1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
-- Values in synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Ada.Unchecked_Conversion;
with System;
with Mutils; use Mutils;
with Netlists.Utils;
package body Synth.Values is
function To_Bound_Array_Acc is new Ada.Unchecked_Conversion
(System.Address, Bound_Array_Acc);
function To_Rec_El_Array_Acc is new Ada.Unchecked_Conversion
(System.Address, Rec_El_Array_Acc);
function To_Type_Acc is new Ada.Unchecked_Conversion
(System.Address, Type_Acc);
function To_Value_Acc is new Ada.Unchecked_Conversion
(System.Address, Value_Acc);
function To_Value_Array_Acc is new Ada.Unchecked_Conversion
(System.Address, Values.Value_Array_Acc);
function Is_Static (Val : Value_Acc) return Boolean is
begin
case Val.Kind is
when Value_Discrete
| Value_Float =>
return True;
when Value_Net
| Value_Wire =>
return False;
when Value_Const_Array
| Value_Const_Record =>
return True;
when Value_Array
| Value_Record =>
return False;
when Value_Access
| Value_File =>
return True;
when Value_Alias =>
return Is_Static (Val.A_Obj);
when Value_Const =>
return True;
when Value_Instance
| Value_Subtype =>
-- Not really a value.
raise Internal_Error;
end case;
end Is_Static;
function Is_Static_Val (Val : Value_Acc) return Boolean is
begin
case Val.Kind is
when Value_Discrete
| Value_Float =>
return True;
when Value_Net =>
return Netlists.Utils.Is_Const_Net (Val.N);
when Value_Wire =>
return Is_Const_Wire (Val.W);
when Value_Const_Array
| Value_Const_Record =>
return True;
when Value_Array
| Value_Record =>
return False;
when Value_Access
| Value_File =>
return True;
when Value_Const =>
return True;
when Value_Alias =>
return False;
when Value_Instance
| Value_Subtype =>
-- Not really a value.
raise Internal_Error;
end case;
end Is_Static_Val;
function Is_Bounded_Type (Typ : Type_Acc) return Boolean is
begin
case Typ.Kind is
when Type_Bit
| Type_Logic
| Type_Discrete
| Type_Float
| Type_Vector
| Type_Slice
| Type_Array
| Type_Record
| Type_Access
| Type_File =>
return True;
when Type_Unbounded_Array
| Type_Unbounded_Vector =>
return False;
end case;
end Is_Bounded_Type;
function Is_Equal (L, R : Value_Acc) return Boolean is
begin
if L.Kind /= R.Kind then
return False;
end if;
if L = R then
return True;
end if;
case L.Kind is
when Value_Discrete =>
return L.Scal = R.Scal;
when Value_Const_Array =>
if L.Arr.Len /= R.Arr.Len then
return False;
end if;
for I in L.Arr.V'Range loop
if not Is_Equal (L.Arr.V (I), R.Arr.V (I)) then
return False;
end if;
end loop;
return True;
when Value_Const =>
return Is_Equal (L.C_Val, R.C_Val);
when others =>
-- TODO.
raise Internal_Error;
end case;
end Is_Equal;
function Discrete_Range_Width (Rng : Discrete_Range_Type) return Width
is
Lo, Hi : Int64;
W : Width;
begin
case Rng.Dir is
when Iir_To =>
Lo := Rng.Left;
Hi := Rng.Right;
when Iir_Downto =>
Lo := Rng.Right;
Hi := Rng.Left;
end case;
if Lo > Hi then
-- Null range.
W := 0;
elsif Lo >= 0 then
-- Positive.
W := Width (Clog2 (Uns64 (Hi) + 1));
elsif Lo = Int64'First then
-- Handle possible overflow.
W := 64;
elsif Hi < 0 then
-- Negative only.
