_Slv =>
            return Mul_Uns_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Sgn_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Sgn_Sgn_Slv =>
            return Mul_Sgn_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Uns_Sgn_Slv =>
            return Mul_Uns_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Sgn_Uns_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Mul_Sgn_Uns_Slv =>
            return Mul_Sgn_Uns_Sgn (Left, Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Div_Uns_Uns =>
            return Div_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Uns_Nat =>
            return Div_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Nat_Uns =>
            return Div_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Div_Sgn_Sgn =>
            return Div_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Int_Sgn =>
            return Div_Int_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Div_Sgn_Int =>
            return Div_Sgn_Int (Left, Read_Discrete (Right), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Rem_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Mod_Uns_Uns =>
            return Rem_Uns_Uns (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Mod_Uns_Nat =>
            return Rem_Uns_Nat (Left, To_Uns64 (Read_Discrete (Right)), +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Nat_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Mod_Nat_Uns =>
            return Rem_Nat_Uns (To_Uns64 (Read_Discrete (Left)), Right, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Rem_Sgn_Sgn =>
            return Rem_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Int_Sgn =>
            return Rem_Int_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Rem_Sgn_Int =>
            return Rem_Sgn_Int (Left, Read_Discrete (Right), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mod_Sgn_Sgn =>
            return Mod_Sgn_Sgn (Left, Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mod_Int_Sgn =>
            return Mod_Int_Sgn (Read_Discrete (Left), Right, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mod_Sgn_Int =>
            return Mod_Sgn_Int (Left, Read_Discrete (Right), +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Srl_Uns_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Srl_Sgn_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Shift_Vec (Left, Uns32 (Amt), True, False);
               else
                  return Shift_Vec (Left, Uns32 (-Amt), False, False);
               end if;
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Sll_Uns_Int
           |  Iir_Predefined_Ieee_Numeric_Std_Sll_Sgn_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Shift_Vec (Left, Uns32 (Amt), False, False);
               else
                  return Shift_Vec (Left, Uns32 (-Amt), True, False);
               end if;
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Uns_Uns =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, False, +Expr);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Uns_Uns =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, False, +Expr);
               Res := Not_Table (Res);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Lt, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Lt_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Lt, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Le_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Le, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Le_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Le, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Gt_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Gt, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Gt_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Gt, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Ge_Uns_Uns =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Ge, False, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Match_Ge_Sgn_Sgn =>
            return Match_Cmp_Vec_Vec (Left, Right, Map_Ge, True, +Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Match_Eq_Sgn_Sgn =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, True, +Expr);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Match_Ne_Sgn_Sgn =>
            declare
               Res : Std_Ulogic;
            begin
               Res := Match_Eq_Vec_Vec (Left, Right, True, +Expr);
               Res := Not_Table (Res);
               return Create_Memory_U8 (Std_Ulogic'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Math_Real_Pow_Real_Real =>
            declare
               function Pow (L, R : Fp64) return Fp64;
               pragma Import (C, Pow);
            begin
               return Create_Memory_Fp64
                 (Pow (Read_Fp64 (Left), Read_Fp64 (Right)), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Math_Real_Mod =>
            declare
               function Fmod (L, R : Fp64) return Fp64;
               pragma Import (C, Fmod);
            begin
               return Create_Memory_Fp64
                 (Fmod (Read_Fp64 (Left), Read_Fp64 (Right)), Res_Typ);
            end;

         when others =>
            Error_Msg_Synth
              (+Expr, "eval_static_dyadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            return Null_Memtyp;
      end case;
   end Eval_Static_Dyadic_Predefined;

   function Eval_Vector_Monadic (Vec : Memtyp; Op : Table_1d) return Memtyp
   is
      Len : constant Iir_Index32 := Vec_Length (Vec.Typ);
      Res : Memtyp;
   begin
      Res := Create_Memory (Create_Res_Bound (Vec.Typ));
      for I in 1 .. Uns32 (Len) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Write_Std_Logic (Res.Mem, I - 1, Op (V));
         end;
      end loop;
      return Res;
   end Eval_Vector_Monadic;

   function Eval_Vector_Reduce (Init : Std_Ulogic;
                                Vec : Memtyp;
                                Op : Table_2d;
                                Neg : Boolean) return Memtyp
   is
      El_Typ : constant Type_Acc := Vec.Typ.Arr_El;
      Res : Std_Ulogic;
   begin
      Res := Init;
      for I in 1 .. Uns32 (Vec_Length (Vec.Typ)) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Res := Op (Res, V);
         end;
      end loop;

      if Neg then
         Res := Not_Table (Res);
      end if;

      return Create_Memory_U8 (Std_Ulogic'Pos (Res), El_Typ);
   end Eval_Vector_Reduce;

   function Eval_TF_Vector_Monadic (Vec : Memtyp) return Memtyp
   is
      Len : constant Iir_Index32 := Vec_Length (Vec.Typ);
      Res : Memtyp;
   begin
      Res := Create_Memory (Create_Res_Bound (Vec.Typ));
      for I in 1 .. Uns32 (Len) loop
         declare
            V : constant Boolean :=
              Boolean'Val (Read_U8 (Vec.Mem + Size_Type (I - 1)));
         begin
            Write_U8 (Res.Mem + Size_Type (I - 1), Boolean'Pos (not V));
         end;
      end loop;
      return Res;
   end Eval_TF_Vector_Monadic;

   function Eval_TF_Vector_Reduce (Init : Boolean;
                                   Neg : Boolean;
                                   Vec : Memtyp;
                                   Op : Tf_Table_2d) return Memtyp
   is
      El_Typ : constant Type_Acc := Vec.Typ.Arr_El;
      Res : Boolean;
   begin
      Res := Init;
      for I in 1 .. Size_Type (Vec.Typ.Abound.Len) loop
         declare
            V : constant Boolean := Boolean'Val (Read_U8 (Vec.Mem + (I - 1)));
         begin
            Res := Op (Res, V);
         end;
      end loop;

