1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
-- Synthesis context.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
with Ada.Unchecked_Conversion;
with Tables;
with Types_Utils; use Types_Utils;
with Netlists.Folds; use Netlists.Folds;
with Synth.Vhdl_Expr; use Synth.Vhdl_Expr;
with Netlists.Locations;
package body Synth.Vhdl_Context is
package Extra_Tables is new Tables
(Table_Component_Type => Extra_Vhdl_Instance_Type,
Table_Index_Type => Instance_Id_Type,
Table_Low_Bound => First_Instance_Id,
Table_Initial => 16);
procedure Resize_Extra_Tables (Id : Instance_Id_Type) is
begin
while Id > Extra_Tables.Last loop
Extra_Tables.Append ((Base => null, Name => No_Sname));
end loop;
end Resize_Extra_Tables;
procedure Set_Extra (Inst : Synth_Instance_Acc;
Extra : Extra_Vhdl_Instance_Type)
is
Id : constant Instance_Id_Type := Get_Instance_Id (Inst);
begin
Resize_Extra_Tables (Id);
Extra_Tables.Table (Id) := Extra;
end Set_Extra;
procedure Make_Base_Instance (Base : Base_Instance_Acc) is
begin
Set_Extra (Root_Instance, (Base => Base, Name => No_Sname));
end Make_Base_Instance;
procedure Free_Base_Instance is
begin
-- TODO: really free.
null;
end Free_Base_Instance;
function Get_Instance_Extra (Inst : Synth_Instance_Acc)
return Extra_Vhdl_Instance_Type is
begin
return Extra_Tables.Table (Get_Instance_Id (Inst));
end Get_Instance_Extra;
procedure Set_Extra (Inst : Synth_Instance_Acc;
Base : Base_Instance_Acc;
Name : Sname := No_Sname) is
begin
Set_Extra (Inst, (Base => Base, Name => Name));
end Set_Extra;
procedure Set_Extra (Inst : Synth_Instance_Acc;
Parent : Synth_Instance_Acc;
Name : Sname := No_Sname)
is
Id : constant Instance_Id_Type := Get_Instance_Id (Inst);
begin
Resize_Extra_Tables (Id);
Extra_Tables.Table (Id) := (Base => Get_Instance_Extra (Parent).Base,
Name => Name);
end Set_Extra;
function Make_Instance (Parent : Synth_Instance_Acc;
Blk : Node;
Name : Sname := No_Sname)
return Synth_Instance_Acc
is
Res : Synth_Instance_Acc;
begin
Res := Make_Elab_Instance (Parent, Null_Node, Blk, Null_Node);
Set_Extra (Res, Parent, Name);
return Res;
end Make_Instance;
procedure Set_Instance_Base (Inst : Synth_Instance_Acc;
Base : Base_Instance_Acc) is
begin
Extra_Tables.Table (Get_Instance_Id (Inst)).Base := Base;
end Set_Instance_Base;
procedure Set_Instance_Base (Inst : Synth_Instance_Acc;
Base : Synth_Instance_Acc) is
begin
Set_Instance_Base (Inst, Get_Instance_Extra (Base).Base);
end Set_Instance_Base;
procedure Free_Instance (Synth_Inst : in out Synth_Instance_Acc) is
begin
if Get_Instance_Id (Synth_Inst) = Extra_Tables.Last then
Extra_Tables.Decrement_Last;
end if;
Free_Elab_Instance (Synth_Inst);
end Free_Instance;
procedure Set_Instance_Module (Inst : Synth_Instance_Acc; M : Module)
is
Prev_Base : constant Base_Instance_Acc := Get_Instance_Extra (Inst).Base;
Base : Base_Instance_Acc;
Self_Inst : Instance;
begin
Base := new Base_Instance_Type'(Builder => Prev_Base.Builder,
Top_Module => Prev_Base.Top_Module,
Cur_Module => M);
Builders.Set_Parent (Base.Builder, M);
Self_Inst := Create_Self_Instance (M);
pragma Unreferenced (Self_Inst);
Set_Instance_Base (Inst, Base);
end Set_Instance_Module;
function Get_Instance_Module (Inst : Synth_Instance_Acc) return Module is
begin
return Extra_Tables.Table (Get_Instance_Id (Inst)).Base.Cur_Module;
end Get_Instance_Module;
function Get_Top_Module (Inst : Synth_Instance_Acc) return Module is
begin
return Extra_Tables.Table (Get_Instance_Id (Inst)).Base.Top_Module;
end Get_Top_Module;
function Get_Sname (Inst : Synth_Instance_Acc) return Sname is
begin
return Extra_Tables.Table (Get_Instance_Id (Inst)).Name;
end Get_Sname;
function Get_Build (Inst : Synth_Instance_Acc)
return Netlists.Builders.Context_Acc
is
Id : constant Instance_Id_Type := Get_Instance_Id (Inst);
Base : Base_Instance_Acc;
begin
if Id > Extra_Tables.Last then
-- Not yet built.
