aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-static_oper.adb
blob: e0d82a5b3dae50089f96e9c093c40466beffc9ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
--  Operations synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Types; use Types;
with Types_Utils; use Types_Utils;

with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;

with Netlists; use Netlists;
with Netlists.Utils; use Netlists.Utils;

with Synth.Errors; use Synth.Errors;
with Synth.Source; use Synth.Source;
with Synth.Environment;
with Synth.Expr; use Synth.Expr;
with Synth.Oper;
with Synth.Ieee.Std_Logic_1164; use Synth.Ieee.Std_Logic_1164;
with Synth.Ieee.Numeric_Std; use Synth.Ieee.Numeric_Std;
with Synth.Files_Operations;

package body Synth.Static_Oper is
   --  As log2(3m) is directly referenced, the program must be linked with -lm
   --  (math library) on unix systems.
   pragma Linker_Options ("-lm");

   --  From openiee:

   type Static_Arr_Kind is (Sarr_Value, Sarr_Net);

   type Static_Arr_Type (Kind : Static_Arr_Kind) is record
      case Kind is
         when Sarr_Value =>
            Arr : Value_Array_Acc;
         when Sarr_Net =>
            N : Net;
      end case;
   end record;

   function Get_Static_Array (V : Value_Acc) return Static_Arr_Type
   is
      N : Net;
   begin
      case V.Kind is
         when Value_Const =>
            return (Kind => Sarr_Value, Arr => V.C_Val.Arr);
         when Value_Const_Array =>
            return (Kind => Sarr_Value, Arr => V.Arr);
         when Value_Net =>
            N := V.N;
         when Value_Wire =>
            N := Synth.Environment.Get_Const_Wire (V.W);
         when others =>
            raise Internal_Error;
      end case;
      return (Kind => Sarr_Net, N => N);
   end Get_Static_Array;

   function Logic_To_Std_Logic (Va : Uns32; Zx : Uns32) return Std_Ulogic
   is
      subtype Uns4 is Uns32 range 0 .. 3;
   begin
      case Uns4 (Va + 2 * Zx) is
         when 0 =>
            return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos);
         when 1 =>
            return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos);
         when 2 =>
            return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos);
         when 3 =>
            return Std_Ulogic'Val (Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos);
      end case;
   end Logic_To_Std_Logic;

   function Get_Static_Std_Logic (Sarr : Static_Arr_Type; Off : Uns32)
                                 return Std_Ulogic is
   begin
      case Sarr.Kind is
         when Sarr_Value =>
            return Std_Ulogic'Val (Sarr.Arr.V (Iir_Index32 (Off + 1)).Scal);
         when Sarr_Net =>
            declare
               Va : Uns32;
               Zx : Uns32;
            begin
               Get_Net_Element (Sarr.N, Off, Va, Zx);
               return Logic_To_Std_Logic (Va, Zx);
            end;
      end case;
   end Get_Static_Std_Logic;

   function Create_Res_Bound (Prev : Type_Acc) return Type_Acc is
   begin
      if Prev.Vbound.Dir = Iir_Downto
        and then Prev.Vbound.Right = 0
      then
         --  Normalized range
         return Prev;
      end if;

      return Create_Vec_Type_By_Length (Prev.W, Prev.Vec_El);
   end Create_Res_Bound;

   function Synth_Vector_Dyadic (Left, Right : Value_Acc;
                                 Op : Table_2d;
                                 Loc : Syn_Src) return Value_Acc
   is
      El_Typ : constant Type_Acc := Left.Typ.Vec_El;
      Larr : constant Static_Arr_Type := Get_Static_Array (Left);
      Rarr : constant Static_Arr_Type := Get_Static_Array (Right);
      Arr : Value_Array_Acc;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return null;
      end if;