      return Create_Memory_U8 (Boolean'Pos (Res xor Neg), El_Typ);
   end Eval_TF_Vector_Reduce;

   function Eval_Vector_Maximum (Vec : Memtyp) return Memtyp
   is
      Etyp : constant Type_Acc := Vec.Typ.Arr_El;
      Len : constant Uns32 := Vec.Typ.Abound.Len;
   begin
      case Etyp.Kind is
         when Type_Logic
           | Type_Bit
           | Type_Discrete =>
            declare
               Res : Int64;
               V : Int64;
            begin
               case Etyp.Drange.Dir is
                  when Dir_To =>
                     Res := Etyp.Drange.Left;
                  when Dir_Downto =>
                     Res := Etyp.Drange.Right;
               end case;

               for I in 1 .. Len loop
                  V := Read_Discrete
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz, Etyp);
                  if V > Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Discrete (Res, Etyp);
            end;
         when Type_Float =>
            declare
               Res : Fp64;
               V : Fp64;
            begin
               case Etyp.Frange.Dir is
                  when Dir_To =>
                     Res := Etyp.Frange.Left;
                  when Dir_Downto =>
                     Res := Etyp.Frange.Right;
               end case;

               for I in 1 .. Len loop
                  V := Read_Fp64
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz);
                  if V > Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Fp64 (Res, Etyp);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Eval_Vector_Maximum;

   function Eval_Vector_Minimum (Vec : Memtyp) return Memtyp
   is
      Etyp : constant Type_Acc := Vec.Typ.Arr_El;
      Len : constant Uns32 := Vec.Typ.Abound.Len;
   begin
      case Etyp.Kind is
         when Type_Logic
           | Type_Bit
           | Type_Discrete =>
            declare
               Res : Int64;
               V : Int64;
            begin
               case Etyp.Drange.Dir is
                  when Dir_To =>
                     Res := Etyp.Drange.Right;
                  when Dir_Downto =>
                     Res := Etyp.Drange.Left;
               end case;

               for I in 1 .. Len loop
                  V := Read_Discrete
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz, Etyp);
                  if V < Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Discrete (Res, Etyp);
            end;
         when Type_Float =>
            declare
               Res : Fp64;
               V : Fp64;
            begin
               case Etyp.Frange.Dir is
                  when Dir_To =>
                     Res := Etyp.Frange.Right;
                  when Dir_Downto =>
                     Res := Etyp.Frange.Left;
               end case;

               for I in 1 .. Len loop
                  V := Read_Fp64
                    (Vec.Mem + Size_Type (I - 1) * Etyp.Sz);
                  if V < Res then
                     Res := V;
                  end if;
               end loop;
               return Create_Memory_Fp64 (Res, Etyp);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Eval_Vector_Minimum;

   function Eval_Static_Monadic_Predefined (Imp : Node;
                                             Operand : Memtyp;
                                             Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      case Def is
         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Bit_Not =>
            return Create_Memory_U8 (1 - Read_U8 (Operand), Operand.Typ);

         when Iir_Predefined_Bit_Condition =>
            return Create_Memory_U8 (Read_U8 (Operand), Operand.Typ);

         when Iir_Predefined_Integer_Negation
           | Iir_Predefined_Physical_Negation =>
            return Create_Memory_Discrete
              (-Read_Discrete (Operand), Operand.Typ);
         when Iir_Predefined_Integer_Absolute
           | Iir_Predefined_Physical_Absolute =>
            return Create_Memory_Discrete
              (abs Read_Discrete (Operand), Operand.Typ);
         when Iir_Predefined_Integer_Identity
           | Iir_Predefined_Physical_Identity =>
            return Operand;

         when Iir_Predefined_Floating_Negation =>
            return Create_Memory_Fp64 (-Read_Fp64 (Operand), Operand.Typ);
         when Iir_Predefined_Floating_Identity =>
            return Operand;
         when Iir_Predefined_Floating_Absolute =>
            return Create_Memory_Fp64 (abs Read_Fp64 (Operand), Operand.Typ);

         when Iir_Predefined_Vector_Maximum =>
            return Eval_Vector_Maximum (Operand);
         when Iir_Predefined_Vector_Minimum =>
            return Eval_Vector_Minimum (Operand);

         when Iir_Predefined_TF_Array_Not =>
            return Eval_TF_Vector_Monadic (Operand);

         when Iir_Predefined_TF_Reduction_Or =>
            return Eval_TF_Vector_Reduce (False, False, Operand, Tf_2d_Or);
         when Iir_Predefined_TF_Reduction_And =>
            return Eval_TF_Vector_Reduce (True, False, Operand, Tf_2d_And);
         when Iir_Predefined_TF_Reduction_Xor =>
            return Eval_TF_Vector_Reduce (False, False, Operand, Tf_2d_Xor);
         when Iir_Predefined_TF_Reduction_Nor =>
            return Eval_TF_Vector_Reduce (False, True, Operand, Tf_2d_Or);
         when Iir_Predefined_TF_Reduction_Nand =>
            return Eval_TF_Vector_Reduce (True, True, Operand, Tf_2d_And);
         when Iir_Predefined_TF_Reduction_Xnor =>
            return Eval_TF_Vector_Reduce (False, True, Operand, Tf_2d_Xor);

         when Iir_Predefined_Ieee_1164_Condition_Operator =>
            --  Constant std_logic: need to convert.
            declare
               Val : Uns32;
               Zx : Uns32;
            begin
               From_Std_Logic (Int64 (Read_U8 (Operand)), Val, Zx);
               return Create_Memory_U8
                 (Boolean'Pos (Val = 1 and Zx = 0), Boolean_Type);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Neg_Sgn =>
            return Neg_Vec (Operand, +Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Abs_Sgn =>
            return Abs_Vec (Operand, +Expr);