return null;
end if;
Base := Extra_Tables.Table (Id).Base;
if Base = null then
return null;
end if;
return Base.Builder;
end Get_Build;
procedure Create_Wire_Object (Syn_Inst : Synth_Instance_Acc;
Kind : Wire_Kind;
Obj : Node)
is
Obj_Type : constant Node := Get_Type (Obj);
Otyp : constant Type_Acc := Get_Subtype_Object (Syn_Inst, Obj_Type);
Val : Valtyp;
Wid : Wire_Id;
begin
if Kind = Wire_None then
Wid := No_Wire_Id;
else
Wid := Alloc_Wire (Kind, (Obj, Otyp));
end if;
Val := Create_Value_Wire (Wid, Otyp, Current_Pool);
Create_Object (Syn_Inst, Obj, Val);
end Create_Wire_Object;
-- Set Is_0 to True iff VEC is 000...
-- Set Is_X to True iff VEC is XXX...
procedure Is_Full (Vec : Logvec_Array;
W : Width;
Is_0 : out Boolean;
Is_X : out Boolean;
Is_Z : out Boolean)
is
Val : Uns32;
Zx : Uns32;
Mask : Uns32;
begin
-- Check the first word.
pragma Assert (W >= 32);
Val := Vec (0).Val;
Zx := Vec (0).Zx;
Is_0 := False;
Is_X := False;
Is_Z := False;
if Val = 0 and Zx = 0 then
Is_0 := True;
elsif Zx = not 0 then
if Val = not 0 then
Is_X := True;
elsif Val = 0 then
Is_Z := True;
else
return;
end if;
else
return;
end if;
for I in 1 .. Vec'Last - 1 loop
if Vec (I).Val /= Val or else Vec (I).Zx /= Zx then
-- Clear flags.
Is_0 := False;
Is_X := False;
Is_Z := False;
return;
end if;
end loop;
pragma Assert (Vec'Last = Digit_Index ((W - 1) / 32));
Mask := Shift_Right (not 0, (32 - Natural (W mod 32)) mod 32);
if (Vec (Vec'Last).Val and Mask) /= (Val and Mask)
or else (Vec (Vec'Last).Zx and Mask) /= (Zx and Mask)
then
Is_0 := False;
Is_X := False;
Is_Z := False;
end if;
end Is_Full;
procedure Value2net (Ctxt : Context_Acc;
Val : Memtyp;
Off : Uns32;
W : Width;
Vec : in out Logvec_Array;
Res : out Net)
is
Vec_Off : Uns32;
Has_Zx : Boolean;
Inst : Instance;
Is_0, Is_X, Is_Z : Boolean;
begin
-- First convert to logvec.
