1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
|
-- Expressions synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Ada.Unchecked_Conversion;
with Types_Utils; use Types_Utils;
with Std_Names;
with Str_Table;
with Mutils; use Mutils;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;
with Vhdl.Std_Package;
with Vhdl.Errors; use Vhdl.Errors;
with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Evaluation; use Vhdl.Evaluation;
with Vhdl.Annotations; use Vhdl.Annotations;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Builders; use Netlists.Builders;
with Synth.Errors; use Synth.Errors;
with Synth.Environment;
with Synth.Decls;
with Synth.Stmts; use Synth.Stmts;
with Synth.Oper; use Synth.Oper;
package body Synth.Expr is
function Synth_Name (Syn_Inst : Synth_Instance_Acc; Name : Node)
return Value_Acc;
procedure Set_Location (N : Net; Loc : Node)
renames Synth.Source.Set_Location;
function Get_Const_Discrete (V : Value_Acc) return Int64
is
N : Net;
Inst : Instance;
begin
case V.Kind is
when Value_Discrete =>
return V.Scal;
when Value_Const =>
return V.C_Val.Scal;
when Value_Net =>
N := V.N;
when Value_Wire =>
N := Synth.Environment.Get_Const_Wire (V.W);
when others =>
raise Internal_Error;
end case;
Inst := Get_Net_Parent (N);
case Get_Id (Inst) is
when Id_Const_UB32 =>
declare
Va : constant Uns32 := Get_Param_Uns32 (Inst, 0);
Wd : constant Natural := Natural (Get_Width (N));
T : Uns64;
begin
T := Shift_Left (Uns64 (Va), 64 - Wd);
return To_Int64 (Shift_Right_Arithmetic (T, 64 - Wd));
end;
when others =>
raise Internal_Error;
end case;
end Get_Const_Discrete;
procedure From_Std_Logic (Enum : Int64; Val : out Uns32; Zx : out Uns32) is
begin
case Enum is
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_0_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_L_Pos =>
Val := 0;
Zx := 0;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_1_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_H_Pos =>
Val := 1;
Zx := 0;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_U_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_X_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_D_Pos =>
Val := 1;
Zx := 1;
when Vhdl.Ieee.Std_Logic_1164.Std_Logic_Z_Pos
| Vhdl.Ieee.Std_Logic_1164.Std_Logic_W_Pos =>
Val := 0;
Zx := 1;
when others =>
-- Only 9 values.
raise Internal_Error;
end case;
end From_Std_Logic;
procedure From_Bit (Enum : Int64; Val : out Uns32) is
begin
if Enum = 0 then
Val := 0;
elsif Enum = 1 then
Val := 1;
else
raise Internal_Error;
end if;
end From_Bit;
procedure To_Logic
(Enum : Int64; Etype : Type_Acc; Val : out Uns32; Zx : out Uns32) is
begin
if Etype = Logic_Type then
pragma Assert (Etype.Kind = Type_Logic);
From_Std_Logic (Enum, Val, Zx);
elsif Etype = Boolean_Type or Etype = Bit_Type then
pragma Assert (Etype.Kind = Type_Bit);
From_Bit (Enum, Val);
Zx := 0;
else
raise Internal_Error;
end if;
end To_Logic;
function Bit_Extract (Val : Value_Acc; Off : Uns32; Loc : Node)
return Value_Acc
is
N : Net;
begin
case Val.Kind is
when Value_Array
| Value_Const_Array =>
pragma Assert (Val.Typ.Vbound.Len >= Off);
return Val.Arr.V (Iir_Index32 (Val.Typ.Vbound.Len - Off));
when Value_Net
| Value_Wire =>
N := Build_Extract_Bit (Build_Context, Get_Net (Val), Off);
Set_Location (N, Loc);
return Create_Value_Net (N, Val.Typ.Vec_El);
when others =>
raise Internal_Error;
end case;
end Bit_Extract;
-- Resize for a discrete value.