         when Iir_Predefined_Ieee_1164_Vector_Not
           | Iir_Predefined_Ieee_Numeric_Std_Not_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Not_Sgn =>
            return Eval_Vector_Monadic (Operand, Not_Table);

         when Iir_Predefined_Ieee_1164_Scalar_Not =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Not_Table (Read_Std_Logic (Operand.Mem, 0))),
               Operand.Typ);

         when Iir_Predefined_Ieee_1164_And_Suv
            | Iir_Predefined_Ieee_Numeric_Std_And_Uns
            | Iir_Predefined_Ieee_Numeric_Std_And_Sgn =>
            return Eval_Vector_Reduce ('1', Operand, And_Table, False);
         when Iir_Predefined_Ieee_1164_Nand_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Nand_Sgn =>
            return Eval_Vector_Reduce ('1', Operand, And_Table, True);

         when Iir_Predefined_Ieee_1164_Or_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Or_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn =>
            return Eval_Vector_Reduce ('0', Operand, Or_Table, False);
         when Iir_Predefined_Ieee_1164_Nor_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Nor_Sgn =>
            return Eval_Vector_Reduce ('0', Operand, Or_Table, True);

         when Iir_Predefined_Ieee_1164_Xor_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn =>
            return Eval_Vector_Reduce ('0', Operand, Xor_Table, False);
         when Iir_Predefined_Ieee_1164_Xnor_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Xnor_Sgn =>
            return Eval_Vector_Reduce ('0', Operand, Xor_Table, True);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Id_Uns_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Id_Uns_Slv
            | Iir_Predefined_Ieee_Std_Logic_Arith_Id_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Id_Sgn_Slv =>
            return Operand;

         when Iir_Predefined_Ieee_Std_Logic_Arith_Neg_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Neg_Sgn_Slv =>
            return Neg_Sgn_Sgn (Operand, +Expr);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Abs_Sgn_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Abs_Sgn_Slv =>
            return Abs_Sgn_Sgn (Operand, +Expr);

         when others =>
            Error_Msg_Synth
              (+Expr, "eval_static_monadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Eval_Static_Monadic_Predefined;

   function Eval_To_Log_Vector (Arg : Uns64; Sz : Int64; Res_Type : Type_Acc)
                               return Memtyp
   is
      Len : constant Iir_Index32 := Iir_Index32 (Sz);
      El_Type : constant Type_Acc := Get_Array_Element (Res_Type);
      Res : Memtyp;
      Bnd : Type_Acc;
      B : Uns64;
   begin
      Bnd := Create_Vec_Type_By_Length (Width (Len), El_Type);
      Res := Create_Memory (Bnd);
      for I in 1 .. Len loop
         B := Shift_Right_Arithmetic (Arg, Natural (I - 1)) and 1;
         Write_Std_Logic (Res.Mem, Uns32 (Len - I),
                          Std_Ulogic'Val (Std_Logic_0_Pos + B));
      end loop;
      return Res;
   end Eval_To_Log_Vector;

   function Eval_To_Bit_Vector (Arg : Uns64; Sz : Int64; Res_Type : Type_Acc)
                               return Memtyp
   is
      Len : constant Size_Type := Size_Type (Sz);
      El_Type : constant Type_Acc := Get_Array_Element (Res_Type);
      Res : Memtyp;
      Bnd : Type_Acc;
      B : Uns64;
   begin
      Bnd := Create_Vec_Type_By_Length (Width (Sz), El_Type);
      Res := Create_Memory (Bnd);
      for I in 1 .. Len loop
         B := Shift_Right_Arithmetic (Arg, Natural (I - 1)) and 1;
         Write_U8 (Res.Mem + (Len - I), Ghdl_U8 (B));
      end loop;
      return Res;
   end Eval_To_Bit_Vector;

   function Eval_Unsigned_To_Integer (Arg : Memtyp; Loc : Node) return Int64
   is
      Res : Uns64;
      V : Std_Ulogic;
   begin
      Res := 0;
      for I in 1 .. Vec_Length (Arg.Typ) loop
         V := Std_Ulogic'Val (Read_U8 (Arg.Mem + Size_Type (I - 1)));
         case To_X01 (V) is
            when '0' =>
               Res := Res * 2;
            when '1' =>
               Res := Res * 2 + 1;
            when 'X' =>
               Warning_Msg_Synth
                 (+Loc, "metavalue detected, returning 0");
               Res := 0;
               exit;
         end case;
      end loop;
      return To_Int64 (Res);
   end Eval_Unsigned_To_Integer;

   function Eval_Signed_To_Integer (Arg : Memtyp; Loc : Node) return Int64
   is
      Len : constant Iir_Index32 := Vec_Length (Arg.Typ);
      Res : Uns64;
      E : Std_Ulogic;
   begin
      if Len = 0 then
         Warning_Msg_Synth
           (+Loc, "numeric_std.to_integer: null detected, returning 0");
         return 0;
      end if;