Has_Zx := False;
Vec_Off := 0;
Value2logvec (Val, Off, W, Vec, Vec_Off, Has_Zx);
pragma Assert (Vec_Off = W);
-- Then convert logvec to net.
if W = 0 then
-- For null range (like the null string literal "")
Res := Build_Const_UB32 (Ctxt, 0, 0);
elsif W <= 32 then
-- 32 bit result.
if not Has_Zx then
Res := Build_Const_UB32 (Ctxt, Vec (0).Val, W);
return;
end if;
if Sext (Vec (0).Zx, Natural (W)) = not 0 then
-- All bits are either Z or X.
if Vec (0).Val = 0 then
-- All bits are Z.
Res := Build_Const_Z (Ctxt, W);
return;
end if;
if Sext (Vec (0).Val, Natural (W)) = not 0 then
-- All bits are X.
Res := Build_Const_X (Ctxt, W);
return;
end if;
-- Mix of Z and X.
end if;
-- Generic.
Res := Build_Const_UL32 (Ctxt, Vec (0).Val, Vec (0).Zx, W);
return;
else
Is_Full (Vec, W, Is_0, Is_X, Is_Z);
if Is_0 then
Res := Build_Const_UB32 (Ctxt, 0, W);
elsif Is_X then
Res := Build_Const_X (Ctxt, W);
elsif Is_Z then
Res := Build_Const_Z (Ctxt, W);
elsif not Has_Zx then
Inst := Build_Const_Bit (Ctxt, W);
for I in Vec'Range loop
Set_Param_Uns32 (Inst, Param_Idx (I), Vec (I).Val);
end loop;
Res := Get_Output (Inst, 0);
else
Inst := Build_Const_Log (Ctxt, W);
for I in Vec'Range loop
Set_Param_Uns32 (Inst, Param_Idx (2 * I), Vec (I).Val);
Set_Param_Uns32 (Inst, Param_Idx (2 * I + 1), Vec (I).Zx);
end loop;
Res := Get_Output (Inst, 0);
end if;
end if;
end Value2net;
function Get_Partial_Memtyp_Net
(Ctxt : Context_Acc; Val : Memtyp; Off : Uns32; Wd : Width) return Net
is
Nd : constant Digit_Index := Digit_Index ((Wd + 31) / 32);
Res : Net;
begin
if Nd > 64 then
declare
Vecp : Logvec_Array_Acc;
begin
Vecp := new Logvec_Array'(0 .. Nd - 1 => (0, 0));
Value2net (Ctxt, Val, Off, Wd, Vecp.all, Res);
Free_Logvec_Array (Vecp);
return Res;
end;
else
declare
Vec : Logvec_Array (0 .. Nd - 1) := (others => (0, 0));
begin
Value2net (Ctxt, Val, Off, Wd, Vec, Res);
return Res;
end;
end if;
end Get_Partial_Memtyp_Net;
function Get_Memtyp_Net (Ctxt : Context_Acc; Val : Memtyp) return Net is
begin
return Get_Partial_Memtyp_Net (Ctxt, Val, 0, Val.Typ.W);
end Get_Memtyp_Net;
function To_Net is new Ada.Unchecked_Conversion (Uns32, Net);
function To_Uns32 is new Ada.Unchecked_Conversion (Net, Uns32);
function Get_Value_Net (Val : Value_Acc) return Net is
begin
return To_Net (Val.N);
end Get_Value_Net;
procedure Set_Value_Net (Val : Value_Acc; N : Net) is
begin
Val.N := To_Uns32 (N);
end Set_Value_Net;
function Get_Value_Wire (Val : Value_Acc) return Wire_Id
is
function To_Wire_Id is new Ada.Unchecked_Conversion (Uns32, Wire_Id);
begin
return To_Wire_Id (Val.N);
end Get_Value_Wire;
procedure Set_Value_Wire (Val : Value_Acc; W : Wire_Id)
is
function To_Uns32 is new Ada.Unchecked_Conversion (Wire_Id, Uns32);
begin
Val.N := To_Uns32 (W);
end Set_Value_Wire;
