1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
-- Inference in synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Netlists.Utils; use Netlists.Utils;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Gates_Ports; use Netlists.Gates_Ports;
with Types; use Types;
package body Synth.Inference is
-- DFF inference.
-- As an initial implementation, the following 'styles' must be
-- supported:
-- Note: rising_edge is any clock_edge; '<=' can be ':='.
--
-- 1)
-- if rising_edge(clk) then
-- r <= x;
-- end if;
--
-- 2)
-- if rst = '0' then
-- r <= x;
-- elsif rising_edge (clk) then
-- r <= y;
-- end if;
--
-- 3)
-- wait until rising_edge(clk);
-- r <= x;
-- Which is equivalent to 1) when the wait statement is the only and first
-- statement, as it can be converted to an if statement.
--
-- Netlist derived from 1)
-- +------+
-- | |
-- | /| |
-- | |0+-+
-- Q --+--+ |
-- |1+--- D
-- \|
-- CLK
-- This is a memorizing element as there is a loop, the value is changed
-- to D on a rising edge of the clock.
--
-- Netlist derived from 2)
-- +------------+
-- | /| |
-- | /| |0+-+
-- | |0+---+ |
-- Q --+--+ | |1+----- D
-- |1+-+ \|
-- \| | CLK
-- RST +--------- '0'
-- This is a memorizing element as there is a loop. It is an asynchronous
-- reset as Q is forced to '0' when RST is asserted.
function Has_Clock (N : Net) return Boolean
is
Inst : constant Instance := Get_Net_Parent (N);
begin
case Get_Id (Inst) is
when Id_Edge =>
return True;
when Id_And =>
-- Assume the condition is canonicalized, ie of the form:
-- CLK and EXPR.
-- FIXME: do it!
return Has_Clock (Get_Input_Net (Inst, 0));
when others =>
return False;
end case;
end Has_Clock;
-- Find the longest chain of mux starting from VAL with a final input
-- of PREV_VAL. Such a chain means this is a memorising element.
-- RES is the last mux in the chain, DIST the number of mux in the chain.
procedure Find_Longest_Loop
(Val : Net; Prev_Val : Net; Res : out Instance; Dist : out Integer)
is
Inst : constant Instance := Get_Parent (Val);
begin
if Get_Id (Inst) = Id_Mux2 then
declare
Res0, Res1 : Instance;
Dist0, Dist1 : Integer;
begin
if Has_Clock (Get_Driver (Get_Mux2_Sel (Inst))) then
Res := Inst;
Dist := 1;
else
Find_Longest_Loop
(Get_Driver (Get_Mux2_I0 (Inst)), Prev_Val, Res0, Dist0);
Find_Longest_Loop
(Get_Driver (Get_Mux2_I1 (Inst)), Prev_Val, Res1, Dist1);
-- Input1 has an higher priority than input0 in case
-- the selector is a clock.
-- FIXME: improve algorithm.
if Dist1 > Dist0 then
Dist := Dist1 + 1;
if Dist1 > 0 then
Res := Res1;
else
Res := Inst;
end if;
elsif Dist0 >= 0 then
Dist := Dist0 + 1;
if Dist0 > 0 then
Res := Res0;
else
Res := Inst;
end if;
else
pragma Assert (Dist1 < 0 and Dist0 < 0);
Res := No_Instance;
Dist := -1;
end if;
end if;
end;
elsif Val = Prev_Val then
Res := No_Instance;
Dist := 0;
else
Res := No_Instance;
Dist := -1;
end if;
end Find_Longest_Loop;
-- Walk the And-net N, and extract clock (posedge/negedge) if found.
-- ENABLE is N without the clock.
procedure Extract_Clock (N : Net; Clk : out Net; Enable : out Net)
is
Inst : constant Instance := Get_Net_Parent (N);
begin
Clk := No_Net;
Enable := No_Net;
case Get_Id (Inst) is
when Id_Edge =>
-- Get rid of the edge gate, just return the signal.
Clk := Get_Input_Net (Inst, 0);
when Id_And =>
-- Assume the condition is canonicalized, ie of the form:
-- CLK and EXPR.
-- FIXME: do it!
declare
I0 : constant Net := Get_Input_Net (Inst, 0);
Inst0 : constant Instance := Get_Net_Parent (I0);
begin
if Get_Id (Inst0) = Id_Edge then
-- INST is clearly not synthesizable (boolean operation on
-- an edge). Will be removed at the end by
-- remove_unused_instances. Do not remove it now as its
-- output may be used by other nets.