      E := Std_Ulogic'Val (Read_U8 (Arg.Mem));
      case To_X01 (E) is
         when '0' =>
            Res := 0;
         when '1' =>
            Res := not 0;
         when 'X' =>
            Warning_Msg_Synth (+Loc, "metavalue detected, returning 0");
            return 0;
      end case;
      for I in 2 .. Len loop
         E := Std_Ulogic'Val (Read_U8 (Arg.Mem + Size_Type (I - 1)));
         case To_X01 (E) is
            when '0' =>
               Res := Res * 2;
            when '1' =>
               Res := Res * 2 + 1;
            when 'X' =>
               Warning_Msg_Synth (+Loc, "metavalue detected, returning 0");
               return 0;
         end case;
      end loop;
      return To_Int64 (Res);
   end Eval_Signed_To_Integer;

   function Eval_Array_Char_To_String (Param : Memtyp;
                                       Res_Typ : Type_Acc;
                                       Imp : Node) return Memtyp
   is
      use Vhdl.Utils;
      use Name_Table;
      Len : constant Uns32 := Param.Typ.Abound.Len;
      Elt : constant Type_Acc := Param.Typ.Arr_El;
      Etype : constant Node := Get_Base_Type
        (Get_Element_Subtype
           (Get_Type (Get_Interface_Declaration_Chain (Imp))));
      pragma Assert (Get_Kind (Etype) = Iir_Kind_Enumeration_Type_Definition);
      Enums : constant Iir_Flist := Get_Enumeration_Literal_List (Etype);
      Lit : Node;
      Lit_Id : Name_Id;
      Bnd : Bound_Type;
      Res_St : Type_Acc;
      Res : Memtyp;
      V : Int64;
   begin
      Bnd := Elab.Vhdl_Types.Create_Bounds_From_Length
        (Res_Typ.Uarr_Idx.Drange, Iir_Index32 (Len));
      Res_St := Create_Onedimensional_Array_Subtype
        (Res_Typ, Bnd, Res_Typ.Uarr_El);
      Res := Create_Memory (Res_St);
      for I in 1 .. Len loop
         V := Read_Discrete (Param.Mem + Size_Type (I - 1) * Elt.Sz, Elt);
         Lit := Get_Nth_Element (Enums, Natural (V));
         Lit_Id := Get_Identifier (Lit);
         pragma Assert (Is_Character (Lit_Id));
         Write_U8 (Res.Mem + Size_Type (I - 1),
                   Character'Pos (Get_Character (Lit_Id)));
      end loop;
      return Res;
   end Eval_Array_Char_To_String;

   function String_To_Memtyp (Str : String; Styp : Type_Acc) return Memtyp
   is
      Len : constant Natural := Str'Length;
      Bnd : Bound_Type;
      Typ : Type_Acc;
      Res : Memtyp;
   begin
      Bnd := (Dir => Dir_To, Left => 1, Right => Int32 (Len),
              Len => Uns32 (Len));
      Typ := Create_Array_Type (Bnd, True, Styp.Uarr_El);

      Res := Create_Memory (Typ);
      for I in Str'Range loop
         Write_U8 (Res.Mem + Size_Type (I - Str'First),
                   Character'Pos (Str (I)));
      end loop;
      return Res;
   end String_To_Memtyp;

   function Eval_Enum_To_String (Param : Memtyp;
                                 Res_Typ : Type_Acc;
                                 Imp : Node) return Memtyp
   is
      use Vhdl.Utils;
      use Name_Table;
      Etype : constant Node := Get_Base_Type
        (Get_Type (Get_Interface_Declaration_Chain (Imp)));
      pragma Assert (Get_Kind (Etype) = Iir_Kind_Enumeration_Type_Definition);
      Enums : constant Iir_Flist := Get_Enumeration_Literal_List (Etype);
      Lit : Node;
      Lit_Id : Name_Id;
      V : Int64;
      C : String (1 .. 1);
   begin
      V := Read_Discrete (Param.Mem, Param.Typ);
      Lit := Get_Nth_Element (Enums, Natural (V));
      Lit_Id := Get_Identifier (Lit);
      if Is_Character (Lit_Id) then
         C (1) := Get_Character (Lit_Id);
         return String_To_Memtyp (C, Res_Typ);
      else
         return String_To_Memtyp (Image (Lit_Id), Res_Typ);
      end if;
   end Eval_Enum_To_String;

   Hex_Chars : constant array (Natural range 0 .. 15) of Character :=
     "0123456789ABCDEF";

   function Eval_Bit_Vector_To_String (Val : Memtyp;
                                       Res_Typ : Type_Acc;
                                       Log_Base : Natural) return Memtyp
   is
      Base : constant Natural := 2 ** Log_Base;
      Blen : constant Natural := Natural (Val.Typ.Abound.Len);
      Str : String (1 .. (Blen + Log_Base - 1) / Log_Base);
      Pos : Natural;
      V : Natural;
      N : Natural;
   begin
      V := 0;
      N := 1;
      Pos := Str'Last;
      for I in 1 .. Blen loop
         V := V + Natural (Read_U8 (Val.Mem + Size_Type (Blen - I))) * N;
         N := N * 2;
         if N = Base or else I = Blen then
            Str (Pos) := Hex_Chars (V);
            Pos := Pos - 1;
            N := 1;
            V := 0;
         end if;
      end loop;
      return String_To_Memtyp (Str, Res_Typ);
   end Eval_Bit_Vector_To_String;

   function Eval_Logic_Vector_To_String (Val : Memtyp;
                                         Res_Typ : Type_Acc;
                                         Is_Signed : Boolean;
                                         Log_Base : Natural) return Memtyp
   is
      Base : constant Natural := 2 ** Log_Base;
      Blen : constant Uns32 := Val.Typ.Abound.Len;
      Str : String (1 .. (Natural (Blen) + Log_Base - 1) / Log_Base);
      Pos : Natural;
      D : Std_Ulogic;
      V : Natural;
      N : Natural;
      Has_X, Has_Z, Has_D : Boolean;
   begin
      V := 0;
      N := 1;
      Has_X := False;
      Has_Z := False;
      Has_D := False;
      Pos := Str'Last;
      for I in 1 .. Blen loop
         D := Read_Std_Logic (Val.Mem, Blen - I);
         case D is
            when '0' | 'L' =>
               Has_D := True;
            when '1' | 'H' =>
               Has_D := True;
               V := V + N;
            when 'Z' | 'W' =>
               Has_Z := True;
            when 'X' | 'U' | '-' =>
               Has_X := True;
         end case;
         N := N * 2;
         if N = Base or else I = Blen then
            if Has_X or (Has_Z and Has_D) then
               Str (Pos) := 'X';
            elsif Has_Z then
               Str (Pos) := 'Z';
            else
               if Is_Signed and N < Base and (D = '1' or D = 'H') then
                  --  Sign extend.
                  loop
                     V := V + N;
                     N := N * 2;
                     exit when N = Base;
                  end loop;
               end if;
               Str (Pos) := Hex_Chars (V);
            end if;
            Pos := Pos - 1;
            N := 1;
            V := 0;
            Has_X := False;
            Has_Z := False;
            Has_D := False;
         end if;
      end loop;
      return String_To_Memtyp (Str, Res_Typ);
   end Eval_Logic_Vector_To_String;