      Arr := Create_Value_Array (Iir_Index32 (Left.Typ.W));
      for I in Arr.V'Range loop
         declare
            Ls : constant Std_Ulogic :=
              Get_Static_Std_Logic (Larr, Uns32 (I - 1));
            Rs : constant Std_Ulogic :=
              Get_Static_Std_Logic (Rarr, Uns32 (I - 1));
            V : constant Std_Ulogic := Op (Ls, Rs);
         begin
            Arr.V (I) := Create_Value_Discrete (Std_Ulogic'Pos (V), El_Typ);
         end;
      end loop;

      return Create_Value_Const_Array (Create_Res_Bound (Left.Typ), Arr);
   end Synth_Vector_Dyadic;

   procedure To_Std_Logic_Vector
     (Val : Value_Acc; Arr : out Std_Logic_Vector) is
   begin
      for I in Val.Arr.V'Range loop
         Arr (Natural (I)) := Std_Ulogic'Val (Val.Arr.V (I).Scal);
      end loop;
   end To_Std_Logic_Vector;

   function To_Value_Acc (Vec : Std_Logic_Vector; El_Typ : Type_Acc)
                         return Value_Acc
   is
      pragma Assert (Vec'First = 1);
      Res_Typ : Type_Acc;
      Arr : Value_Array_Acc;
   begin
      Res_Typ := Create_Vec_Type_By_Length (Uns32 (Vec'Last), El_Typ);
      Arr := Create_Value_Array (Iir_Index32 (Vec'Last));
      for I in Vec'Range loop
         Arr.V (Iir_Index32 (I)) :=
           Create_Value_Discrete (Std_Ulogic'Pos (Vec (I)), El_Typ);
      end loop;
      return Create_Value_Const_Array (Res_Typ, Arr);
   end To_Value_Acc;

   function Synth_Add_Uns_Uns (L, R : Value_Acc; Loc : Syn_Src)
                              return Value_Acc
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
      R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Add_Uns_Uns (L_Arr, R_Arr);
      begin
         return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Add_Uns_Uns;

   function Synth_Add_Sgn_Int (L, R : Value_Acc; Loc : Syn_Src)
                              return Value_Acc
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
      R_Val : constant Int64 := R.Scal;
   begin
      To_Std_Logic_Vector (L, L_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Add_Sgn_Int (L_Arr, R_Val);
      begin
         return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Add_Sgn_Int;

   function Synth_Add_Uns_Nat (L, R : Value_Acc; Loc : Syn_Src)
                              return Value_Acc
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
      R_Val : constant Uns64 := Uns64 (R.Scal);
   begin
      To_Std_Logic_Vector (L, L_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Add_Uns_Nat (L_Arr, R_Val);
      begin
         return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Add_Uns_Nat;

   function Synth_Sub_Uns_Uns (L, R : Value_Acc; Loc : Syn_Src)
                              return Value_Acc
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
      R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Sub_Uns_Uns (L_Arr, R_Arr);
      begin
         return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Sub_Uns_Uns;

   function Synth_Mul_Uns_Uns (L, R : Value_Acc; Loc : Syn_Src)
                              return Value_Acc
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
      R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Mul_Uns_Uns (L_Arr, R_Arr);
      begin
         return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Mul_Uns_Uns;

   function Synth_Mul_Sgn_Sgn (L, R : Value_Acc; Loc : Syn_Src)
                              return Value_Acc
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Arr.Len));
      R_Arr : Std_Logic_Vector (1 .. Natural (R.Arr.Len));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Mul_Sgn_Sgn (L_Arr, R_Arr);
      begin
         return To_Value_Acc (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Mul_Sgn_Sgn;

   function Synth_Shift (Val : Value_Acc;
                         Amt : Uns32;
                         Right : Boolean;
                         Arith : Boolean) return Value_Acc
   is
      Len : constant Uns32 := Uns32 (Val.Arr.Len);
      Arr : Std_Logic_Vector (1 .. Natural (Len));
      Pad : Std_Ulogic;
   begin
      if Len = 0 or Amt >= Len then
         Arr := (others => '0');
      else
         To_Std_Logic_Vector (Val, Arr);
         if Arith then
            Pad := Arr (1);
         else
            Pad := '0';
         end if;