W := Width (Clog2 (Uns64 (-Lo))) + 1;
else
declare
Wl : constant Width := Width (Clog2 (Uns64 (-Lo)));
Wh : constant Width := Width (Clog2 (Uns64 (Hi)));
begin
W := Width'Max (Wl, Wh) + 1;
end;
end if;
return W;
end Discrete_Range_Width;
function Create_Bit_Type return Type_Acc
is
subtype Bit_Type_Type is Type_Type (Type_Bit);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Bit_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Bit, W => 1)));
end Create_Bit_Type;
function Create_Logic_Type return Type_Acc
is
subtype Logic_Type_Type is Type_Type (Type_Logic);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Logic_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Logic, W => 1)));
end Create_Logic_Type;
function Create_Discrete_Type (Rng : Discrete_Range_Type; W : Width)
return Type_Acc
is
subtype Discrete_Type_Type is Type_Type (Type_Discrete);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Discrete_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Discrete,
W => W,
Drange => Rng)));
end Create_Discrete_Type;
function Create_Float_Type (Rng : Float_Range_Type) return Type_Acc
is
subtype Float_Type_Type is Type_Type (Type_Float);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Float_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Float,
W => 64,
Frange => Rng)));
end Create_Float_Type;
function Create_Vector_Type (Bnd : Bound_Type; El_Type : Type_Acc)
return Type_Acc
is
subtype Vector_Type_Type is Type_Type (Type_Vector);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Vector_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Vector,
W => Bnd.Len,
Vbound => Bnd,
Vec_El => El_Type)));
end Create_Vector_Type;
function Create_Slice_Type (W : Width; El_Type : Type_Acc) return Type_Acc
is
subtype Slice_Type_Type is Type_Type (Type_Slice);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Slice_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Slice,
W => W,
Slice_El => El_Type)));
end Create_Slice_Type;
function Create_Vec_Type_By_Length (Len : Width; El : Type_Acc)
return Type_Acc
is
W : constant Width := Uns32 (Clog2 (Uns64 (Len)));
begin
return Create_Vector_Type ((Dir => Iir_Downto,
Wbounds => W,
Left => Int32 (Len) - 1,
Right => 0,
Len => Len),
El);
end Create_Vec_Type_By_Length;
function Create_Bound_Array (Ndims : Iir_Index32) return Bound_Array_Acc
is
use System;
subtype Data_Type is Bound_Array (Ndims);
Res : Address;
begin
-- Manually allocate the array to handle large arrays without
-- creating a large temporary value.
Areapools.Allocate
(Current_Pool.all, Res,
Data_Type'Size / Storage_Unit, Data_Type'Alignment);
declare
-- Discard the warnings for no pragma Import as we really want
-- to use the default initialization.
pragma Warnings (Off);
Addr1 : constant Address := Res;
Init : Data_Type;
for Init'Address use Addr1;
pragma Warnings (On);
begin
null;
end;
return To_Bound_Array_Acc (Res);
end Create_Bound_Array;
function Create_Array_Type (Bnd : Bound_Array_Acc; El_Type : Type_Acc)
return Type_Acc
is
subtype Array_Type_Type is Type_Type (Type_Array);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Array_Type_Type);
W : Width;
begin
W := El_Type.W;
for I in Bnd.D'Range loop
W := W * Bnd.D (I).Len;
end loop;
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Array,
W => W,
Abounds => Bnd,
Arr_El => El_Type)));
end Create_Array_Type;
function Create_Unbounded_Array (Ndim : Iir_Index32; El_Type : Type_Acc)
return Type_Acc
is
subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Array);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Array,
W => 0,
Uarr_Ndim => Ndim,
Uarr_El => El_Type)));
end Create_Unbounded_Array;
function Create_Unbounded_Vector (El_Type : Type_Acc) return Type_Acc
is
subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Vector);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Vector,
W => 0,
Uvec_El => El_Type)));
end Create_Unbounded_Vector;
function Get_Array_Element (Arr_Type : Type_Acc) return Type_Acc is
begin
case Arr_Type.Kind is
when Type_Vector =>
return Arr_Type.Vec_El;
when Type_Array =>
return Arr_Type.Arr_El;
when Type_Unbounded_Array =>
return Arr_Type.Uarr_El;
when Type_Unbounded_Vector =>
return Arr_Type.Uvec_El;
when others =>
raise Internal_Error;
end case;
end Get_Array_Element;
function Create_Rec_El_Array (Nels : Iir_Index32) return Rec_El_Array_Acc
is
use System;
subtype Data_Type is Rec_El_Array (Nels);
Res : Address;
begin
-- Manually allocate the array to handle large arrays without
-- creating a large temporary value.