Clk := Get_Input_Net (Inst0, 0);
Enable := Get_Input_Net (Inst, 1);
end if;
end;
when others =>
null;
end case;
end Extract_Clock;
function Infere (Ctxt : Context_Acc; Val : Net; Prev_Val : Net) return Net
is
pragma Assert (Val /= No_Net);
pragma Assert (Prev_Val /= No_Net);
Last_Mux : Instance;
Len : Integer;
begin
Find_Longest_Loop (Val, Prev_Val, Last_Mux, Len);
if Len < 0 then
-- No logical loop
return Val;
elsif Len = 0 then
-- Self assignment.
return Val;
end if;
declare
Sel : constant Input := Get_Mux2_Sel (Last_Mux);
I0 : constant Input := Get_Mux2_I0 (Last_Mux);
I1 : constant Input := Get_Mux2_I1 (Last_Mux);
O : constant Net := Get_Output (Last_Mux, 0);
Data : Net;
Clk : Net;
Enable : Net;
Res : Net;
Sig : Instance;
Init : Net;
Init_Input : Input;
Rst : Net;
Rst_Val : Net;
begin
Extract_Clock (Get_Driver (Sel), Clk, Enable);
if Clk = No_Net then
-- No clock -> latch
raise Internal_Error;
else
-- Create and return the DFF.
Disconnect (Sel);
if Get_Driver (I0) /= Prev_Val then
-- There must be no 'else' part for clock expression.
raise Internal_Error;
end if;
-- Don't try to free driver of I0 as this is Prev_Val.
Disconnect (I0);
Data := Get_Driver (I1);
-- Don't try to free driver of I1 as it is reconnected.
Disconnect (I1);
if Enable /= No_Net then
Data := Build_Mux2 (Ctxt, Enable, Prev_Val, Data);
end if;
-- If the signal declaration has an initial value, move it
-- to the dff.
Sig := Get_Parent (Prev_Val);
if Get_Id (Get_Module (Sig)) = Id_Isignal then
Init_Input := Get_Input (Sig, 1);
Init := Get_Driver (Init_Input);
Disconnect (Init_Input);
else
Init := No_Net;
end if;
Rst_Val := No_Net;
Rst := No_Net;
declare
Mux : Instance;
Sel : Net;
Last_Out : Net;
Mux_Rst : Net;
Mux_Rst_Val : Net;
begin
Last_Out := O;
while Is_Connected (Last_Out) loop
if not Has_One_Connection (Last_Out) then
-- TODO.
raise Internal_Error;
end if;
Mux := Get_Parent (Get_First_Sink (Last_Out));
if Get_Id (Mux) /= Id_Mux2 then
raise Internal_Error;
end if;
Sel := Get_Driver (Get_Mux2_Sel (Mux));
if Get_Driver (Get_Mux2_I0 (Mux)) = O then
Mux_Rst_Val := Get_Driver (Get_Mux2_I1 (Mux));
Mux_Rst := Sel;
elsif Get_Driver (Get_Mux2_I1 (Mux)) = O then
Mux_Rst_Val := Get_Driver (Get_Mux2_I0 (Mux));
Mux_Rst := Build_Monadic (Ctxt, Id_Not, Sel);
else
-- Cannot happen.
raise Internal_Error;
end if;
Last_Out := Get_Output (Mux, 0);
if Rst = No_Net then
-- Remove the last mux.
Disconnect (Get_Mux2_I0 (Mux));
Disconnect (Get_Mux2_I1 (Mux));
Disconnect (Get_Mux2_Sel (Mux));
Redirect_Inputs (Last_Out, Mux_Rst_Val);
Free_Instance (Mux);
Rst := Mux_Rst;
Rst_Val := Mux_Rst_Val;
else
Rst := Build_Dyadic (Ctxt, Id_Or, Mux_Rst, Rst);
Rst_Val := Last_Out;
end if;
end loop;
end;
if Rst = No_Net then
pragma Assert (Rst_Val = No_Net);
if Init /= No_Net then
Res := Build_Idff (Ctxt, Clk, D => Data, Init => Init);
else
Res := Build_Dff (Ctxt, Clk, D => Data);
end if;
else
if Init /= No_Net then
Res := Build_Iadff (Ctxt, Clk, D => Data,
Rst => Rst, Rst_Val => Rst_Val,
Init => Init);
else
Res := Build_Adff (Ctxt, Clk, D => Data,
Rst => Rst, Rst_Val => Rst_Val);
end if;
end if;
-- The output of the mux may be read later in the process,
-- like this:
-- if clk'event and clk = '1' then
-- d := i + 1;
-- end if;
-- d1 := d + 1;
-- So connections to the mux output are redirected to dff
-- output.
Redirect_Inputs (O, Res);
Free_Instance (Last_Mux);
return Res;
end if;
end;
end Infere;
end Synth.Inference;
|