function Create_Value_Wire (W : Wire_Id; Pool : Areapool_Acc)
return Value_Acc
is
function To_Uns32 is new Ada.Unchecked_Conversion (Wire_Id, Uns32);
begin
return Create_Value_Wire (To_Uns32 (W), Pool);
end Create_Value_Wire;
function Create_Value_Wire (W : Wire_Id;
Wtype : Type_Acc;
Pool : Areapool_Acc) return Valtyp
is
pragma Assert (Wtype /= null);
begin
return (Wtype, Create_Value_Wire (W, Pool));
end Create_Value_Wire;
function Create_Value_Net (N : Net; Pool : Areapool_Acc) return Value_Acc
is
function To_Uns32 is new Ada.Unchecked_Conversion (Net, Uns32);
begin
return Create_Value_Net (To_Uns32 (N), Pool);
end Create_Value_Net;
function Create_Value_Net (N : Net; Ntype : Type_Acc) return Valtyp is
begin
return (Ntype, Create_Value_Net (N, Current_Pool));
end Create_Value_Net;
function Create_Value_Dyn_Alias (Obj : Value_Acc;
Poff : Uns32;
Ptyp : Type_Acc;
Voff : Net;
Eoff : Uns32;
Typ : Type_Acc;
Pool : Areapools.Areapool_Acc)
return Valtyp is
begin
return (Typ,
Create_Value_Dyn_Alias (Obj, Poff, Ptyp, To_Uns32 (Voff), Eoff,
Pool));
end Create_Value_Dyn_Alias;
function Get_Value_Dyn_Alias_Voff (Val : Value_Acc) return Net is
begin
return To_Net (Val.D_Voff);
end Get_Value_Dyn_Alias_Voff;
function Get_Net (Ctxt : Context_Acc; Val : Valtyp) return Net is
begin
case Val.Val.Kind is
when Value_Wire =>
return Get_Current_Value (Ctxt, Get_Value_Wire (Val.Val));
when Value_Net =>
return Get_Value_Net (Val.Val);
when Value_Alias =>
declare
Res : Net;
begin
if Val.Val.A_Obj.Kind = Value_Wire then
Res := Get_Current_Value
(Ctxt, Get_Value_Wire (Val.Val.A_Obj));
else
Res := Get_Net (Ctxt, (Val.Typ, Val.Val.A_Obj));
end if;
return Build2_Extract
(Ctxt, Res, Val.Val.A_Off.Net_Off, Val.Typ.W);
end;
when Value_Const =>
declare
N : Net;
begin
N := To_Net (Val.Val.C_Net);
if N = No_Net then
N := Get_Net (Ctxt, (Val.Typ, Val.Val.C_Val));
Val.Val.C_Net := To_Uns32 (N);
Locations.Set_Location (Get_Net_Parent (N),
Get_Location (Val.Val.C_Loc));
end if;
return N;
end;
when Value_Memory =>
return Get_Memtyp_Net (Ctxt, Get_Memtyp (Val));
when others =>
raise Internal_Error;
end case;
end Get_Net;
function Is_Static_Val (Val : Value_Acc) return Boolean is
begin
case Val.Kind is
when Value_Memory =>
return True;
when Value_Net
| Value_Signal
| Value_Dyn_Alias
| Value_Sig_Val =>
return False;
when Value_Quantity
| Value_Terminal =>
return False;
when Value_Wire =>
declare
W : constant Wire_Id := Get_Value_Wire (Val);
begin
if Get_Kind (W) = Wire_Variable then
return Is_Static_Wire (W);
else
-- A signal does not have static values.
return False;
end if;
end;
when Value_File =>
return True;
when Value_Const =>
return True;
when Value_Alias =>
return Is_Static_Val (Val.A_Obj);
end case;
end Is_Static_Val;
end Synth.Vhdl_Context;
|