         if Right then
            for I in reverse Amt + 1 .. Len loop
               Arr (Natural (I)) := Arr (Natural (I - Amt));
            end loop;
            for I in 1 .. Amt loop
               Arr (Natural (I)) := Pad;
            end loop;
         else
            for I in 1 .. Len - Amt loop
               Arr (Natural (I)) := Arr (Natural (I + Amt));
            end loop;
            for I in Len - Amt + 1 .. Len loop
               Arr (Natural (I)) := Pad;
            end loop;
         end if;
      end if;
      return To_Value_Acc (Arr, Val.Typ.Vec_El);
   end Synth_Shift;

   function Synth_Static_Dyadic_Predefined (Syn_Inst : Synth_Instance_Acc;
                                            Imp : Node;
                                            Left : Value_Acc;
                                            Right : Value_Acc;
                                            Expr : Node) return Value_Acc
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Res_Typ : constant Type_Acc :=
        Get_Value_Type (Syn_Inst, Get_Type (Expr));
   begin
      case Def is
         when Iir_Predefined_Error =>
            return null;

         when Iir_Predefined_Enum_Equality =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Scal = Right.Scal), Boolean_Type);

         when Iir_Predefined_Integer_Plus =>
            return Create_Value_Discrete
              (Get_Static_Discrete (Left) + Get_Static_Discrete (Right),
               Res_Typ);
         when Iir_Predefined_Integer_Minus =>
            return Create_Value_Discrete
              (Get_Static_Discrete (Left) - Get_Static_Discrete (Right),
               Res_Typ);
         when Iir_Predefined_Integer_Mul =>
            return Create_Value_Discrete
              (Get_Static_Discrete (Left) * Get_Static_Discrete (Right),
               Res_Typ);
         when Iir_Predefined_Integer_Div =>
            return Create_Value_Discrete
              (Get_Static_Discrete (Left) / Get_Static_Discrete (Right),
               Res_Typ);
         when Iir_Predefined_Integer_Mod =>
            return Create_Value_Discrete
              (Get_Static_Discrete (Left) mod Get_Static_Discrete (Right),
               Res_Typ);
         when Iir_Predefined_Integer_Rem =>
            return Create_Value_Discrete
              (Left.Scal rem Right.Scal, Res_Typ);
         when Iir_Predefined_Integer_Exp =>
            return Create_Value_Discrete
              (Left.Scal ** Natural (Right.Scal), Res_Typ);
         when Iir_Predefined_Integer_Less_Equal =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Scal <= Right.Scal), Boolean_Type);
         when Iir_Predefined_Integer_Less =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Scal < Right.Scal), Boolean_Type);
         when Iir_Predefined_Integer_Greater_Equal =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Scal >= Right.Scal), Boolean_Type);
         when Iir_Predefined_Integer_Greater =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Scal > Right.Scal), Boolean_Type);
         when Iir_Predefined_Integer_Equality =>
            return Create_Value_Discrete
              (Boolean'Pos (Get_Static_Discrete (Left)
                              = Get_Static_Discrete (Right)), Boolean_Type);
         when Iir_Predefined_Integer_Inequality =>
            return Create_Value_Discrete
              (Boolean'Pos (Get_Static_Discrete (Left)
                              /= Get_Static_Discrete (Right)), Boolean_Type);
         when Iir_Predefined_Physical_Physical_Div
           | Iir_Predefined_Physical_Integer_Div =>
            return Create_Value_Discrete
              (Left.Scal / Right.Scal, Res_Typ);

