1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
-- Values in synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Types; use Types;
with Areapools; use Areapools;
with Netlists; use Netlists;
with Vhdl.Nodes; use Vhdl.Nodes;
with Synth.Environment; use Synth.Environment;
with Synth.Source; use Synth.Source;
package Synth.Values is
type Discrete_Range_Type is record
-- An integer range.
Dir : Iir_Direction;
-- Netlist representation: signed or unsigned, width of vector.
Is_Signed : Boolean;
Left : Int64;
Right : Int64;
end record;
-- Return the width of RNG.
function Discrete_Range_Width (Rng : Discrete_Range_Type) return Width;
type Float_Range_Type is record
Dir : Iir_Direction;
Left : Fp64;
Right : Fp64;
end record;
type Bound_Type is record
Dir : Iir_Direction;
Left : Int32;
Right : Int32;
Len : Width;
-- Width of bounds. This is the precision used to compute the
-- address.
-- If bounds are 1 to 128 (so left = 1, dir = to, right = 128),
-- Wbounds = 8.
Wbounds : Width;
end record;
type Bound_Array_Type is array (Iir_Index32 range <>) of Bound_Type;
type Bound_Array (Len : Iir_Index32) is record
D : Bound_Array_Type (1 .. Len);
end record;
type Bound_Array_Acc is access Bound_Array;
type Type_Kind is
(
Type_Bit,
Type_Logic,
Type_Discrete,
Type_Float,
Type_Vector,
Type_Unbounded_Vector,
-- A slice is for a slice of vector with dynamic bounds. So the bounds
-- of the result aren't known, but its width is.
Type_Slice,
Type_Array,
Type_Unbounded_Array,
Type_Record
);
subtype Type_Nets is Type_Kind range Type_Bit .. Type_Logic;
type Type_Type (Kind : Type_Kind);
type Type_Acc is access Type_Type;
type Rec_El_Type is record
Off : Uns32;
Typ : Type_Acc;
end record;
type Rec_El_Array_Type is array (Iir_Index32 range <>) of Rec_El_Type;
type Rec_El_Array (Len : Iir_Index32) is record
E : Rec_El_Array_Type (1 .. Len);
end record;
type Rec_El_Array_Acc is access Rec_El_Array;
type Type_Type (Kind : Type_Kind) is record
W : Width;
case Kind is
when Type_Bit
| Type_Logic =>
null;
when Type_Discrete =>
Drange : Discrete_Range_Type;
when Type_Float =>
Frange : Float_Range_Type;
when Type_Vector =>
Vbound : Bound_Type;
Vec_El : Type_Acc;
when Type_Unbounded_Vector =>
Uvec_El : Type_Acc;
when Type_Slice =>
Slice_El : Type_Acc;
when Type_Array =>
Abounds : Bound_Array_Acc;
Arr_El : Type_Acc;
when Type_Unbounded_Array =>
Uarr_Ndim : Iir_Index32;
Uarr_El : Type_Acc;
when Type_Record =>
Rec : Rec_El_Array_Acc;
end case;
end record;
-- Values is how signals and variables are decomposed. This is similar to
-- values in simulation, but simplified (no need to handle files,
-- accesses...)
type Value_Kind is
(
-- Value is for a vector or a bit, and is the output of a gate.
Value_Net,
-- Also a vector or a bit, but from an object. Has to be transformed
-- into a net.
Value_Wire,
-- A discrete value (integer or enumeration).
Value_Discrete,
Value_Float,
-- An array (const if all elements are constants).
Value_Array,
Value_Const_Array,
-- A record (const if all elements are constants).
Value_Record,
Value_Const_Record,
-- A package.
Value_Instance,
-- A constant. This is a named value. One purpose is to avoid to
-- create many times the same net for the same value.
Value_Const,
-- An alias. This is a reference to another value with a different
-- (but compatible) type.
Value_Alias,
-- A subtype. Contains only a type.
Value_Subtype
);
type Value_Type (Kind : Value_Kind);
type Value_Acc is access Value_Type;
type Value_Type_Array is array (Iir_Index32 range <>) of Value_Acc;
type Value_Array_Type (Len : Iir_Index32) is record
-- Values are from left to right. So V(1) is at index 'Left.
