aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/synth-expr.adb
blob: 092e10cdbfdf3aecff0d9a004efe3c225dc34ad2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
--  Expressions synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Ada.Unchecked_Conversion;
with Ada.Unchecked_Deallocation;
with Std_Names;
with Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Std_Package;
with Vhdl.Errors; use Vhdl.Errors;
with Simul.Execution;
with Simul.Annotations; use Simul.Annotations;
with Grt.Types; use Grt.Types;

with Synth.Errors; use Synth.Errors;
with Synth.Context; use Synth.Context;
with Synth.Types; use Synth.Types;

with Netlists; use Netlists;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Builders; use Netlists.Builders;

package body Synth.Expr is
   function Is_Const (Val : Value_Acc) return Boolean is
   begin
      return Val.Kind = Value_Lit;
   end Is_Const;

   function Get_Width (Val : Value_Acc) return Uns32 is
   begin
      case Val.Kind is
         when Value_Lit =>
            if Is_Bit_Type (Val.Lit_Type) then
               return 1;
            else
               raise Internal_Error;
            end if;
         when Value_Wire
           | Value_Net =>
            return Get_Width (Get_Net (Val));
         when others =>
            raise Internal_Error; --  TODO
      end case;
   end Get_Width;

   function Is_Logic (Val : Value_Acc) return Boolean is
   begin
      if Val.Kind = Value_Lit then
         case Val.Lit.Kind is
            when Iir_Value_B1 =>
               return True;
            when Iir_Value_E8 =>
               return Is_Bit_Type (Val.Lit_Type);
            when others =>
               return False;
         end case;
      else
         return False;
      end if;
   end Is_Logic;

   procedure To_Logic (Lit : Iir_Value_Literal_Acc;
                       Val : out Uns32;
                       Zx  : out Uns32) is
   begin
      case Lit.Kind is
         when Iir_Value_B1 =>
            Zx := 0;
            Val := Ghdl_B1'Pos (Lit.B1);
         when Iir_Value_E8 =>
            --  Std_logic.
            case Lit.E8 is
               when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos
                 |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos =>
                  Val := 0;
                  Zx := 0;
               when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos
                 |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
                  Val := 1;
                  Zx := 0;
               when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
                 |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
                 |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos =>
                  Val := 1;
                  Zx := 1;
               when Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
                 |  Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos =>
                  Val := 0;
                  Zx := 1;
               when others =>
                  --  Only 9 values.
                  raise Internal_Error;
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end To_Logic;

   function Bit_Extract (Val : Value_Acc; Off : Uns32) return Value_Acc is
   begin
      case Val.Kind is
         when Value_Lit =>
            declare
               Lit : constant Iir_Value_Literal_Acc := Val.Lit;
            begin
               pragma Assert (Lit.Kind = Iir_Value_Array);
               pragma Assert (Lit.Bounds.Nbr_Dims = 1);
               pragma Assert (Lit.Bounds.D (1).Length >= Iir_Index32 (Off));
               return Create_Value_Lit
                 (Lit.Val_Array.V (Lit.Val_Array.Len - Iir_Index32 (Off)),
                  Get_Element_Subtype (Val.Lit_Type));
            end;
         when Value_Net
           | Value_Wire =>
            return Create_Value_Net
              (Build_Extract_Bit (Build_Context, Get_Net (Val), Off),
               No_Range);
         when others =>
            raise Internal_Error;
      end case;
   end Bit_Extract;

   function Vec_Extract (Val : Value_Acc; Off : Uns32; Rng : Value_Range_Acc)
                        return Value_Acc is
   begin
      case Val.Kind is
         when Value_Lit =>
            --  TODO.
            raise Internal_Error;
         when Value_Net
           | Value_Wire =>
            return Create_Value_Net
              (Build_Slice (Build_Context, Get_Net (Val), Off, Rng.Len),
               Rng);
         when others =>
            raise Internal_Error;
      end case;
   end Vec_Extract;