function Synth_Resize (Val : Value_Acc; W : Width; Loc : Node) return Net
is
Wn : constant Width := Val.Typ.W;
N : Net;
Res : Net;
begin
if Is_Const (Val) then
if Wn /= W then
pragma Assert (Val.Kind = Value_Discrete);
if Val.Typ.Drange.Is_Signed then
Res := Build2_Const_Int (Build_Context, Val.Scal, W);
else
Res := Build2_Const_Uns (Build_Context, To_Uns64 (Val.Scal), W);
end if;
Set_Location (Res, Loc);
return Res;
end if;
end if;
N := Get_Net (Val);
if Wn > W then
Res := Build_Trunc (Build_Context, Id_Utrunc, N, W);
Set_Location (Res, Loc);
return Res;
elsif Wn < W then
if Val.Typ.Drange.Is_Signed then
Res := Build_Extend (Build_Context, Id_Sextend, N, W);
else
Res := Build_Extend (Build_Context, Id_Uextend, N, W);
end if;
Set_Location (Res, Loc);
return Res;
else
return N;
end if;
end Synth_Resize;
function Get_Index_Offset
(Index : Value_Acc; Bounds : Bound_Type; Expr : Iir) return Uns32 is
begin
if Index.Kind = Value_Discrete then
declare
Left : constant Int64 := Int64 (Bounds.Left);
Right : constant Int64 := Int64 (Bounds.Right);
begin
case Bounds.Dir is
when Iir_To =>
if Index.Scal >= Left and then Index.Scal <= Right then
-- to
return Uns32 (Index.Scal - Left);
end if;
when Iir_Downto =>
if Index.Scal <= Left and then Index.Scal >= Right then
-- downto
return Uns32 (Left - Index.Scal);
end if;
end case;
end;
else
raise Internal_Error;
end if;
Error_Msg_Synth (+Expr, "index out of bounds");
return 0;
end Get_Index_Offset;
function Get_Array_Bound (Typ : Type_Acc; Dim : Natural)
return Bound_Type is
begin
case Typ.Kind is
when Type_Vector =>
pragma Assert (Dim = 0);
return Typ.Vbound;
when Type_Array =>
return Typ.Abounds.D (Iir_Index32 (Dim + 1));
when others =>
raise Internal_Error;
end case;
end Get_Array_Bound;
procedure Fill_Array_Aggregate (Syn_Inst : Synth_Instance_Acc;
Aggr : Node;
Res : Value_Array_Acc;
Typ : Type_Acc;
Dim : Natural;
Const_P : out Boolean)
is
Bound : constant Bound_Type := Get_Array_Bound (Typ, Dim);
Aggr_Type : constant Node := Get_Type (Aggr);
El_Typ : constant Type_Acc := Get_Array_Element (Typ);
Nbr_Dims : constant Natural := Get_Nbr_Dimensions (Aggr_Type);
type Boolean_Array is array (Uns32 range <>) of Boolean;
pragma Pack (Boolean_Array);
-- FIXME: test Res.V (I) instead.
Is_Set : Boolean_Array (0 .. Bound.Len - 1);
Value : Node;
Assoc : Node;
Pos : Uns32;
procedure Set_Elem (Pos : Uns32)
is
Val : Value_Acc;
begin
if Dim = Nbr_Dims - 1 then
Val := Synth_Expression_With_Type (Syn_Inst, Value, El_Typ);
Res.V (Iir_Index32 (Pos + 1)) := Val;
pragma Assert (not Is_Set (Pos));
Is_Set (Pos) := True;
if Const_P and then not Is_Const (Val) then
Const_P := False;
end if;
else
Error_Msg_Synth (+Assoc, "multi-dim aggregate not handled");
end if;
end Set_Elem;
begin
Assoc := Get_Association_Choices_Chain (Aggr);
Pos := 0;
Is_Set := (others => False);
Const_P := True;
while Is_Valid (Assoc) loop
Value := Get_Associated_Expr (Assoc);
loop
case Get_Kind (Assoc) is
when Iir_Kind_Choice_By_None =>
if Pos >= Bound.Len then
Error_Msg_Synth (+Assoc, "element out of array bound");
else
Set_Elem (Pos);
end if;
Pos := Pos + 1;
when Iir_Kind_Choice_By_Others =>
while Pos < Bound.Len loop
if not Is_Set (Pos) then
Set_Elem (Pos);
end if;
Pos := Pos + 1;
end loop;
when Iir_Kind_Choice_By_Expression =>
declare
Ch : constant Node := Get_Choice_Expression (Assoc);
Idx : Value_Acc;
begin
Idx := Synth_Expression (Syn_Inst, Ch);
if not Is_Const (Idx) then
Error_Msg_Synth (+Ch, "choice is not static");
else
Set_Elem (Get_Index_Offset (Idx, Bound, Ch));
end if;
end;
when Iir_Kind_Choice_By_Range =>
declare
Ch : constant Node := Get_Choice_Range (Assoc);
Rng : Discrete_Range_Type;
Val : Value_Acc;
W_Rng : Width;
begin
Synth_Discrete_Range (Syn_Inst, Ch, Rng, W_Rng);
Val := Create_Value_Discrete
(Rng.Left,
Get_Value_Type (Syn_Inst,
Get_Base_Type (Get_Type (Ch))));
while In_Range (Rng, Val.Scal) loop
Set_Elem (Get_Index_Offset (Val, Bound, Ch));