         when Iir_Predefined_Floating_Less =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Fp < Right.Fp), Boolean_Type);
         when Iir_Predefined_Floating_Less_Equal =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Fp <= Right.Fp), Boolean_Type);
         when Iir_Predefined_Floating_Equality =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Fp = Right.Fp), Boolean_Type);
         when Iir_Predefined_Floating_Inequality =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Fp /= Right.Fp), Boolean_Type);
         when Iir_Predefined_Floating_Greater =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Fp > Right.Fp), Boolean_Type);
         when Iir_Predefined_Floating_Greater_Equal =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Fp >= Right.Fp), Boolean_Type);

         when Iir_Predefined_Floating_Plus =>
            return Create_Value_Float (Left.Fp + Right.Fp, Res_Typ);
         when Iir_Predefined_Floating_Minus =>
            return Create_Value_Float (Left.Fp - Right.Fp, Res_Typ);
         when Iir_Predefined_Floating_Mul =>
            return Create_Value_Float (Left.Fp * Right.Fp, Res_Typ);
         when Iir_Predefined_Floating_Div =>
            return Create_Value_Float (Left.Fp / Right.Fp, Res_Typ);
         when Iir_Predefined_Floating_Exp =>
            return Create_Value_Float
              (Left.Fp ** Natural (Right.Scal), Res_Typ);

         when Iir_Predefined_Array_Array_Concat =>
            declare
               Ret_Typ : constant Type_Acc :=
                 Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
               L_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ, 1));
               R_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ, 1));
               Bnd : Bound_Type;
               Res_Typ : Type_Acc;
               Arr : Value_Array_Acc;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
                  L_Len + R_Len);
               Res_Typ := Create_Onedimensional_Array_Subtype
                 (Ret_Typ, Bnd);
               Arr := Create_Value_Array (L_Len + R_Len);
               for I in 1 .. L_Len loop
                  Arr.V (I) := Left.Arr.V (I);
               end loop;
               for I in 1 .. R_Len loop
                  Arr.V (L_Len + I) := Right.Arr.V (I);
               end loop;
               return Create_Value_Const_Array (Res_Typ, Arr);
            end;
         when Iir_Predefined_Element_Array_Concat =>
            declare
               Ret_Typ : constant Type_Acc :=
                 Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
               Bnd : Bound_Type;
               Res_Typ : Type_Acc;
               Arr : Value_Array_Acc;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
                  1 + Right.Arr.Len);
               Res_Typ := Create_Onedimensional_Array_Subtype
                 (Ret_Typ, Bnd);
               Arr := Create_Value_Array (1 + Right.Arr.Len);
               Arr.V (1) := Left;
               for I in Right.Arr.V'Range loop
                  Arr.V (1 + I) := Right.Arr.V (I);
               end loop;
               return Create_Value_Const_Array (Res_Typ, Arr);
            end;
         when Iir_Predefined_Array_Element_Concat =>
            declare
               Ret_Typ : constant Type_Acc :=
                 Get_Value_Type (Syn_Inst, Get_Return_Type (Imp));
               Bnd : Bound_Type;
               Res_Typ : Type_Acc;
               Arr : Value_Array_Acc;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
                  Left.Arr.Len + 1);
               Res_Typ := Create_Onedimensional_Array_Subtype
                 (Ret_Typ, Bnd);
               Arr := Create_Value_Array (Left.Arr.Len + 1);
               for I in Left.Arr.V'Range loop
                  Arr.V (I) := Left.Arr.V (I);
               end loop;
               Arr.V (Left.Arr.Len + 1) := Right;
               return Create_Value_Const_Array (Res_Typ, Arr);
            end;

         when Iir_Predefined_Array_Equality
           | Iir_Predefined_Record_Equality =>
            return Create_Value_Discrete
              (Boolean'Pos (Is_Equal (Left, Right)), Boolean_Type);
         when Iir_Predefined_Array_Inequality
            | Iir_Predefined_Record_Inequality =>
            return Create_Value_Discrete
              (Boolean'Pos (not Is_Equal (Left, Right)), Boolean_Type);