   function Synth_Uresize (Val : Value_Acc; W : Width) return Net
   is
      N : constant Net := Get_Net (Val);
      Wn : constant Width := Get_Width (N);
   begin
      if Wn > W then
         return Build_Trunc (Build_Context, Id_Utrunc, N, W);
      elsif Wn < W then
         return Build_Extend (Build_Context, Id_Uextend, N, W);
      else
         return N;
      end if;
   end Synth_Uresize;

   procedure Fill_Array_Aggregate
     (Syn_Inst : Synth_Instance_Acc;
      Aggr : Iir;
      Res : Value_Acc;
      Dim : Iir_Index32;
      Orig : Iir_Index32;
      Stride : Iir_Index32)
   is
      Bound : constant Iir_Value_Literal_Acc := Res.Bounds.D (Dim);
      Value : Iir;
      Assoc : Iir;
      Pos : Iir_Index32;

      procedure Set_Elem (Pos : Iir_Index32)
      is
         Val : Value_Acc;
      begin
         if Dim = Res.Bounds.Nbr_Dims then
            Val := Synth_Expression_With_Type
              (Syn_Inst, Value, Get_Element_Subtype (Get_Type (Aggr)));
            Res.Arr.V (Orig + Stride * Pos) := Val;
         else
            Error_Msg_Synth (+Assoc, "multi-dim aggregate not handled");
         end if;
      end Set_Elem;
   begin
      Assoc := Get_Association_Choices_Chain (Aggr);
      Pos := 0;
      while Is_Valid (Assoc) loop
         Value := Get_Associated_Expr (Assoc);
         loop
            case Get_Kind (Assoc) is
               when Iir_Kind_Choice_By_None =>
                  if Pos >= Bound.Length then
                     Error_Msg_Synth (+Assoc, "element out of array bound");
                  else
                     Set_Elem (Pos);
                  end if;
                  Pos := Pos + 1;
               when Iir_Kind_Choice_By_Others =>
                  while Pos < Bound.Length loop
                     Set_Elem (Pos);
                     Pos := Pos + 1;
                  end loop;
               when others =>
                  Error_Msg_Synth
                    (+Assoc, "unhandled association form");
            end case;
            Assoc := Get_Chain (Assoc);
            exit when Is_Null (Assoc);
            exit when not Get_Same_Alternative_Flag (Assoc);
         end loop;
      end loop;
   end Fill_Array_Aggregate;

   type Net_Array is array (Iir_Index32 range <>) of Net;
   type Net_Array_Acc is access Net_Array;
   procedure Free_Net_Array is new Ada.Unchecked_Deallocation
     (Net_Array, Net_Array_Acc);

   --  Convert the one-dimension VAL to a net by concatenating.
   function Vectorize_Array (Val : Value_Acc) return Value_Acc
   is
      Arr : Net_Array_Acc;
      Len : Iir_Index32;
      Idx, New_Idx : Iir_Index32;
      Res : Value_Acc;
   begin
      --  Dynamically allocate ARR to handle large arrays.
      Arr := new Net_Array (1 .. Val.Arr.Len);

      --  Gather consecutive constant values.
      Idx := 1;
      Len := 0;
      while Idx <= Val.Arr.Len loop
         declare
            W_Zx, B_Zx : Uns32;
            W_Va, B_Va : Uns32;
            Off : Natural;
            E : Net;
         begin
            W_Zx := 0;
            W_Va := 0;
            Off := 0;
            while Idx <= Val.Arr.Len
              and then Off < 32
              and then Is_Logic (Val.Arr.V (Idx))
            loop
               To_Logic (Val.Arr.V (Idx).Lit, B_Va, B_Zx);
               W_Zx := W_Zx or Shift_Left (B_Zx, Off);
               W_Va := W_Va or Shift_Left (B_Va, Off);
               Off := Off + 1;
               Idx := Idx + 1;
            end loop;
            if Off = 0 then
               E := Get_Net (Val.Arr.V (Idx));
               Idx := Idx + 1;
            else
               if W_Zx = 0 then
                  E := Build_Const_UB32
                    (Build_Context, W_Va, Uns32 (Off));
               else
                  E := Build_Const_UL32
                    (Build_Context, W_Va, W_Zx, Uns32 (Off));
               end if;
            end if;
            Len := Len + 1;
            Arr (Len) := E;
         end;
      end loop;