Update_Index (Rng, Val.Scal);
end loop;
end;
when others =>
Error_Msg_Synth
(+Assoc, "unhandled association form");
end case;
Assoc := Get_Chain (Assoc);
exit when Is_Null (Assoc);
exit when not Get_Same_Alternative_Flag (Assoc);
end loop;
end loop;
end Fill_Array_Aggregate;
procedure Fill_Record_Aggregate (Syn_Inst : Synth_Instance_Acc;
Aggr : Node;
Rec : Value_Array_Acc;
Const_P : out Boolean)
is
El_List : constant Node_Flist :=
Get_Elements_Declaration_List (Get_Type (Aggr));
Value : Node;
Assoc : Node;
Pos : Natural;
procedure Set_Elem (Pos : Natural)
is
Val : Value_Acc;
El_Type : Type_Acc;
begin
El_Type := Get_Value_Type
(Syn_Inst, Get_Type (Get_Nth_Element (El_List, Pos)));
Val := Synth_Expression_With_Type (Syn_Inst, Value, El_Type);
Rec.V (Iir_Index32 (Pos + 1)) := Val;
if Const_P and not Is_Const (Val) then
Const_P := False;
end if;
end Set_Elem;
begin
Assoc := Get_Association_Choices_Chain (Aggr);
Pos := 0;
Const_P := True;
Rec.V := (others => null);
while Is_Valid (Assoc) loop
Value := Get_Associated_Expr (Assoc);
loop
case Get_Kind (Assoc) is
when Iir_Kind_Choice_By_None =>
Set_Elem (Pos);
Pos := Pos + 1;
when Iir_Kind_Choice_By_Others =>
for I in Rec.V'Range loop
if Rec.V (I) = null then
Set_Elem (Natural (I - 1));
end if;
end loop;
when Iir_Kind_Choice_By_Name =>
Pos := Natural (Get_Element_Position
(Get_Named_Entity
(Get_Choice_Name (Assoc))));
Set_Elem (Pos);
when others =>
Error_Msg_Synth
(+Assoc, "unhandled association form");
end case;
Assoc := Get_Chain (Assoc);
exit when Is_Null (Assoc);
exit when not Get_Same_Alternative_Flag (Assoc);
end loop;
end loop;
end Fill_Record_Aggregate;
procedure Concat_Array (Arr : in out Net_Array)
is
Last : Int32;
Idx, New_Idx : Int32;
begin
Last := Arr'Last;
while Last > Arr'First loop
Idx := Arr'First;
New_Idx := Arr'First - 1;
while Idx <= Last loop
-- Gather at most 4 nets.
New_Idx := New_Idx + 1;
if Idx = Last then
Arr (New_Idx) := Arr (Idx);
Idx := Idx + 1;
elsif Idx + 1 = Last then
Arr (New_Idx) := Build_Concat2
(Build_Context, Arr (Idx), Arr (Idx + 1));
Idx := Idx + 2;
elsif Idx + 2 = Last then
Arr (New_Idx) := Build_Concat3
(Build_Context, Arr (Idx), Arr (Idx + 1), Arr (Idx + 2));
Idx := Idx + 3;
else
Arr (New_Idx) := Build_Concat4
(Build_Context,
Arr (Idx), Arr (Idx + 1), Arr (Idx + 2), Arr (Idx + 3));
Idx := Idx + 4;
end if;
end loop;
Last := New_Idx;
end loop;
end Concat_Array;
function Concat_Array (Arr : Net_Array_Acc) return Net is
begin
Concat_Array (Arr.all);
return Arr (Arr'First);
end Concat_Array;
function Synth_Discrete_Range_Expression
(L : Int64; R : Int64; Dir : Iir_Direction) return Discrete_Range_Type is
begin
return (Dir => Dir,
Left => L,
Right => R,
Is_Signed => L < 0 or R < 0);
end Synth_Discrete_Range_Expression;
function Synth_Discrete_Range_Expression
(Syn_Inst : Synth_Instance_Acc; Rng : Node) return Discrete_Range_Type
is
L, R : Value_Acc;
begin
L := Synth_Expression_With_Basetype (Syn_Inst, Get_Left_Limit (Rng));
R := Synth_Expression_With_Basetype (Syn_Inst, Get_Right_Limit (Rng));
if not (Is_Const (L) and Is_Const (R)) then
Error_Msg_Synth (+Rng, "limits of range are not constant");
raise Internal_Error;
end if;
return (Dir => Get_Direction (Rng),
Left => L.Scal,
Right => R.Scal,
Is_Signed => L.Scal < 0 or R.Scal < 0);
end Synth_Discrete_Range_Expression;
function Synth_Float_Range_Expression
(Syn_Inst : Synth_Instance_Acc; Rng : Node) return Float_Range_Type
is
L, R : Value_Acc;
begin
L := Synth_Expression (Syn_Inst, Get_Left_Limit (Rng));
R := Synth_Expression (Syn_Inst, Get_Right_Limit (Rng));
return ((Get_Direction (Rng), L.Fp, R.Fp));
end Synth_Float_Range_Expression;
function Synth_Array_Attribute (Syn_Inst : Synth_Instance_Acc; Attr : Node)
return Bound_Type
is
Prefix : constant Iir := Strip_Denoting_Name (Get_Prefix (Attr));
Dim : constant Natural :=
Vhdl.Evaluation.Eval_Attribute_Parameter_Or_1 (Attr);
Res : Value_Acc;
begin
-- Prefix is an array object or an array subtype.