         when Iir_Predefined_Access_Equality =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Acc = Right.Acc), Boolean_Type);
         when Iir_Predefined_Access_Inequality =>
            return Create_Value_Discrete
              (Boolean'Pos (Left.Acc /= Right.Acc), Boolean_Type);

         when Iir_Predefined_Ieee_1164_Vector_And
           | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, And_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Or
           | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, Or_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xor
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, Xor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Create_Value_Discrete
              (Std_Ulogic'Pos (Xor_Table (Std_Ulogic'Val (Left.Scal),
                                          Std_Ulogic'Val (Right.Scal))),
               Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns =>
            return Synth_Add_Uns_Uns (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int =>
            return Synth_Add_Sgn_Int (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat =>
            return Synth_Add_Uns_Nat (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns =>
            return Synth_Sub_Uns_Uns (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns =>
            return Synth_Mul_Uns_Uns (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn =>
            return Synth_Mul_Sgn_Sgn (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Srl_Uns_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Get_Static_Discrete (Right);
               if Amt >= 0 then
                  return Synth_Shift (Left, Uns32 (Amt), True, False);
               else
                  return Synth_Shift (Left, Uns32 (-Amt), False, False);
               end if;
            end;

         when others =>
            Error_Msg_Synth
              (+Expr, "synth_static_dyadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Synth_Static_Dyadic_Predefined;

   function Synth_Vector_Monadic
     (Vec : Value_Acc; Op : Table_1d) return Value_Acc
   is
      El_Typ : constant Type_Acc := Vec.Typ.Vec_El;
      Arr : Value_Array_Acc;
   begin
      Arr := Create_Value_Array (Vec.Arr.Len);
      for I in Arr.V'Range loop
         declare
            V : constant Std_Ulogic := Std_Ulogic'Val (Vec.Arr.V (I).Scal);
         begin
            Arr.V (I) :=
              Create_Value_Discrete (Std_Ulogic'Pos (Op (V)), El_Typ);
         end;
      end loop;

      return Create_Value_Const_Array (Create_Res_Bound (Vec.Typ), Arr);
   end Synth_Vector_Monadic;

   function Synth_Vector_Reduce
     (Init : Std_Ulogic; Vec : Value_Acc; Op : Table_2d) return Value_Acc
   is
      El_Typ : constant Type_Acc := Vec.Typ.Vec_El;
      Res : Std_Ulogic;
   begin
      Res := Init;
      for I in Vec.Arr.V'Range loop
         declare
            V : constant Std_Ulogic :=
              Std_Ulogic'Val (Vec.Arr.V (I).Scal);
         begin
            Res := Op (Res, V);
         end;
      end loop;

      return Create_Value_Discrete (Std_Ulogic'Pos (Res), El_Typ);
   end Synth_Vector_Reduce;

   function Synth_Static_Monadic_Predefined (Syn_Inst : Synth_Instance_Acc;
                                             Imp : Node;
                                             Operand : Value_Acc;
                                             Expr : Node) return Value_Acc
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Inter_Chain : constant Node :=
        Get_Interface_Declaration_Chain (Imp);
      Oper_Type : constant Node := Get_Type (Inter_Chain);
      Oper_Typ : constant Type_Acc := Get_Value_Type (Syn_Inst, Oper_Type);
      --  Res_Typ : constant Type_Acc :=
      --    Get_Value_Type (Syn_Inst, Get_Type (Expr));
   begin
      case Def is
         when Iir_Predefined_Boolean_Not
           | Iir_Predefined_Bit_Not =>
            return Create_Value_Discrete (1 - Operand.Scal, Oper_Typ);

         when Iir_Predefined_Integer_Negation =>
            return Create_Value_Discrete (-Operand.Scal, Oper_Typ);
         when Iir_Predefined_Integer_Absolute =>
            return Create_Value_Discrete (abs Operand.Scal, Oper_Typ);