      while Len > 1 loop
         Idx := 1;
         New_Idx := 0;
         while Idx <= Len loop
            --  Gather at most 4 nets.
            New_Idx := New_Idx + 1;

            if Idx = Len then
               Arr (New_Idx) := Arr (Idx);
               Idx := Idx + 1;
            elsif Idx + 1 = Len then
               Arr (New_Idx) := Build_Concat2
                 (Build_Context, Arr (Idx), Arr (Idx + 1));
               Idx := Idx + 2;
            elsif Idx + 2 = Len then
               Arr (New_Idx) := Build_Concat3
                 (Build_Context, Arr (Idx), Arr (Idx + 1), Arr (Idx + 2));
               Idx := Idx + 3;
            else
               Arr (New_Idx) := Build_Concat4
                 (Build_Context,
                  Arr (Idx), Arr (Idx + 1), Arr (Idx + 2), Arr (Idx + 3));
               Idx := Idx + 4;
            end if;
         end loop;
         Len := New_Idx;
      end loop;

      Res := Create_Value_Net (Arr (1), Bounds_To_Range (Val.Bounds.D (1)));

      Free_Net_Array (Arr);

      return Res;
   end Vectorize_Array;

   function Synth_Aggregate (Syn_Inst : Synth_Instance_Acc;
                             Aggr : Iir;
                             Aggr_Type : Iir) return Value_Acc is
   begin
      case Get_Kind (Aggr_Type) is
         when Iir_Kind_Array_Type_Definition
           | Iir_Kind_Array_Subtype_Definition =>
            declare
               Bnd : Iir_Value_Literal_Acc;
               Res : Value_Acc;
            begin
               --  Create bounds.
               Bnd := Simul.Execution.Create_Array_Bounds_From_Type
                 (Syn_Inst.Sim, Aggr_Type, False);
               --  Allocate result
               Res := Create_Array_Value (Bnd.Bounds);
               Create_Array_Data (Res);
               Fill_Array_Aggregate
                 (Syn_Inst, Aggr, Res,
                  1, 1, Res.Arr.Len / Res.Bounds.D (1).Length);
               if Is_Vector_Type (Aggr_Type) then
                  --  Vectorize
                  Res := Vectorize_Array (Res);
               end if;
               return Res;
            end;
         when Iir_Kind_Record_Type_Definition
           | Iir_Kind_Record_Subtype_Definition =>
            raise Internal_Error;
         when others =>
            Error_Kind ("synth_aggregate", Aggr_Type);
      end case;
   end Synth_Aggregate;

   function Synth_Bit_Eq_Const (Cst : Value_Acc; Expr : Value_Acc; Loc : Iir)
                               return Value_Acc
   is
      pragma Unreferenced (Loc);
      Val : Uns32;
      Xz : Uns32;
   begin
      To_Logic (Cst.Lit, Val, Xz);
      if Xz /= 0 then
         return Create_Value_Net
           (Build_Const_UL32 (Build_Context, 0, 1, 1), No_Range);
      elsif Val = 1 then
         return Expr;
      else
         pragma Assert (Val = 0);
         return Create_Value_Net
           (Build_Monadic (Build_Context, Id_Not, Get_Net (Expr)), No_Range);
      end if;
   end Synth_Bit_Eq_Const;

   function Extract_Range (Val : Value_Acc) return Value_Range_Acc is
   begin
      case Val.Kind is
         when Value_Net =>
            return Val.N_Range;
         when Value_Wire =>
            return Val.W_Range;
         when others =>
            raise Internal_Error;
      end case;
   end Extract_Range;