Res := Synth_Name (Syn_Inst, Prefix);
if Res.Typ.Kind = Type_Vector then
if Dim /= 1 then
raise Internal_Error;
end if;
return Res.Typ.Vbound;
else
return Res.Typ.Abounds.D (Iir_Index32 (Dim));
end if;
end Synth_Array_Attribute;
procedure Synth_Discrete_Range (Syn_Inst : Synth_Instance_Acc;
Bound : Node;
Rng : out Discrete_Range_Type;
W : out Width) is
begin
case Get_Kind (Bound) is
when Iir_Kind_Range_Expression =>
Rng := Synth_Discrete_Range_Expression (Syn_Inst, Bound);
W := Discrete_Range_Width (Rng);
when Iir_Kind_Integer_Subtype_Definition
| Iir_Kind_Enumeration_Subtype_Definition =>
if Get_Type_Declarator (Bound) /= Null_Node then
declare
Typ : Type_Acc;
begin
-- This is a named subtype, so it has been evaluated.
Typ := Get_Value_Type (Syn_Inst, Bound);
Rng := Typ.Drange;
W := Typ.W;
end;
else
Synth_Discrete_Range
(Syn_Inst, Get_Range_Constraint (Bound), Rng, W);
end if;
when Iir_Kind_Range_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Bound);
Rng := Discrete_Range_Type'(Dir => B.Dir,
Is_Signed => True,
Left => Int64 (B.Left),
Right => Int64 (B.Right));
W := B.Wbounds;
end;
when others =>
Error_Kind ("synth_discrete_range", Bound);
end case;
end Synth_Discrete_Range;
function Synth_Array_Bounds (Syn_Inst : Synth_Instance_Acc;
Atype : Node;
Dim : Natural) return Bound_Type
is
Info : constant Sim_Info_Acc := Get_Info (Atype);
begin
if Info = null then
pragma Assert (Get_Type_Declarator (Atype) = Null_Node);
declare
Index_Type : constant Node := Get_Index_Type (Atype, Dim);
begin
return Synth_Bounds_From_Range (Syn_Inst, Index_Type);
end;
else
declare
Bnds : constant Value_Acc := Get_Value (Syn_Inst, Atype);
begin
case Bnds.Typ.Kind is
when Type_Vector =>
pragma Assert (Dim = 0);
return Bnds.Typ.Vbound;
when Type_Array =>
return Bnds.Typ.Abounds.D (Iir_Index32 (Dim + 1));
when others =>
raise Internal_Error;
end case;
end;
end if;
end Synth_Array_Bounds;
function Synth_Bounds_From_Range (Syn_Inst : Synth_Instance_Acc;
Atype : Node) return Bound_Type
is
Rng : Discrete_Range_Type;
W : Width;
Len : Int64;
begin
Synth_Discrete_Range (Syn_Inst, Atype, Rng, W);
case Rng.Dir is
when Iir_To =>
Len := Rng.Right - Rng.Left + 1;
when Iir_Downto =>
Len := Rng.Left - Rng.Right + 1;
end case;
if Len < 0 then
Len := 0;
end if;
return (Dir => Rng.Dir,
Wbounds => W,
Left => Int32 (Rng.Left), Right => Int32 (Rng.Right),
Len => Uns32 (Len));
end Synth_Bounds_From_Range;
function Synth_Aggregate_Array (Syn_Inst : Synth_Instance_Acc;
Aggr : Node;
Aggr_Type : Type_Acc) return Value_Acc
is
Arr : Value_Array_Acc;
Res : Value_Acc;
Const_P : Boolean;
begin
Arr := Create_Value_Array
(Iir_Index32 (Get_Array_Flat_Length (Aggr_Type)));
Fill_Array_Aggregate (Syn_Inst, Aggr, Arr, Aggr_Type, 0, Const_P);
if Const_P then
Res := Create_Value_Const_Array (Aggr_Type, Arr);
else
Res := Create_Value_Array (Aggr_Type, Arr);
end if;
return Res;
end Synth_Aggregate_Array;
function Synth_Aggregate_Record (Syn_Inst : Synth_Instance_Acc;
Aggr : Node;
Aggr_Type : Type_Acc) return Value_Acc
is
Arr : Value_Array_Acc;
Res : Value_Acc;
Const_P : Boolean;
begin
-- Allocate the result.