   function Eval_To_X01 (Val : Memtyp; Map : Table_1d) return Memtyp
   is
      Len : constant Uns32 := Val.Typ.Abound.Len;
      Res : Memtyp;
      B : Std_Ulogic;
   begin
      Res := Create_Memory (Create_Res_Bound (Val.Typ));
      for I in 1 .. Len loop
         B := Read_Std_Logic (Val.Mem, I - 1);
         B := Map (B);
         Write_Std_Logic (Res.Mem, I - 1, B);
      end loop;
      return Res;
   end Eval_To_X01;

   function Eval_Static_Predefined_Function_Call (Param1 : Valtyp;
                                                  Param2 : Valtyp;
                                                  Res_Typ : Type_Acc;
                                                  Expr : Node) return Memtyp
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
   begin
      case Def is
         when Iir_Predefined_Physical_Minimum
           | Iir_Predefined_Integer_Minimum
           | Iir_Predefined_Enum_Minimum =>
            return Create_Memory_Discrete
              (Int64'Min (Read_Discrete (Param1), Read_Discrete (Param2)),
               Res_Typ);
         when Iir_Predefined_Floating_Maximum =>
            return Create_Memory_Fp64
              (Fp64'Max (Read_Fp64 (Param1), Read_Fp64 (Param2)), Res_Typ);
         when Iir_Predefined_Physical_Maximum
           | Iir_Predefined_Integer_Maximum
           | Iir_Predefined_Enum_Maximum =>
            return Create_Memory_Discrete
              (Int64'Max (Read_Discrete (Param1), Read_Discrete (Param2)),
               Res_Typ);
         when Iir_Predefined_Floating_Minimum =>
            return Create_Memory_Fp64
              (Fp64'Min (Read_Fp64 (Param1), Read_Fp64 (Param2)), Res_Typ);

         when Iir_Predefined_Now_Function =>
            return Create_Memory_Discrete
              (Int64 (Grt.Vhdl_Types.Current_Time), Res_Typ);
         when Iir_Predefined_Real_Now_Function =>
            return Create_Memory_Fp64
              (Fp64 (Grt.Vhdl_Types.Current_Time_AMS), Res_Typ);

         when Iir_Predefined_Endfile =>
            declare
               Res : Boolean;
            begin
               Res := Elab.Vhdl_Files.Endfile (Param1.Val.File, Expr);
               return Create_Memory_U8 (Boolean'Pos (Res), Boolean_Type);
            end;

         when Iir_Predefined_Integer_To_String =>
            declare
               Str : String (1 .. 21);
               First : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, First, Ghdl_I64 (Read_Discrete (Param1)));
               return String_To_Memtyp (Str (First .. Str'Last), Res_Typ);
            end;
         when Iir_Predefined_Enum_To_String =>
            return Eval_Enum_To_String (Get_Memtyp (Param1), Res_Typ, Imp);
         when Iir_Predefined_Floating_To_String =>
            declare
               Str : String (1 .. 24);
               Last : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, Last, Ghdl_F64 (Read_Fp64 (Param1)));
               return String_To_Memtyp (Str (Str'First .. Last), Res_Typ);
            end;
         when Iir_Predefined_Real_To_String_Digits =>
            declare
               Str : Grt.To_Strings.String_Real_Format;
               Last : Natural;
               Val : Ghdl_F64;
               Dig : Ghdl_I32;
            begin
               Val := Ghdl_F64 (Read_Fp64 (Param1));
               Dig := Ghdl_I32 (Read_Discrete (Param2));
               Grt.To_Strings.To_String (Str, Last, Val, Dig);
               return String_To_Memtyp (Str (Str'First .. Last), Res_Typ);
            end;
         when Iir_Predefined_Real_To_String_Format =>
            declare
               Format : String (1 .. Natural (Param2.Typ.Abound.Len) + 1);
               Str : Grt.To_Strings.String_Real_Format;
               Last : Natural;
            begin
               --  Copy format
               for I in 1 .. Param2.Typ.Abound.Len loop
                  Format (Positive (I)) := Character'Val
                    (Read_U8 (Param2.Val.Mem + Size_Type (I - 1)));
               end loop;
               Format (Format'Last) := ASCII.NUL;
               Grt.To_Strings.To_String
                 (Str, Last, Ghdl_F64 (Read_Fp64 (Param1)),
                  To_Ghdl_C_String (Format'Address));
               return String_To_Memtyp (Str (Str'First .. Last), Res_Typ);
            end;