   --  Create the result range of an operator.  According to the ieee standard,
   --  the range is LEN-1 downto 0.
   function Create_Res_Range (Prev : Value_Acc; N : Net)
                             return Value_Range_Acc
   is
      Res : Value_Range_Acc;
      Wd : Width;
   begin
      case Prev.Kind is
         when Value_Net
           | Value_Wire =>
            Res := Extract_Range (Prev);
         when Value_Lit =>
            Res := No_Range;
         when others =>
            raise Internal_Error;
      end case;

      if Res /= No_Range
        and then Res.Dir = Iir_Downto
        and then Res.Right = 0
      then
         --  Normalized range
         return Res;
      end if;

      Wd := Get_Width (N);
      return Create_Range_Value ((Iir_Downto, Wd, Int32 (Wd - 1), 0));
   end Create_Res_Range;

   function Synth_Dyadic_Operation (Def : Iir_Predefined_Functions;
                                    Left : Value_Acc;
                                    Right : Value_Acc;
                                    Loc : Iir) return Value_Acc
   is
      function Synth_Bit_Dyadic (Id : Dyadic_Module_Id) return Value_Acc is
      begin
         return Create_Value_Net
           (Build_Dyadic (Build_Context, Id, Get_Net (Left), Get_Net (Right)),
           No_Range);
      end Synth_Bit_Dyadic;

      --  function Synth_Vec_Dyadic (Id : Dyadic_Module_Id) return Value_Acc
      --  is
      --     L : constant Net := Get_Net (Left);
      --  begin
      --     return Create_Value_Net
      --       (Build_Dyadic (Build_Context, Id, L, Get_Net (Right)),
      --        Create_Res_Range (Left, L));
      --  end Synth_Vec_Dyadic;
   begin
      case Def is
         when Iir_Predefined_Error =>
            return null;

         when Iir_Predefined_Bit_And
           | Iir_Predefined_Boolean_And
           | Iir_Predefined_Ieee_1164_Scalar_And =>
            return Synth_Bit_Dyadic (Id_And);
         when Iir_Predefined_Bit_Xor
           | Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Synth_Bit_Dyadic (Id_Xor);
         when Iir_Predefined_Bit_Or
           | Iir_Predefined_Ieee_1164_Scalar_Or =>
            return Synth_Bit_Dyadic (Id_Or);

         when Iir_Predefined_Bit_Nor
           | Iir_Predefined_Ieee_1164_Scalar_Nor =>
            return Synth_Bit_Dyadic (Id_Nor);
         when Iir_Predefined_Bit_Nand
           | Iir_Predefined_Ieee_1164_Scalar_Nand =>
            return Synth_Bit_Dyadic (Id_Nand);
         when Iir_Predefined_Bit_Xnor
           | Iir_Predefined_Ieee_1164_Scalar_Xnor =>
            return Synth_Bit_Dyadic (Id_Xnor);

         when Iir_Predefined_Enum_Equality =>
            if Get_Width (Left) = 1 then
               if Is_Const (Left) then
                  return Synth_Bit_Eq_Const (Left, Right, Loc);
               elsif Is_Const (Right) then
                  return Synth_Bit_Eq_Const (Right, Left, Loc);
               end if;
            end if;
            --  TODO
            Error_Msg_Synth (+Loc, "unsupported enum equality");
            raise Internal_Error;
         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat =>
            --  "+" (Unsigned, Natural)
            declare
               L : constant Net := Get_Net (Left);
            begin
               return Create_Value_Net
                 (Build_Dyadic (Build_Context, Id_Add,
                                L,
                                Synth_Uresize (Right, Get_Width (Left))),
                  Create_Res_Range (Left, L));
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Nat =>
            --  "=" (Unsigned, Natural)
            return Create_Value_Net
              (Build_Compare (Build_Context, Id_Eq,
                              Get_Net (Left),
                              Synth_Uresize (Right, Get_Width (Left))),
               No_Range);
         when others =>
            Error_Msg_Synth
              (+Loc,
               "unhandled dyadic: " & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Synth_Dyadic_Operation;