Arr := Create_Value_Array (Aggr_Type.Rec.Len);
Fill_Record_Aggregate (Syn_Inst, Aggr, Arr, Const_P);
if Const_P then
Res := Create_Value_Const_Record (Aggr_Type, Arr);
else
Res := Create_Value_Record (Aggr_Type, Arr);
end if;
return Res;
end Synth_Aggregate_Record;
-- Aggr_Type is the type from the context.
function Synth_Aggregate (Syn_Inst : Synth_Instance_Acc;
Aggr : Node;
Aggr_Type : Type_Acc) return Value_Acc is
begin
case Aggr_Type.Kind is
when Type_Unbounded_Array | Type_Unbounded_Vector =>
declare
Res_Type : Type_Acc;
begin
Res_Type := Decls.Synth_Array_Subtype_Indication
(Syn_Inst, Get_Type (Aggr));
return Synth_Aggregate_Array (Syn_Inst, Aggr, Res_Type);
end;
when Type_Vector | Type_Array =>
return Synth_Aggregate_Array (Syn_Inst, Aggr, Aggr_Type);
when Type_Record =>
return Synth_Aggregate_Record (Syn_Inst, Aggr, Aggr_Type);
when others =>
raise Internal_Error;
end case;
end Synth_Aggregate;
function Synth_Simple_Aggregate (Syn_Inst : Synth_Instance_Acc;
Aggr : Node) return Value_Acc
is
Aggr_Type : constant Node := Get_Type (Aggr);
pragma Assert (Get_Nbr_Dimensions (Aggr_Type) = 1);
El_Type : constant Node := Get_Element_Subtype (Aggr_Type);
El_Typ : constant Type_Acc := Get_Value_Type (Syn_Inst, El_Type);
Els : constant Iir_Flist := Get_Simple_Aggregate_List (Aggr);
Last : constant Natural := Flist_Last (Els);
Bnd : Bound_Type;
Bnds : Bound_Array_Acc;
Res_Type : Type_Acc;
Arr : Value_Array_Acc;
Val : Value_Acc;
begin
-- Allocate the result.
Bnd := Synth_Array_Bounds (Syn_Inst, Aggr_Type, 0);
pragma Assert (Bnd.Len = Uns32 (Last + 1));
if El_Typ.Kind in Type_Nets then
Res_Type := Create_Vector_Type (Bnd, El_Typ);
else
Bnds := Create_Bound_Array (1);
Bnds.D (1) := Bnd;
Res_Type := Create_Array_Type (Bnds, El_Typ);
end if;
Arr := Create_Value_Array (Iir_Index32 (Last + 1));
for I in Flist_First .. Last loop
Val := Synth_Expression_With_Type
(Syn_Inst, Get_Nth_Element (Els, I), El_Typ);
pragma Assert (Is_Const (Val));
Arr.V (Iir_Index32 (Last - I + 1)) := Val;
end loop;
return Create_Value_Const_Array (Res_Type, Arr);
end Synth_Simple_Aggregate;
-- Change the bounds of VAL.
function Reshape_Value (Val : Value_Acc; Ntype : Type_Acc)
return Value_Acc is
begin
case Val.Kind is
when Value_Array =>
return Create_Value_Array (Ntype, Val.Arr);
when Value_Const_Array =>
return Create_Value_Const_Array (Ntype, Val.Arr);
when Value_Wire =>
return Create_Value_Wire (Val.W, Ntype);
when Value_Net =>
return Create_Value_Net (Val.N, Ntype);
when Value_Alias =>
return Create_Value_Alias (Val.A_Obj, Val.A_Off, Ntype);
when others =>
raise Internal_Error;
end case;
end Reshape_Value;
function Synth_Subtype_Conversion (Val : Value_Acc;
Dtype : Type_Acc;
Bounds : Boolean;
Loc : Source.Syn_Src)
return Value_Acc
is
Vtype : constant Type_Acc := Val.Typ;
begin
case Dtype.Kind is
when Type_Bit =>
pragma Assert (Vtype.Kind = Type_Bit);
return Val;
when Type_Logic =>
pragma Assert (Vtype.Kind = Type_Logic);
return Val;
when Type_Discrete =>
pragma Assert (Vtype.Kind = Type_Discrete);
declare
N : Net;
begin
if Vtype.W > Dtype.W then
-- Truncate.