         when Iir_Predefined_Physical_To_String =>
            declare
               Phys_Type : constant Node :=
                 Get_Type (Get_Interface_Declaration_Chain (Imp));
               Id : constant Name_Id :=
                 Get_Identifier (Get_Primary_Unit (Phys_Type));
               Str : String (1 .. 21);
               First : Natural;
            begin
               Grt.To_Strings.To_String
                 (Str, First, Ghdl_I64 (Read_Discrete (Param1)));
               return String_To_Memtyp
                 (Str (First .. Str'Last) & ' ' & Name_Table.Image (Id),
                  Res_Typ);
            end;
         when Iir_Predefined_Time_To_String_Unit =>
            declare
               Time_Type : constant Node :=
                 Get_Type (Get_Interface_Declaration_Chain (Imp));
               Str : Grt.To_Strings.String_Time_Unit;
               First : Natural;
               Unit : Iir;
               Uval : Int64;
            begin
               Uval := Read_Discrete (Param2);
               Unit := Get_Unit_Chain (Time_Type);
               while Unit /= Null_Iir loop
                  exit when Vhdl.Evaluation.Get_Physical_Value (Unit) = Uval;
                  Unit := Get_Chain (Unit);
               end loop;
               if Unit = Null_Iir then
                  Error_Msg_Synth
                    (+Expr, "to_string for time called with wrong unit");
               end if;
               Grt.To_Strings.To_String (Str, First,
                                         Ghdl_I64 (Read_Discrete (Param1)),
                                         Ghdl_I64 (Uval));
               return String_To_Memtyp
                 (Str (First .. Str'Last) & ' '
                    & Name_Table.Image (Get_Identifier (Unit)),
                 Res_Typ);
            end;

         when Iir_Predefined_Array_Char_To_String =>
            return Eval_Array_Char_To_String
              (Get_Memtyp (Param1), Res_Typ, Imp);

         when Iir_Predefined_Bit_Vector_To_Hstring =>
            return Eval_Bit_Vector_To_String (Get_Memtyp (Param1), Res_Typ, 4);
         when Iir_Predefined_Bit_Vector_To_Ostring =>
            return Eval_Bit_Vector_To_String (Get_Memtyp (Param1), Res_Typ, 3);

         when Iir_Predefined_Std_Env_Resolution_Limit =>
            return Create_Memory_Discrete (1, Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Bit_Touns_Nat_Nat_Uns =>
            return Eval_To_Bit_Vector
              (Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Touns_Nat_Nat_Uns
            | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Unsigned_Int
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_To_Slv_Nat_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_To_Suv_Nat_Nat =>
            return Eval_To_Log_Vector
              (Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Touns_Nat_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_To_Slv_Nat_Slv
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_To_Suv_Nat_Suv =>
            return Eval_To_Log_Vector
              (Uns64 (Read_Discrete (Param1)), Int64 (Param2.Typ.Abound.Len),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Tosgn_Int_Nat_Sgn
            | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Vector_Int =>
            return Eval_To_Log_Vector
              (To_Uns64 (Read_Discrete (Param1)), Read_Discrete (Param2),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Tosgn_Int_Sgn_Sgn =>
            return Eval_To_Log_Vector
              (To_Uns64 (Read_Discrete (Param1)),
               Int64 (Param2.Typ.Abound.Len),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Uns_Nat
            | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Integer_Uns
            | Iir_Predefined_Ieee_Std_Logic_Unsigned_Conv_Integer
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_To_Integer_Slv_Nat =>
            --  UNSIGNED to Natural.
            return Create_Memory_Discrete
              (Eval_Unsigned_To_Integer (Get_Memtyp (Param1), Expr), Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Sgn_Int =>
            --  SIGNED to Integer
            return Create_Memory_Discrete
              (Eval_Signed_To_Integer (Get_Memtyp (Param1), Expr), Res_Typ);
         when Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Integer_Int =>
            return Get_Memtyp (Param1);

         when Iir_Predefined_Ieee_Numeric_Std_Shf_Left_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Shf_Left_Sgn_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Shift_Left =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               False, False);
         when Iir_Predefined_Ieee_Numeric_Std_Shf_Right_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Shift_Right =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               True, False);
         when Iir_Predefined_Ieee_Numeric_Std_Shf_Right_Sgn_Nat =>
            return Shift_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)),
               True, True);
         when Iir_Predefined_Ieee_Numeric_Std_Rot_Left_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Rot_Left_Sgn_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Rotate_Left =>
            return Rotate_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), False);
         when Iir_Predefined_Ieee_Numeric_Std_Rot_Right_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Rot_Right_Sgn_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Rotate_Right =>
            return Rotate_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), True);

         when Iir_Predefined_Ieee_Numeric_Std_Resize_Uns_Nat
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Resize_Slv_Nat =>
            return Resize_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), False);
         when Iir_Predefined_Ieee_Numeric_Std_Resize_Uns_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Resize_Slv_Slv =>
            return Resize_Vec
              (Get_Memtyp (Param1), Param2.Typ.Abound.Len, False);
         when Iir_Predefined_Ieee_Numeric_Std_Resize_Sgn_Nat =>
            return Resize_Vec
              (Get_Memtyp (Param1), Uns32 (Read_Discrete (Param2)), True);
         when Iir_Predefined_Ieee_Numeric_Std_Resize_Sgn_Sgn =>
            return Resize_Vec
              (Get_Memtyp (Param1), Param2.Typ.Abound.Len, True);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Ext =>
            declare
               Len : Int64;
            begin
               Len := Read_Discrete (Param2);
               if Len < 0 then
                  Len := 0;
               end if;
               return Resize_Vec (Get_Memtyp (Param1), Uns32 (Len), False);
            end;
         when Iir_Predefined_Ieee_Std_Logic_Arith_Sxt =>
            declare
               Len : Int64;
            begin
               Len := Read_Discrete (Param2);
               if Len < 0 then
                  Len := 0;
               end if;
               return Resize_Vec (Get_Memtyp (Param1), Uns32 (Len), True);
            end;

         when Iir_Predefined_Ieee_1164_To_Stdulogic =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Bit_To_Std_Logic (Param1.Val.Mem, 0);
               return Create_Memory_U8 (Std_Ulogic'Pos (B), Res_Typ);
            end;