Areapools.Allocate
(Current_Pool.all, Res,
Data_Type'Size / Storage_Unit, Data_Type'Alignment);
declare
-- Discard the warnings for no pragma Import as we really want
-- to use the default initialization.
pragma Warnings (Off);
Addr1 : constant Address := Res;
Init : Data_Type;
for Init'Address use Addr1;
pragma Warnings (On);
begin
null;
end;
return To_Rec_El_Array_Acc (Res);
end Create_Rec_El_Array;
function Create_Record_Type (Els : Rec_El_Array_Acc; W : Width)
return Type_Acc
is
subtype Record_Type_Type is Type_Type (Type_Record);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Record_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Record,
W => W,
Rec => Els)));
end Create_Record_Type;
function Create_Access_Type (Acc_Type : Type_Acc) return Type_Acc
is
subtype Access_Type_Type is Type_Type (Type_Access);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Access_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Access,
W => 32,
Acc_Acc => Acc_Type)));
end Create_Access_Type;
function Create_File_Type (File_Type : Type_Acc) return Type_Acc
is
subtype File_Type_Type is Type_Type (Type_File);
function Alloc is new Areapools.Alloc_On_Pool_Addr (File_Type_Type);
begin
return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_File,
W => 32,
File_Typ => File_Type)));
end Create_File_Type;
function Create_Value_Wire (W : Wire_Id; Wtype : Type_Acc) return Value_Acc
is
subtype Value_Type_Wire is Value_Type (Values.Value_Wire);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Wire);
begin
pragma Assert (Wtype /= null);
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Wire,
W => W,
Typ => Wtype)));
end Create_Value_Wire;
function Create_Value_Net (N : Net; Ntype : Type_Acc) return Value_Acc
is
subtype Value_Type_Net is Value_Type (Value_Net);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Net);
begin
pragma Assert (Ntype /= null);
return To_Value_Acc
(Alloc (Current_Pool,
Value_Type_Net'(Kind => Value_Net, N => N, Typ => Ntype)));
end Create_Value_Net;
function Create_Value_Discrete (Val : Int64; Vtype : Type_Acc)
return Value_Acc
is
subtype Value_Type_Discrete is Value_Type (Value_Discrete);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Discrete);
begin
pragma Assert (Vtype /= null);
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Discrete, Scal => Val,
Typ => Vtype)));
end Create_Value_Discrete;
function Create_Value_Float (Val : Fp64; Vtype : Type_Acc) return Value_Acc
is
subtype Value_Type_Float is Value_Type (Value_Float);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Float);
begin
pragma Assert (Vtype /= null);
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Float,
Typ => Vtype,
Fp => Val)));
end Create_Value_Float;
function Create_Value_Access (Vtype : Type_Acc; Acc : Heap_Index)
return Value_Acc
is
subtype Value_Type_Access is Value_Type (Value_Access);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Access);
begin
pragma Assert (Vtype /= null);
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Access,
Typ => Vtype,
Acc => Acc)));
end Create_Value_Access;
function Create_Value_File (Vtype : Type_Acc; File : File_Index)
return Value_Acc
is
subtype Value_Type_File is Value_Type (Value_File);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_File);
begin
pragma Assert (Vtype /= null);
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_File,
Typ => Vtype,
File => File)));
end Create_Value_File;
function Create_Value_Array (Len : Iir_Index32) return Value_Array_Acc
is
use System;
subtype Data_Type is Values.Value_Array_Type (Len);
Res : Address;
begin
-- Manually allocate the array to handle large arrays without
-- creating a large temporary value.
Areapools.Allocate
(Current_Pool.all, Res,
Data_Type'Size / Storage_Unit, Data_Type'Alignment);
declare
-- Discard the warnings for no pragma Import as we really want
-- to use the default initialization.
pragma Warnings (Off);
Addr1 : constant Address := Res;
Init : Data_Type;
for Init'Address use Addr1;
pragma Warnings (On);
begin
null;
end;
return To_Value_Array_Acc (Res);
end Create_Value_Array;
function Create_Value_Array (Bounds : Type_Acc; Arr : Value_Array_Acc)
return Value_Acc
is