-- TODO: check overflow.
case Val.Kind is
when Value_Net
| Value_Wire =>
N := Get_Net (Val);
N := Build_Trunc
(Build_Context, Id_Utrunc, N, Dtype.W);
Set_Location (N, Loc);
return Create_Value_Net (N, Dtype);
when Value_Discrete =>
return Create_Value_Discrete (Val.Scal, Dtype);
when Value_Const =>
return Create_Value_Discrete (Val.C_Val.Scal, Dtype);
when others =>
raise Internal_Error;
end case;
elsif Vtype.W < Dtype.W then
-- Extend.
case Val.Kind is
when Value_Discrete =>
return Create_Value_Discrete (Val.Scal, Dtype);
when Value_Const =>
return Create_Value_Discrete (Val.C_Val.Scal, Dtype);
when Value_Net
| Value_Wire =>
N := Get_Net (Val);
if Vtype.Drange.Is_Signed then
N := Build_Extend
(Build_Context, Id_Sextend, N, Dtype.W);
else
N := Build_Extend
(Build_Context, Id_Uextend, N, Dtype.W);
end if;
Set_Location (N, Loc);
return Create_Value_Net (N, Dtype);
when others =>
raise Internal_Error;
end case;
else
-- TODO: check overflow if sign differ.
return Val;
end if;
end;
when Type_Float =>
pragma Assert (Vtype.Kind = Type_Float);
-- TODO: check range
return Val;
when Type_Vector =>
pragma Assert (Vtype.Kind = Type_Vector
or Vtype.Kind = Type_Slice);
if False and then Dtype.W /= Vtype.W then
-- TODO: bad width.
raise Internal_Error;
end if;
if Bounds then
return Reshape_Value (Val, Dtype);
else
return Val;
end if;
when Type_Slice =>
-- TODO: check width
return Val;
when Type_Array =>
pragma Assert (Vtype.Kind = Type_Array);
-- TODO: check bounds, handle elements
return Val;
when Type_Unbounded_Array =>
pragma Assert (Vtype.Kind = Type_Array);
return Val;
when Type_Unbounded_Vector =>
pragma Assert (Vtype.Kind = Type_Vector
or else Vtype.Kind = Type_Slice);
return Val;
when Type_Record =>
-- TODO: handle elements.
return Val;
end case;
end Synth_Subtype_Conversion;
function Synth_Name (Syn_Inst : Synth_Instance_Acc; Name : Node)
return Value_Acc is
begin
case Get_Kind (Name) is
when Iir_Kind_Simple_Name =>
return Synth_Name (Syn_Inst, Get_Named_Entity (Name));
when Iir_Kind_Interface_Signal_Declaration
| Iir_Kind_Variable_Declaration
| Iir_Kind_Interface_Variable_Declaration
| Iir_Kind_Signal_Declaration
| Iir_Kind_Anonymous_Signal_Declaration
| Iir_Kind_Interface_Constant_Declaration
| Iir_Kind_Constant_Declaration
| Iir_Kind_Iterator_Declaration
| Iir_Kind_Object_Alias_Declaration =>
return Get_Value (Syn_Inst, Name);
when Iir_Kind_Enumeration_Literal =>
return Create_Value_Discrete
(Int64 (Get_Enum_Pos (Name)),
Get_Value_Type (Syn_Inst, Get_Type (Name)));
when others =>
Error_Kind ("synth_name", Name);
end case;
end Synth_Name;
function In_Bounds (Bnd : Bound_Type; V : Int32) return Boolean is
begin
case Bnd.Dir is
when Iir_To =>
return V >= Bnd.Left and then V <= Bnd.Right;
when Iir_Downto =>
return V <= Bnd.Left and then V >= Bnd.Right;
end case;
end In_Bounds;
function Index_To_Offset (Bnd : Bound_Type; Idx : Int64; Loc : Node)
return Uns32 is
begin
if not In_Bounds (Bnd, Int32 (Idx)) then
Error_Msg_Synth (+Loc, "index not within bounds");
return 0;
end if;
-- The offset is from the LSB (bit 0). Bit 0 is the rightmost one.