         when Iir_Predefined_Ieee_1164_To_X01_Log =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Std_Logic (Param1.Val.Mem, 0);
               B := To_X01 (B);
               return Create_Memory_U8 (Std_Ulogic'Pos (B), Res_Typ);
            end;
         when Iir_Predefined_Ieee_1164_To_X01Z_Log =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Std_Logic (Param1.Val.Mem, 0);
               B := Map_X01Z (B);
               return Create_Memory_U8 (Std_Ulogic'Pos (B), Res_Typ);
            end;
         when Iir_Predefined_Ieee_1164_To_X01_Slv
            | Iir_Predefined_Ieee_Numeric_Std_To_X01_Uns
            | Iir_Predefined_Ieee_Numeric_Std_To_X01_Sgn =>
            return Eval_To_X01 (Get_Memtyp (Param1), Map_X01);
         when Iir_Predefined_Ieee_Numeric_Std_To_X01Z_Uns
            | Iir_Predefined_Ieee_Numeric_Std_To_X01Z_Sgn
            | Iir_Predefined_Ieee_1164_To_X01Z_Slv =>
            return Eval_To_X01 (Get_Memtyp (Param1), Map_X01Z);
         when Iir_Predefined_Ieee_Numeric_Std_To_UX01_Uns
            | Iir_Predefined_Ieee_Numeric_Std_To_UX01_Sgn
            | Iir_Predefined_Ieee_1164_To_UX01_Slv =>
            return Eval_To_X01 (Get_Memtyp (Param1), Map_UX01);

         when Iir_Predefined_Ieee_1164_To_Stdlogicvector_Bv
            | Iir_Predefined_Ieee_1164_To_Stdulogicvector_Bv =>
            declare
               El_Type : constant Type_Acc := Get_Array_Element (Res_Typ);
               Res : Memtyp;
               Bnd : Type_Acc;
               B : Std_Ulogic;
            begin
               Bnd := Create_Vec_Type_By_Length
                 (Uns32 (Vec_Length (Param1.Typ)), El_Type);
               Res := Create_Memory (Bnd);
               for I in 1 .. Uns32 (Vec_Length (Param1.Typ)) loop
                  B := Read_Bit_To_Std_Logic (Param1.Val.Mem, I - 1);
                  Write_Std_Logic (Res.Mem, I - 1, B);
               end loop;
               return Res;
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Match_Log =>
            return Create_Memory_Boolean
              (Match_Eq_Table (Read_Std_Logic (Param1.Val.Mem, 0),
                               Read_Std_Logic (Param2.Val.Mem, 0)) = '1');

         when Iir_Predefined_Ieee_Numeric_Std_Match_Suv
            | Iir_Predefined_Ieee_Numeric_Std_Match_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Match_Sgn =>
            return Create_Memory_Boolean
              (Match_Vec (Get_Memtyp (Param1), Get_Memtyp (Param2), +Expr));

         when Iir_Predefined_Ieee_1164_To_Bit =>
            declare
               V : Std_Ulogic;
               X : Bit;
               R : Bit;
            begin
               V := Read_Std_Logic (Param1.Val.Mem, 0);
               X := Read_Bit (Param2.Val.Mem, 0);
               R := To_Bit (V, X);
               return Create_Memory_U8 (Bit'Pos(R), Res_Typ);
            end;
         when Iir_Predefined_Ieee_1164_To_Bitvector =>
            declare
               El_Type : constant Type_Acc := Get_Array_Element (Res_Typ);
               Res     : Memtyp;
               Bnd     : Type_Acc;
               S       : Std_Ulogic;
               X       : Bit;
               R       : Bit;
            begin
               X := Read_Bit (Param2.Val.Mem, 0);
               Bnd := Create_Vec_Type_By_Length
                 (Uns32 (Vec_Length (Param1.Typ)), El_Type);
               Res := Create_Memory (Bnd);
               for I in 1 .. Uns32 (Vec_Length (Param1.Typ)) loop
                  S := Read_Std_Logic (Param1.Val.Mem, I - 1);
                  R := To_Bit (S, X);
                  Write_Bit (Res.Mem, I - 1, R);
               end loop;
               return Res;
            end;

         when Iir_Predefined_Ieee_1164_To_01_Slv_Log
            | Iir_Predefined_Ieee_Numeric_Std_To_01_Uns =>
            declare
               Len : constant Uns32 := Param1.Typ.Abound.Len;
               S : Std_Ulogic;
               Xmap : Std_Ulogic;
               Res : Memtyp;
            begin
               Xmap := Read_Std_Logic (Param2.Val.Mem, 0);
               Res := Create_Memory (Create_Res_Bound (Param1.Typ));
               for I in 1 .. Len loop
                  S := Read_Std_Logic (Param1.Val.Mem, I - 1);
                  S := To_X01 (S);
                  if S = 'X' then
                     S := Xmap;
                  end if;
                  Write_Std_Logic (Res.Mem, I - 1, S);
               end loop;
               return Res;
            end;

         when Iir_Predefined_Ieee_1164_Is_X_Log =>
            declare
               B : Std_Ulogic;
            begin
               B := Read_Std_Logic (Param1.Val.Mem, 0);
               B := To_X01 (B);
               return Create_Memory_Boolean (B = 'X');
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Is_X_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Is_X_Sgn
            | Iir_Predefined_Ieee_1164_Is_X_Slv =>
            declare
               Len : constant Uns32 := Param1.Typ.Abound.Len;
               Res : Boolean;
               B : Std_Ulogic;
            begin
               Res := False;
               for I in 1 .. Len loop
                  B := Read_Std_Logic (Param1.Val.Mem, I - 1);
                  if To_X01 (B) = 'X' then
                     Res := True;
                     exit;
                  end if;
               end loop;
               return Create_Memory_Boolean (Res);
            end;

         when Iir_Predefined_Ieee_1164_To_Stdlogicvector_Suv
           | Iir_Predefined_Ieee_1164_To_Stdulogicvector_Slv =>
            --  TODO
            return (Param1.Typ, Param1.Val.Mem);