   function Synth_Monadic_Operation (Def : Iir_Predefined_Functions;
                                     Operand : Value_Acc;
                                     Loc : Iir) return Value_Acc
   is
      function Synth_Bit_Monadic (Id : Monadic_Module_Id) return Value_Acc is
      begin
         return Create_Value_Net
           (Build_Monadic (Build_Context, Id, Get_Net (Operand)),
            No_Range);
      end Synth_Bit_Monadic;
   begin
      case Def is
         when Iir_Predefined_Error =>
            return null;
         when Iir_Predefined_Ieee_1164_Scalar_Not =>
            return Synth_Bit_Monadic (Id_Not);
         when others =>
            Error_Msg_Synth
              (+Loc,
               "unhandled monadic: " & Iir_Predefined_Functions'Image (Def));
            raise Internal_Error;
      end case;
   end Synth_Monadic_Operation;

   function Synth_Name (Syn_Inst : Synth_Instance_Acc; Name : Iir)
                       return Value_Acc is
   begin
      case Get_Kind (Name) is
         when Iir_Kind_Simple_Name =>
            return Synth_Name (Syn_Inst, Get_Named_Entity (Name));
         when Iir_Kind_Interface_Signal_Declaration
           | Iir_Kind_Variable_Declaration
           | Iir_Kind_Signal_Declaration =>
            return Get_Value (Syn_Inst, Name);
         when Iir_Kind_Constant_Declaration =>
            return Create_Value_Lit(
               Syn_Inst.Sim.Objects(Get_Info(Name).Slot),
               Get_Type(Name));
         when others =>
            Error_Kind ("synth_name", Name);
      end case;
   end Synth_Name;

   function In_Range (Rng : Value_Range_Acc; V : Int32) return Boolean is
   begin
      case Rng.Dir is
         when Iir_To =>
            return V >= Rng.Left and then V <= Rng.Right;
         when Iir_Downto =>
            return V <= Rng.Left and then V >= Rng.Right;
      end case;
   end In_Range;

   function Synth_Indexed_Name (Syn_Inst : Synth_Instance_Acc; Name : Iir)
                               return Value_Acc
   is
      Pfx : constant Value_Acc :=
        Synth_Expression (Syn_Inst, Get_Prefix (Name));
      Indexes : constant Iir_Flist := Get_Index_List (Name);
      Idx_Val : constant Value_Acc :=
        Synth_Expression (Syn_Inst, Get_Nth_Element (Indexes, 0));
      Rng : Value_Range_Acc;
      Idx : Int32;
   begin
      if Get_Nbr_Elements (Indexes) /= 1 then
         Error_Msg_Synth (+Name, "multi-dim arrays not supported");
         return null;
      end if;

      if Idx_Val.Kind /= Value_Lit
        or else Idx_Val.Lit.Kind /= Iir_Value_I64
      then
         Error_Msg_Synth (+Name, "non constant integer index not supported");
         return null;
      end if;

      Rng := Extract_Range (Pfx);
      Idx := Int32 (Idx_Val.Lit.I64);
      if not In_Range (Rng, Idx) then
         Error_Msg_Synth (+Name, "index not within bounds");
         return null;
      end if;

      --  The offset is from the LSB (bit 0).  Bit 0 is the rightmost one.
      case Rng.Dir is
         when Iir_To =>
            return Bit_Extract (Pfx, Uns32 (Rng.Right - Idx));
         when Iir_Downto =>
            return Bit_Extract (Pfx, Uns32 (Idx - Rng.Right));
      end case;
   end Synth_Indexed_Name;

   function Synth_Slice_Name (Syn_Inst : Synth_Instance_Acc; Name : Iir)
                              return Value_Acc
   is
      Pfx : constant Value_Acc :=
        Synth_Expression (Syn_Inst, Get_Prefix (Name));
      Expr : constant Iir := Get_Suffix (Name);
      Res_Rng : Value_Range_Acc;
      Left, Right : Value_Acc;
      Dir : Iir_Direction;
      Rng : Value_Range_Acc;
   begin
      case Get_Kind (Expr) is
         when Iir_Kind_Range_Expression =>
            Left := Synth_Expression (Syn_Inst, Get_Left_Limit (Expr));
            Right := Synth_Expression (Syn_Inst, Get_Right_Limit (Expr));
            Dir := Get_Direction (Expr);
         when others =>
            Error_Msg_Synth (+Expr, "only range supported for slices");
      end case;