case Bnd.Dir is
when Iir_To =>
return Uns32 (Bnd.Right - Int32 (Idx));
when Iir_Downto =>
return Uns32 (Int32 (Idx) - Bnd.Right);
end case;
end Index_To_Offset;
function Dyn_Index_To_Offset
(Bnd : Bound_Type; Idx_Val : Value_Acc; Loc : Node) return Net
is
Idx2 : Net;
Off : Net;
Right : Net;
begin
Idx2 := Synth_Resize (Idx_Val, Bnd.Wbounds, Loc);
if Bnd.Right = 0 and then Bnd.Dir = Iir_Downto then
-- Simple case without adjustments.
return Idx2;
end if;
Right := Build_Const_UB32 (Build_Context, To_Uns32 (Bnd.Right),
Bnd.Wbounds);
Set_Location (Right, Loc);
case Bnd.Dir is
when Iir_To =>
-- L <= I <= R --> off = R - I
Off := Build_Dyadic (Build_Context, Id_Sub, Right, Idx2);
when Iir_Downto =>
-- L >= I >= R --> off = I - R
Off := Build_Dyadic (Build_Context, Id_Sub, Idx2, Right);
end case;
Set_Location (Off, Loc);
return Off;
end Dyn_Index_To_Offset;
-- Return the bounds of a one dimensional array/vector type and the
-- width of the element.
procedure Get_Onedimensional_Array_Bounds
(Typ : Type_Acc; Bnd : out Bound_Type; El_Typ : out Type_Acc) is
begin
case Typ.Kind is
when Type_Vector =>
El_Typ := Typ.Vec_El;
Bnd := Typ.Vbound;
when Type_Array =>
El_Typ := Typ.Arr_El;
Bnd := Typ.Abounds.D (1);
when others =>
raise Internal_Error;
end case;
end Get_Onedimensional_Array_Bounds;
function Create_Onedimensional_Array_Subtype
(Btyp : Type_Acc; Bnd : Bound_Type) return Type_Acc
is
Res : Type_Acc;
Bnds : Bound_Array_Acc;
begin
case Btyp.Kind is
when Type_Vector =>
Res := Create_Vector_Type (Bnd, Btyp.Vec_El);
when Type_Unbounded_Vector =>
Res := Create_Vector_Type (Bnd, Btyp.Uvec_El);
when Type_Array =>
pragma Assert (Btyp.Abounds.Len = 1);
Bnds := Create_Bound_Array (1);
Bnds.D (1) := Bnd;
Res := Create_Array_Type (Bnds, Btyp.Arr_El);
when Type_Unbounded_Array =>
pragma Assert (Btyp.Uarr_Ndim = 1);
Bnds := Create_Bound_Array (1);
Bnds.D (1) := Bnd;
Res := Create_Array_Type (Bnds, Btyp.Uarr_El);
when others =>
raise Internal_Error;
end case;
return Res;
end Create_Onedimensional_Array_Subtype;
procedure Synth_Indexed_Name (Syn_Inst : Synth_Instance_Acc;
Name : Node;
Pfx_Type : Type_Acc;
Voff : out Net;
Off : out Uns32;
W : out Width)
is
Indexes : constant Iir_Flist := Get_Index_List (Name);
Idx_Expr : constant Node := Get_Nth_Element (Indexes, 0);
Idx_Val : Value_Acc;
Idx_Type : Type_Acc;
Bnd : Bound_Type;
El_Typ : Type_Acc;
begin
if Get_Nbr_Elements (Indexes) /= 1 then
Error_Msg_Synth (+Name, "multi-dim arrays not yet supported");
raise Internal_Error;
end if;
-- Use the base type as the subtype of the index is not synth-ed.