         when Iir_Predefined_Floating_Negation =>
            return Create_Value_Float (-Operand.Fp, Oper_Typ);
         when Iir_Predefined_Floating_Identity =>
            return Operand;
         when Iir_Predefined_Floating_Absolute =>
            return Create_Value_Float (abs Operand.Fp, Oper_Typ);

         when Iir_Predefined_Ieee_1164_Condition_Operator =>
            --  Constant std_logic: need to convert.
            declare
               Val : Uns32;
               Zx : Uns32;
            begin
               From_Std_Logic (Operand.Scal, Val, Zx);
               return Create_Value_Discrete
                 (Boolean'Pos (Val = 1 and Zx = 0), Boolean_Type);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Neg_Sgn =>
            declare
               Op_Arr : Std_Logic_Vector (1 .. Natural (Operand.Arr.Len));
            begin
               To_Std_Logic_Vector (Operand, Op_Arr);
               declare
                  Res_Arr : constant Std_Logic_Vector := Neg_Sgn (Op_Arr);
               begin
                  return To_Value_Acc (Res_Arr, Operand.Typ.Vec_El);
               end;
            end;

         when Iir_Predefined_Ieee_1164_Vector_Not =>
            return Synth_Vector_Monadic (Operand, Not_Table);

         when Iir_Predefined_Ieee_1164_Scalar_Not =>
            return Create_Value_Discrete
              (Std_Ulogic'Pos (Not_Table (Std_Ulogic'Val (Operand.Scal))),
               Oper_Typ);

         when Iir_Predefined_Ieee_1164_Vector_Or_Reduce =>
            return Synth_Vector_Reduce ('0', Operand, Or_Table);

         when others =>
            Error_Msg_Synth
              (+Expr, "synth_static_monadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Synth_Static_Monadic_Predefined;

   function Eval_To_Vector (Arg : Uns64; Sz : Int64; Res_Type : Type_Acc)
                           return Value_Acc
   is
      Len : constant Iir_Index32 := Iir_Index32 (Sz);
      El_Type : constant Type_Acc := Get_Array_Element (Res_Type);
      Arr : Value_Array_Acc;
      Bnd : Type_Acc;
      B : Uns64;
   begin
      Arr := Create_Value_Array (Len);
      for I in 1 .. Len loop
         B := Shift_Right_Arithmetic (Arg, Natural (I - 1)) and 1;
         Arr.V (Len - I + 1) := Create_Value_Discrete
           (Std_Logic_0_Pos + Int64 (B), El_Type);
      end loop;
      Bnd := Create_Vec_Type_By_Length (Width (Len), El_Type);
      return Create_Value_Const_Array (Bnd, Arr);
   end Eval_To_Vector;

   function Eval_Unsigned_To_Integer
     (Arg : Value_Acc; Res_Type : Type_Acc; Loc : Node) return Value_Acc
   is
      Res : Uns64;
   begin
      Res := 0;
      for I in Arg.Arr.V'Range loop
         case Arg.Arr.V (I).Scal is
            when Std_Logic_0_Pos
              | Std_Logic_L_Pos =>
               Res := Res * 2;
            when Std_Logic_1_Pos
              | Std_Logic_H_Pos =>
               Res := Res * 2 + 1;
            when Std_Logic_U_Pos
              | Std_Logic_X_Pos
              | Std_Logic_Z_Pos
              | Std_Logic_W_Pos
              | Std_Logic_D_Pos =>
               Warning_Msg_Synth
                 (+Loc, "metavalue detected, returning 0");
               Res := 0;
               exit;
            when others =>
               raise Internal_Error;
         end case;
      end loop;
      return Create_Value_Discrete (To_Int64 (Res), Res_Type);
   end Eval_Unsigned_To_Integer;