      if Left.Kind /= Value_Lit
        or else Left.Lit.Kind /= Iir_Value_I64
      then
         Error_Msg_Synth (+Name, "non constant integer left not supported");
         return null;
      end if;

      if Right.Kind /= Value_Lit
        or else Right.Lit.Kind /= Iir_Value_I64
      then
         Error_Msg_Synth (+Name, "non constant integer right not supported");
         return null;
      end if;

      Rng := Extract_Range (Pfx);
      if Rng.Dir /= Dir then
         Error_Msg_Synth (+Name, "direction mismatch in slice");
         return null;
      end if;

      if not In_Range (Rng, Int32 (Left.Lit.I64))
        or else not In_Range (Rng, Int32 (Right.Lit.I64))
      then
         Error_Msg_Synth (+Name, "index not within bounds");
         return null;
      end if;

      case Rng.Dir is
         when Iir_To =>
            Res_Rng := Create_Range_Value
              (Value_Range'(Dir => Iir_To,
                            Len => Width (Right.Lit.I64 - Left.Lit.I64 + 1),
                            Left => Int32 (Left.Lit.I64),
                            Right => Int32 (Right.Lit.I64)));
            return Vec_Extract
              (Pfx, Uns32 (Rng.Right - Res_Rng.Right), Res_Rng);
         when Iir_Downto =>
            Res_Rng := Create_Range_Value
              (Value_Range'(Dir => Iir_Downto,
                            Len => Width (Left.Lit.I64 - Right.Lit.I64 + 1),
                            Left => Int32 (Left.Lit.I64),
                            Right => Int32 (Right.Lit.I64)));
            return Vec_Extract
              (Pfx, Uns32 (Res_Rng.Right - Rng.Right), Res_Rng);
      end case;
   end Synth_Slice_Name;

   --  Match: clk_signal_name'event
   --  and return clk_signal_name.
   function Extract_Event_Expr_Prefix (Expr : Iir) return Iir is
   begin
      if Get_Kind (Expr) = Iir_Kind_Event_Attribute then
         return Get_Prefix (Expr);
      else
         return Null_Iir;
      end if;
   end Extract_Event_Expr_Prefix;

   function Is_Same_Node (Left, Right : Iir) return Boolean is
   begin
      if Get_Kind (Left) /= Get_Kind (Right) then
         return False;
      end if;
      case Get_Kind (Left) is
         when Iir_Kind_Simple_Name =>
            return Get_Named_Entity (Left) = Get_Named_Entity (Right);
         when others =>
            Error_Kind ("is_same_node", Left);
      end case;
   end Is_Same_Node;