V : Value_Type_Array (1 .. Len);
end record;
type Value_Array_Acc is access Value_Array_Type;
type Instance_Id is new Nat32;
type Value_Type (Kind : Value_Kind) is record
Typ : Type_Acc;
case Kind is
when Value_Net =>
N : Net;
when Value_Wire =>
W : Wire_Id;
when Value_Discrete =>
Scal : Int64;
when Value_Float =>
Fp : Fp64;
when Value_Subtype =>
null;
when Value_Array
| Value_Const_Array =>
Arr : Value_Array_Acc;
when Value_Record
| Value_Const_Record =>
Rec : Value_Array_Acc;
when Value_Instance =>
Instance : Instance_Id;
when Value_Const =>
C_Val : Value_Acc;
C_Loc : Syn_Src;
C_Net : Net;
when Value_Alias =>
A_Obj : Value_Acc;
A_Off : Uns32;
end case;
end record;
Global_Pool : aliased Areapool;
Expr_Pool : aliased Areapool;
-- Areapool used by Create_*_Value
Current_Pool : Areapool_Acc := Expr_Pool'Access;
-- Pool for objects allocated in the current instance.
Instance_Pool : Areapool_Acc;
-- Types.
function Create_Discrete_Type (Rng : Discrete_Range_Type; W : Width)
return Type_Acc;
function Create_Float_Type (Rng : Float_Range_Type) return Type_Acc;
function Create_Vec_Type_By_Length (Len : Width; El : Type_Acc)
return Type_Acc;
function Create_Vector_Type (Bnd : Bound_Type; El_Type : Type_Acc)
return Type_Acc;
function Create_Unbounded_Vector (El_Type : Type_Acc) return Type_Acc;
function Create_Slice_Type (W : Width; El_Type : Type_Acc) return Type_Acc;
function Create_Bound_Array (Ndims : Iir_Index32) return Bound_Array_Acc;
function Create_Array_Type (Bnd : Bound_Array_Acc; El_Type : Type_Acc)
return Type_Acc;
function Create_Unbounded_Array (Ndim : Iir_Index32; El_Type : Type_Acc)
return Type_Acc;
function Create_Rec_El_Array (Nels : Iir_Index32) return Rec_El_Array_Acc;
function Create_Record_Type (Els : Rec_El_Array_Acc; W : Width)
return Type_Acc;
-- Return the element of a vector/array/unbounded_array.
function Get_Array_Element (Arr_Type : Type_Acc) return Type_Acc;
function Is_Bounded_Type (Typ : Type_Acc) return Boolean;
function Is_Const (Val : Value_Acc) return Boolean;
-- Can also return true for nets and wires.
function Is_Const_Val (Val : Value_Acc) return Boolean;
function Is_Equal (L, R : Value_Acc) return Boolean;
-- Create a Value_Net.
function Create_Value_Net (N : Net; Ntype : Type_Acc) return Value_Acc;
-- Create a Value_Wire. For a bit wire, RNG must be null.
function Create_Value_Wire (W : Wire_Id; Wtype : Type_Acc) return Value_Acc;
function Create_Value_Discrete (Val : Int64; Vtype : Type_Acc)
return Value_Acc;
function Create_Value_Float (Val : Fp64; Vtype : Type_Acc) return Value_Acc;
function Create_Value_Subtype (Typ : Type_Acc) return Value_Acc;
function Create_Value_Array (Len : Iir_Index32) return Value_Array_Acc;
-- Create a Value_Array.
function Create_Value_Array (Bounds : Type_Acc; Arr : Value_Array_Acc)
return Value_Acc;
function Create_Value_Const_Array (Bounds : Type_Acc; Arr : Value_Array_Acc)
return Value_Acc;
-- Like the previous one but automatically build the array.
function Create_Value_Array (Bounds : Type_Acc) return Value_Acc;
-- Allocate the ARR component of the Value_Type ARR, using BOUNDS.
procedure Create_Array_Data (Arr : Value_Acc);
function Create_Value_Record (Typ : Type_Acc; Els : Value_Array_Acc)
return Value_Acc;
function Create_Value_Const_Record (Typ : Type_Acc; Els : Value_Array_Acc)
return Value_Acc;
function Create_Value_Instance (Inst : Instance_Id) return Value_Acc;
function Create_Value_Alias (Obj : Value_Acc; Off : Uns32; Typ : Type_Acc)
return Value_Acc;
function Create_Value_Const (Val : Value_Acc; Loc : Syn_Src)
return Value_Acc;
-- If VAL is a const, replace it by its value.
procedure Strip_Const (Val : in out Value_Acc);
function Unshare (Src : Value_Acc; Pool : Areapool_Acc)
return Value_Acc;
-- Get the number of indexes in array type TYP without counting
-- sub-elements.
function Get_Array_Flat_Length (Typ : Type_Acc) return Width;
function Is_Matching_Bounds (L, R : Type_Acc) return Boolean;
function Get_Type_Width (Atype : Type_Acc) return Width;
-- Create a default initial value for TYP.
function Create_Value_Default (Typ : Type_Acc) return Value_Acc;
procedure Init;
-- Set by Init.
Boolean_Type : Type_Acc := null;
Logic_Type : Type_Acc := null;
Bit_Type : Type_Acc := null;
end Synth.Values;
|