subtype Value_Type_Array is Value_Type (Value_Array);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Array);
Res : Value_Acc;
begin
pragma Assert (Bounds /= null);
Res := To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Array,
Arr => Arr, Typ => Bounds)));
return Res;
end Create_Value_Array;
function Create_Value_Const_Array (Bounds : Type_Acc; Arr : Value_Array_Acc)
return Value_Acc
is
subtype Value_Type_Const_Array is Value_Type (Value_Const_Array);
function Alloc is
new Areapools.Alloc_On_Pool_Addr (Value_Type_Const_Array);
Res : Value_Acc;
begin
pragma Assert (Bounds /= null);
Res := To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Const_Array,
Arr => Arr, Typ => Bounds)));
return Res;
end Create_Value_Const_Array;
function Get_Array_Flat_Length (Typ : Type_Acc) return Width is
begin
case Typ.Kind is
when Type_Vector =>
return Typ.Vbound.Len;
when Type_Array =>
declare
Len : Width;
begin
Len := 1;
for I in Typ.Abounds.D'Range loop
Len := Len * Typ.Abounds.D (I).Len;
end loop;
return Len;
end;
when others =>
raise Internal_Error;
end case;
end Get_Array_Flat_Length;
procedure Create_Array_Data (Arr : Value_Acc)
is
Len : Width;
begin
case Arr.Typ.Kind is
when Type_Array =>
Len := Get_Array_Flat_Length (Arr.Typ);
when Type_Vector =>
Len := Arr.Typ.Vbound.Len;
when others =>
raise Internal_Error;
end case;
Arr.Arr := Create_Value_Array (Iir_Index32 (Len));
end Create_Array_Data;
function Create_Value_Array (Bounds : Type_Acc) return Value_Acc
is
Res : Value_Acc;
begin
Res := Create_Value_Array (Bounds, null);
Create_Array_Data (Res);
return Res;
end Create_Value_Array;
function Create_Value_Record (Typ : Type_Acc; Els : Value_Array_Acc)
return Value_Acc
is
subtype Value_Type_Record is Value_Type (Value_Record);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Record);
begin
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Record,
Typ => Typ,
Rec => Els)));
end Create_Value_Record;
function Create_Value_Const_Record (Typ : Type_Acc; Els : Value_Array_Acc)
return Value_Acc
is
subtype Value_Type_Const_Record is Value_Type (Value_Const_Record);
function Alloc is
new Areapools.Alloc_On_Pool_Addr (Value_Type_Const_Record);
begin
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Const_Record,
Typ => Typ,
Rec => Els)));
end Create_Value_Const_Record;
function Create_Value_Instance (Inst : Instance_Id) return Value_Acc
is
subtype Value_Type_Instance is Value_Type (Value_Instance);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Instance);
begin
return To_Value_Acc
(Alloc (Current_Pool,
(Kind => Value_Instance, Instance => Inst, Typ => null)));
end Create_Value_Instance;
function Create_Value_Subtype (Typ : Type_Acc) return Value_Acc
is
subtype Value_Type_Subtype is Value_Type (Value_Subtype);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Subtype);
begin
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Subtype, Typ => Typ)));
end Create_Value_Subtype;
function Create_Value_Alias (Obj : Value_Acc; Off : Uns32; Typ : Type_Acc)
return Value_Acc
is
subtype Value_Type_Alias is Value_Type (Value_Alias);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Alias);
begin
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Alias,
A_Obj => Obj,
A_Off => Off,
Typ => Typ)));
end Create_Value_Alias;
function Create_Value_Const (Val : Value_Acc; Loc : Syn_Src)
return Value_Acc
is
subtype Value_Type_Const is Value_Type (Value_Const);
function Alloc is new Areapools.Alloc_On_Pool_Addr (Value_Type_Const);
begin
pragma Assert (Val = null or else Val.Kind /= Value_Const);
return To_Value_Acc (Alloc (Current_Pool,
(Kind => Value_Const,
C_Val => Val,
C_Loc => Loc,
C_Net => No_Net,
Typ => Val.Typ)));
end Create_Value_Const;
procedure Strip_Const (Val : in out Value_Acc) is
begin
if Val.Kind = Value_Const then
Val := Val.C_Val;
end if;
end Strip_Const;
function Copy (Src : Value_Acc) return Value_Acc;
function Copy_Array (Arr : Value_Array_Acc) return Value_Array_Acc
is
Res : Value_Array_Acc;
begin
Res := Create_Value_Array (Arr.Len);
for I in Res.V'Range loop
Res.V (I) := Copy (Arr.V (I));
end loop;
return Res;
end Copy_Array;
function Copy (Src : Value_Acc) return Value_Acc
is