         when Iir_Predefined_Ieee_1164_To_Hstring
            | Iir_Predefined_Ieee_Numeric_Std_To_Hstring_Uns =>
            return Eval_Logic_Vector_To_String
              (Get_Memtyp (Param1), Res_Typ, False, 4);
         when Iir_Predefined_Ieee_Numeric_Std_To_Hstring_Sgn =>
            return Eval_Logic_Vector_To_String
              (Get_Memtyp (Param1), Res_Typ, True, 4);
         when Iir_Predefined_Ieee_1164_To_Ostring
            | Iir_Predefined_Ieee_Numeric_Std_To_Ostring_Uns =>
            return Eval_Logic_Vector_To_String
              (Get_Memtyp (Param1), Res_Typ, False, 3);
         when Iir_Predefined_Ieee_Numeric_Std_To_Ostring_Sgn =>
            return Eval_Logic_Vector_To_String
              (Get_Memtyp (Param1), Res_Typ, True, 3);

         when Iir_Predefined_Ieee_Numeric_Std_Max_Uns_Uns =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           False, True);
         when Iir_Predefined_Ieee_Numeric_Std_Min_Uns_Uns =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           False, False);
         when Iir_Predefined_Ieee_Numeric_Std_Max_Sgn_Sgn =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           True, True);
         when Iir_Predefined_Ieee_Numeric_Std_Min_Sgn_Sgn =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           True, False);

         when Iir_Predefined_Ieee_Numeric_Std_Find_Rightmost_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Find_Rightmost_Sgn
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Find_Rightmost =>
            return Create_Memory_Discrete
              (Int64 (Find_Rightmost (Get_Memtyp (Param1),
                                      Get_Memtyp (Param2))),
               Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Find_Leftmost_Uns
            | Iir_Predefined_Ieee_Numeric_Std_Find_Leftmost_Sgn
            | Iir_Predefined_Ieee_Numeric_Std_Unsigned_Find_Leftmost =>
            return Create_Memory_Discrete
              (Int64 (Find_Leftmost (Get_Memtyp (Param1),
                                     Get_Memtyp (Param2))),
               Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Unsigned_Maximum_Slv_Slv =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           False, True);
         when Iir_Predefined_Ieee_Numeric_Std_Unsigned_Minimum_Slv_Slv =>
            return Minmax (Get_Memtyp (Param1), Get_Memtyp (Param2),
                           False, False);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Shl_Uns =>
            return Execute_Shift_Operator
              (Get_Memtyp (Param1), Read_Discrete (Param2),
               Std_Ulogic'Pos('0'), Iir_Predefined_Array_Sll);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Shl_Sgn =>
            return Execute_Shift_Operator
              (Get_Memtyp (Param1), Read_Discrete (Param2),
               Std_Ulogic'Pos('0'), Iir_Predefined_Array_Sla);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Shr_Uns =>
            return Execute_Shift_Operator
              (Get_Memtyp (Param1), Read_Discrete (Param2),
               Std_Ulogic'Pos('0'), Iir_Predefined_Array_Srl);

         when Iir_Predefined_Ieee_Std_Logic_Arith_Shr_Sgn =>
            return Execute_Shift_Operator
              (Get_Memtyp (Param1), Read_Discrete (Param2),
               Std_Ulogic'Pos('0'), Iir_Predefined_Array_Sra);

         when Iir_Predefined_Ieee_Math_Real_Sign =>
            declare
               Val : constant Fp64 := Read_Fp64 (Param1);
               Res : Fp64;
            begin
               if Val > 0.0 then
                  Res := 1.0;
               elsif Val < 0.0 then
                  Res := -1.0;
               else
                  Res := 0.0;
               end if;
               return Create_Memory_Fp64 (Res, Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Sqrt =>
            declare
               function Sqrt (Arg : Fp64) return Fp64;
               pragma Import (C, Sqrt);
            begin
               return Create_Memory_Fp64 (Sqrt (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Log2 =>
            declare
               function Log2 (Arg : Fp64) return Fp64;
               pragma Import (C, Log2);
            begin
               return Create_Memory_Fp64 (Log2 (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Log10 =>
            declare
               function Log10 (Arg : Fp64) return Fp64;
               pragma Import (C, Log10);
            begin
               return Create_Memory_Fp64 (Log10 (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Ceil =>
            declare
               function Ceil (Arg : Fp64) return Fp64;
               pragma Import (C, Ceil);
            begin
               return Create_Memory_Fp64 (Ceil (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Floor =>
            declare
               function Floor (Arg : Fp64) return Fp64;
               pragma Import (C, Floor);
            begin
               return Create_Memory_Fp64 (Floor (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Round =>
            declare
               function Round (Arg : Fp64) return Fp64;
               pragma Import (C, Round);
            begin
               return Create_Memory_Fp64 (Round (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Sin =>
            declare
               function Sin (Arg : Fp64) return Fp64;
               pragma Import (C, Sin);
            begin
               return Create_Memory_Fp64 (Sin (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Cos =>
            declare
               function Cos (Arg : Fp64) return Fp64;
               pragma Import (C, Cos);
            begin
               return Create_Memory_Fp64 (Cos (Read_Fp64 (Param1)), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Arctan =>
            declare
               function Atan (Arg : Fp64) return Fp64;
               pragma Import (C, Atan);
            begin
               return Create_Memory_Fp64 (Atan (Read_Fp64 (Param1)), Res_Typ);
            end;
         when others =>
            null;
      end case;
      Error_Msg_Synth (+Expr, "unhandled (static) function: "
                         & Iir_Predefined_Functions'Image (Def));
      return Null_Memtyp;
   end Eval_Static_Predefined_Function_Call;
end Synth.Vhdl_Eval;