   --  Match: clk_signal_name = '1' | clk_signal_name = '0'
   function Extract_Clock_Level
     (Syn_Inst : Synth_Instance_Acc; Expr : Iir; Prefix : Iir) return Net
   is
      Clk : Net;
      Imp : Iir;
      Left, Right : Iir;
      Lit : Iir;
      Posedge : Boolean;
   begin
      Clk := Get_Net (Synth_Name (Syn_Inst, Prefix));
      if Get_Kind (Expr) /= Iir_Kind_Equality_Operator then
         Error_Msg_Synth (+Expr, "ill-formed clock-level, '=' expected");
         return Build_Edge (Build_Context, Clk);
      end if;
      Imp := Get_Implementation (Expr);
      if Get_Implicit_Definition (Imp) /= Iir_Predefined_Enum_Equality then
         Error_Msg_Synth (+Expr, "ill-formed clock-level, '=' expected");
         return Build_Edge (Build_Context, Clk);
      end if;
      Left := Get_Left (Expr);
      Right := Get_Right (Expr);
      if Get_Kind (Right) /= Iir_Kind_Character_Literal then
         Error_Msg_Synth
           (+Expr, "ill-formed clock-level, '0' or '1' expected");
         return Build_Edge (Build_Context, Clk);
      end if;
      Lit := Get_Named_Entity (Right);
      if Lit = Vhdl.Std_Package.Bit_0
        or else Lit = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_0
      then
         Posedge := False;
      elsif Lit = Vhdl.Std_Package.Bit_1
        or else Lit = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_1
      then
         Posedge := True;
      else
         Error_Msg_Synth
           (+Lit, "ill-formed clock-level, '0' or '1' expected");
         Posedge := True;
      end if;
      if not Is_Same_Node (Prefix, Left) then
         Error_Msg_Synth
           (+Left, "clock signal name doesn't match");
      end if;
      if not Posedge then
         Clk := Build_Monadic (Build_Context, Id_Not, Clk);
      end if;
      return Build_Edge (Build_Context, Clk);
   end Extract_Clock_Level;

   function Synth_Clock_Edge (Syn_Inst : Synth_Instance_Acc; Expr : Iir)
                             return Value_Acc
   is
      pragma Assert (Get_Kind (Expr) = Iir_Kind_And_Operator);
      Left : constant Iir := Get_Left (Expr);
      Right : constant Iir := Get_Right (Expr);
      Prefix : Iir;
   begin
      --  Try with left.
      Prefix := Extract_Event_Expr_Prefix (Left);
      if Is_Valid (Prefix) then
         return Create_Value_Net
           (Extract_Clock_Level (Syn_Inst, Right, Prefix), No_Range);
      end if;

      --  Try with right.
      Prefix := Extract_Event_Expr_Prefix (Right);
      if Is_Valid (Prefix) then
         return Create_Value_Net
           (Extract_Clock_Level (Syn_Inst, Left, Prefix), No_Range);
      end if;

      return null;
   end Synth_Clock_Edge;

   function Synth_Type_Conversion (Syn_Inst : Synth_Instance_Acc; Conv : Iir)
                                  return Value_Acc
   is
      Expr : constant Iir := Get_Expression (Conv);
      Val : Value_Acc;
   begin
      Val := Synth_Expression (Syn_Inst, Expr);
      if Is_Vector_Type (Get_Type (Conv)) then
         return Val;
      else
         Error_Msg_Synth (+Conv, "unhandled type conversion");
         return Val;
      end if;
   end Synth_Type_Conversion;

   function Synth_Assoc_In (Syn_Inst : Synth_Instance_Acc;
                            Assoc : Iir) return Value_Acc is
   begin
      if Get_Kind (Assoc) = Iir_Kind_Association_Element_By_Expression then
         return Synth_Expression (Syn_Inst, Get_Actual (Assoc));
      else
         Error_Kind ("synth_assoc_in", Assoc);
      end if;
   end Synth_Assoc_In;

   procedure Error_Unknown_Operator (Imp : Iir; Loc : Iir) is
   begin
      if Get_Kind (Get_Parent (Imp)) = Iir_Kind_Package_Declaration
        and then (Get_Identifier
                    (Get_Library
                       (Get_Design_File (Get_Design_Unit (Get_Parent (Imp)))))
                    = Std_Names.Name_Ieee)
      then
         Error_Msg_Synth (+Loc, "unhandled predefined IEEE operator %i", +Imp);
         Error_Msg_Synth (+Imp, " declared here");
      else
         Error_Msg_Synth (+Loc, "user defined operator %i not handled", +Imp);
      end if;
   end Error_Unknown_Operator;

   function Synth_Expression_With_Type
     (Syn_Inst : Synth_Instance_Acc; Expr : Iir; Expr_Type : Iir)
     return Value_Acc is
   begin
      case Get_Kind (Expr) is
         when Iir_Kinds_Dyadic_Operator =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Def : constant Iir_Predefined_Functions :=
                 Get_Implicit_Definition (Imp);
               Left : Value_Acc;
               Right : Value_Acc;
            begin
               --  Match clock-edge
               if Def = Iir_Predefined_Boolean_And then
                  Left := Synth_Clock_Edge (Syn_Inst, Expr);
                  if Left /= null then
                     return Left;
                  end if;
               end if;