Res : Value_Acc;
Arr : Value_Array_Acc;
begin
case Src.Kind is
when Value_Net =>
Res := Create_Value_Net (Src.N, Src.Typ);
when Value_Wire =>
Res := Create_Value_Wire (Src.W, Src.Typ);
when Value_Discrete =>
Res := Create_Value_Discrete (Src.Scal, Src.Typ);
when Value_Float =>
Res := Create_Value_Float (Src.Fp, Src.Typ);
when Value_Subtype =>
Res := Create_Value_Subtype (Src.Typ);
when Value_Array =>
Arr := Copy_Array (Src.Arr);
Res := Create_Value_Array (Src.Typ, Arr);
when Value_Const_Array =>
Arr := Copy_Array (Src.Arr);
Res := Create_Value_Const_Array (Src.Typ, Arr);
when Value_Record =>
Arr := Copy_Array (Src.Rec);
Res := Create_Value_Record (Src.Typ, Arr);
when Value_Const_Record =>
Arr := Copy_Array (Src.Rec);
Res := Create_Value_Const_Record (Src.Typ, Arr);
when Value_Access =>
Res := Create_Value_Access (Src.Typ, Src.Acc);
when Value_File =>
Res := Create_Value_File (Src.Typ, Src.File);
when Value_Instance =>
raise Internal_Error;
when Value_Const =>
raise Internal_Error;
when Value_Alias =>
raise Internal_Error;
end case;
return Res;
end Copy;
function Unshare (Src : Value_Acc; Pool : Areapool_Acc)
return Value_Acc
is
Prev_Pool : constant Areapool_Acc := Current_Pool;
Res : Value_Acc;
begin
Current_Pool := Pool;
Res := Copy (Src);
Current_Pool := Prev_Pool;
return Res;
end Unshare;
function Get_Type_Width (Atype : Type_Acc) return Width is
begin
pragma Assert (Atype.Kind /= Type_Unbounded_Array);
return Atype.W;
end Get_Type_Width;
function Get_Bound_Length (T : Type_Acc; Dim : Iir_Index32) return Width is
begin
case T.Kind is
when Type_Vector =>
if Dim /= 1 then
raise Internal_Error;
end if;
return T.Vbound.Len;
when Type_Slice =>
if Dim /= 1 then
raise Internal_Error;
end if;
return T.W;
when Type_Array =>
return T.Abounds.D (Dim).Len;
when others =>
raise Internal_Error;
end case;
end Get_Bound_Length;
function Is_Matching_Bounds (L, R : Type_Acc) return Boolean is
begin
case L.Kind is
when Type_Bit
| Type_Logic
| Type_Discrete
| Type_Float =>
pragma Assert (L.Kind = R.Kind);
return True;
when Type_Vector
| Type_Slice =>
return Get_Bound_Length (L, 1) = Get_Bound_Length (R, 1);
when Type_Array =>
for I in L.Abounds.D'Range loop
if Get_Bound_Length (L, I) /= Get_Bound_Length (R, I) then
return False;
end if;
end loop;
return True;
when Type_Unbounded_Array
| Type_Unbounded_Vector =>
raise Internal_Error;
when Type_Record =>
-- FIXME: handle vhdl-08
return True;
when Type_Access =>
return True;
when Type_File =>
raise Internal_Error;
end case;
end Is_Matching_Bounds;
function Create_Value_Default (Typ : Type_Acc) return Value_Acc is
begin
case Typ.Kind is
when Type_Bit
| Type_Logic =>
-- FIXME: what about subtype ?
return Create_Value_Discrete (0, Typ);
when Type_Discrete =>
return Create_Value_Discrete (Typ.Drange.Left, Typ);
when Type_Float =>
return Create_Value_Float (Typ.Frange.Left, Typ);
when Type_Vector =>
declare
El_Typ : constant Type_Acc := Typ.Vec_El;
Arr : Value_Array_Acc;
begin
Arr := Create_Value_Array (Iir_Index32 (Typ.Vbound.Len));
for I in Arr.V'Range loop
Arr.V (I) := Create_Value_Default (El_Typ);
end loop;
return Create_Value_Const_Array (Typ, Arr);
end;
when Type_Unbounded_Vector =>
raise Internal_Error;
when Type_Slice =>
raise Internal_Error;
when Type_Array =>
declare
El_Typ : constant Type_Acc := Get_Array_Element (Typ);
Arr : Value_Array_Acc;
begin
Arr := Create_Value_Array
(Iir_Index32 (Get_Array_Flat_Length (Typ)));
for I in Arr.V'Range loop
Arr.V (I) := Create_Value_Default (El_Typ);
end loop;
return Create_Value_Const_Array (Typ, Arr);
end;
when Type_Unbounded_Array =>
raise Internal_Error;
when Type_Record =>
declare
Els : Value_Array_Acc;
begin
Els := Create_Value_Array (Typ.Rec.Len);
for I in Els.V'Range loop
Els.V (I) := Create_Value_Default (Typ.Rec.E (I).Typ);
end loop;
return Create_Value_Const_Record (Typ, Els);
end;
when Type_Access =>
return Create_Value_Access (Typ, Null_Heap_Index);
when Type_File =>
raise Internal_Error;
end case;
end Create_Value_Default;
procedure Init is
begin
Instance_Pool := Global_Pool'Access;
Boolean_Type := Create_Bit_Type;
Logic_Type := Create_Logic_Type;
Bit_Type := Create_Bit_Type;
end Init;
end Synth.Values;
|