   function Synth_Static_Predefined_Function_Call
     (Subprg_Inst : Synth_Instance_Acc; Expr : Node) return Value_Acc
   is
      Imp  : constant Node := Get_Implementation (Expr);
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Inter_Chain : constant Node := Get_Interface_Declaration_Chain (Imp);
      Param1 : Value_Acc;
      Param2 : Value_Acc;
      Res_Typ : Type_Acc;
      Inter : Node;
   begin
      Inter := Inter_Chain;
      if Inter /= Null_Node then
         Param1 := Get_Value (Subprg_Inst, Inter);
         Strip_Const (Param1);
         Inter := Get_Chain (Inter);
      else
         Param1 := null;
      end if;
      if Inter /= Null_Node then
         Param2 := Get_Value (Subprg_Inst, Inter);
         Strip_Const (Param2);
         Inter := Get_Chain (Inter);
      else
         Param2 := null;
      end if;

      Res_Typ := Get_Value_Type (Subprg_Inst, Get_Type (Imp));

      case Def is
         when Iir_Predefined_Endfile =>
            declare
               Res : Boolean;
            begin
               Res := Synth.Files_Operations.Endfile (Param1.File, Expr);
               return Create_Value_Discrete (Boolean'Pos (Res), Boolean_Type);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Touns_Nat_Nat_Uns
           | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Unsigned_Int =>
            return Eval_To_Vector
              (Uns64 (Param1.Scal), Param2.Scal, Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Tosgn_Int_Nat_Sgn =>
            return Eval_To_Vector
              (To_Uns64 (Param1.Scal), Param2.Scal, Res_Typ);
         when Iir_Predefined_Ieee_Numeric_Std_Toint_Uns_Nat
           | Iir_Predefined_Ieee_Std_Logic_Arith_Conv_Integer_Uns
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Conv_Integer =>
            --  UNSIGNED to Natural.
            return Eval_Unsigned_To_Integer (Param1, Res_Typ, Expr);
         when Iir_Predefined_Ieee_1164_To_Stdlogicvector_Bv =>
            declare
               El_Type : constant Type_Acc := Get_Array_Element (Res_Typ);
               Arr : Value_Array_Acc;
               Bnd : Type_Acc;
               B : Int64;
            begin
               Arr := Create_Value_Array (Param1.Arr.Len);
               for I in Param1.Arr.V'Range loop
                  if Param1.Arr.V (I).Scal = 0 then
                     B := Std_Logic_0_Pos;
                  else
                     B := Std_Logic_1_Pos;
                  end if;
                  Arr.V (I) := Create_Value_Discrete (B, El_Type);
               end loop;
               Bnd := Create_Vec_Type_By_Length
                 (Width (Param1.Arr.Len), El_Type);
               return Create_Value_Const_Array (Bnd, Arr);
            end;
         when Iir_Predefined_Ieee_Math_Real_Log2 =>
            declare
               function Log2 (Arg : Fp64) return Fp64;
               pragma Import (C, Log2);
            begin
               return Create_Value_Float (Log2 (Param1.Fp), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Ceil =>
            declare
               function Ceil (Arg : Fp64) return Fp64;
               pragma Import (C, Ceil);
            begin
               return Create_Value_Float (Ceil (Param1.Fp), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Round =>
            declare
               function Round (Arg : Fp64) return Fp64;
               pragma Import (C, Round);
            begin
               return Create_Value_Float (Round (Param1.Fp), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Sin =>
            declare
               function Sin (Arg : Fp64) return Fp64;
               pragma Import (C, Sin);
            begin
               return Create_Value_Float (Sin (Param1.Fp), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Math_Real_Cos =>
            declare
               function Cos (Arg : Fp64) return Fp64;
               pragma Import (C, Cos);
            begin
               return Create_Value_Float (Cos (Param1.Fp), Res_Typ);
            end;
         when others =>
            Error_Msg_Synth
              (+Expr, "unhandled (static) function: "
                 & Iir_Predefined_Functions'Image (Def));
            return null;
      end case;
   end Synth_Static_Predefined_Function_Call;

end Synth.Static_Oper;