               Left := Synth_Expression (Syn_Inst, Get_Left (Expr));
               Right := Synth_Expression (Syn_Inst, Get_Right (Expr));
               if Def in Iir_Predefined_Implicit
                 or else Def in Iir_Predefined_IEEE_Explicit
               then
                  return Synth_Dyadic_Operation (Def, Left, Right, Expr);
               else
                  Error_Unknown_Operator (Imp, Expr);
                  return Left;
               end if;
            end;
         when Iir_Kinds_Monadic_Operator =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Def : constant Iir_Predefined_Functions :=
                 Get_Implicit_Definition (Imp);
               Operand : Value_Acc;
            begin
               Operand := Synth_Expression (Syn_Inst, Get_Operand (Expr));
               if Def in Iir_Predefined_Implicit
                 or else Def in Iir_Predefined_IEEE_Explicit
               then
                  return Synth_Monadic_Operation (Def, Operand, Expr);
               else
                  Error_Unknown_Operator (Imp, Expr);
                  return Operand;
               end if;
            end;
         when Iir_Kind_Simple_Name =>
            return Synth_Name (Syn_Inst, Expr);
         when Iir_Kind_Indexed_Name =>
            return Synth_Indexed_Name (Syn_Inst, Expr);
         when Iir_Kind_Slice_Name =>
            return Synth_Slice_Name (Syn_Inst, Expr);
         when Iir_Kind_Character_Literal
           | Iir_Kind_Integer_Literal
           | Iir_Kind_String_Literal8
           | Iir_Kind_Enumeration_Literal =>
            return Create_Value_Lit
              (Simul.Execution.Execute_Expression (Syn_Inst.Sim, Expr),
               Get_Base_Type (Get_Type (Expr)));
         when Iir_Kind_Type_Conversion =>
            return Synth_Type_Conversion (Syn_Inst, Expr);
         when Iir_Kind_Qualified_Expression =>
            return Synth_Expression_With_Type
              (Syn_Inst, Get_Expression (Expr), Get_Type (Expr));
         when Iir_Kind_Function_Call =>
            declare
               Imp : constant Iir := Get_Implementation (Expr);
               Clk : Net;
               Edge : Net;
            begin
               if Imp = Vhdl.Ieee.Std_Logic_1164.Rising_Edge then
                  Clk := Get_Net
                    (Synth_Assoc_In
                       (Syn_Inst, Get_Parameter_Association_Chain (Expr)));
                  Edge := Build_Edge (Build_Context, Clk);
                  return Create_Value_Net (Edge, No_Range);
               elsif Imp = Vhdl.Ieee.Std_Logic_1164.Falling_Edge then
                  Clk := Get_Net
                    (Synth_Assoc_In
                       (Syn_Inst, Get_Parameter_Association_Chain (Expr)));
                  Clk := Build_Monadic (Build_Context, Id_Not, Clk);
                  Edge := Build_Edge (Build_Context, Clk);
                  return Create_Value_Net (Edge, No_Range);
               end if;
               Error_Msg_Synth
                 (+Expr, "user function call to %i is not handled", +Imp);
            end;
         when Iir_Kind_Aggregate =>
            return Synth_Aggregate (Syn_Inst, Expr, Expr_Type);
         when others =>
            Error_Kind ("synth_expression", Expr);
      end case;
      raise Fatal_Error;
      return null;
   end Synth_Expression_With_Type;

   function Synth_Expression (Syn_Inst : Synth_Instance_Acc; Expr : Iir)
                             return Value_Acc is
   begin
      return Synth_Expression_With_Type (Syn_Inst, Expr, Get_Type (Expr));
   end Synth_Expression;

end Synth.Expr;