Idx_Type := Get_Value_Type
(Syn_Inst, Get_Base_Type (Get_Type (Idx_Expr)));
Idx_Val := Synth_Expression_With_Type (Syn_Inst, Idx_Expr, Idx_Type);
Get_Onedimensional_Array_Bounds (Pfx_Type, Bnd, El_Typ);
W := El_Typ.W;
if Idx_Val.Kind = Value_Discrete then
Voff := No_Net;
Off := Index_To_Offset (Bnd, Idx_Val.Scal, Name) * W;
else
Voff := Dyn_Index_To_Offset (Bnd, Idx_Val, Name);
Voff := Build_Memidx (Get_Build (Syn_Inst), Voff, W, Bnd.Len - 1,
Width (Clog2 (Uns64 (W * Bnd.Len))));
Set_Location (Voff, Name);
Off := 0;
end if;
end Synth_Indexed_Name;
function Is_Const (N : Net) return Boolean is
begin
case Get_Id (Get_Module (Get_Net_Parent (N))) is
when Id_Const_UB32 =>
return True;
when others =>
return False;
end case;
end Is_Const;
function Get_Const (N : Net) return Int32
is
Inst : constant Instance := Get_Net_Parent (N);
begin
case Get_Id (Get_Module (Inst)) is
when Id_Const_UB32 =>
return To_Int32 (Get_Param_Uns32 (Inst, 0));
when others =>
raise Internal_Error;
end case;
end Get_Const;
procedure Decompose_Mul_Add (Val : Net;
Inp : out Net;
Factor : out Int32;
Addend : out Int32)
is
Inst : Instance;
Val_I0, Val_I1 : Net;
begin
Factor := 1;
Addend := 0;
Inp := Val;
loop
Inst := Get_Net_Parent (Inp);
case Get_Id (Get_Module (Inst)) is
when Id_Add =>
Val_I0 := Get_Input_Net (Inst, 0);
Val_I1 := Get_Input_Net (Inst, 1);
if Is_Const (Val_I0) then
Addend := Addend + Get_Const (Val_I0) * Factor;
Inp := Val_I1;
elsif Is_Const (Val_I1) then
Addend := Addend + Get_Const (Val_I1) * Factor;
Inp := Val_I0;
else
-- It's an addition, but without any constant value.
return;
end if;
when Id_Sub =>
Val_I0 := Get_Input_Net (Inst, 0);
Val_I1 := Get_Input_Net (Inst, 1);
if Is_Const (Val_I1) then
Addend := Addend - Get_Const (Val_I1) * Factor;
Inp := Val_I0;
else
-- It's a substraction, but without any constant value.
return;
end if;
when Id_Smul =>
Val_I0 := Get_Input_Net (Inst, 0);
Val_I1 := Get_Input_Net (Inst, 1);
if Is_Const (Val_I0) then
Factor := Factor * Get_Const (Val_I0);
Inp := Val_I1;
elsif Is_Const (Val_I1) then
Factor := Factor * Get_Const (Val_I1);
Inp := Val_I0;
else
-- A mul but without any constant value.
return;
end if;
when Id_Utrunc
| Id_Uextend =>
Inp := Get_Input_Net (Inst, 0);
when others =>
-- Cannot decompose it.
return;
end case;
end loop;
end Decompose_Mul_Add;
function Is_Same (L, R : Net) return Boolean is
begin
if L = R then
return True;
end if;
if Get_Width (L) /= Get_Width (R) then
return False;
end if;
declare
Linst : constant Instance := Get_Net_Parent (L);
Rinst : constant Instance := Get_Net_Parent (R);
begin
if Get_Id (Linst) /= Get_Id (Rinst) then
return False;
end if;
case Get_Id (Linst) is
when Id_Uextend =>
-- When index is extended from a subtype.
return Is_Same (Get_Input_Net (Linst, 0),
Get_Input_Net (Rinst, 0));
when Id_Extract =>
-- When index is extracted from a record.
if Get_Param_Uns32 (Linst, 0) /= Get_Param_Uns32 (Rinst, 0) then
return False;
end if;
return Is_Same (Get_Input_Net (Linst, 0),
Get_Input_Net (Rinst, 0));
when others =>
return False;
end case;
end;
end Is_Same;
-- Identify LEFT to/downto RIGHT as:
-- INP * STEP + WIDTH - 1 + OFF to/downto INP * STEP + OFF
procedure Synth_Extract_Dyn_Suffix (Loc : Node;
Pfx_Bnd : Bound_Type;
Left : Net;
Right : Net;
Inp : out Net;
Step : out Uns32;
Off : out Uns32;
Width : out Uns32)
is
L_Inp, R_Inp : Net;
L_Fac, R_Fac : Int32;
L_Add, R_Add : Int32;
begin
Inp := No_Net;
Step := 0;
Off := 0;
Width := 0;
if Left = Right then
L_Inp := Left;
R_Inp := Right;
L_Fac := 1;
R_Fac := 1;
L_Add := 0;
R_Add := 0;
else
Decompose_Mul_Add (Left, L_Inp, L_Fac, L_Add);
Decompose_Mul_Add (Right, R_Inp, R_Fac, R_Add);
end if;
if not Is_Same (L_Inp, R_Inp) then
Error_Msg_Synth
(+Loc, "cannot extract same variable part for dynamic slice");
return;
end if;
Inp := L_Inp;
if L_Fac /= R_Fac then
Error_Msg_Synth
(+Loc, "cannot extract same constant factor for dynamic slice");
return;
end if;
-- FIXME: what to do with negative values.
Step := Uns32 (L_Fac);
case Pfx_Bnd.Dir is
when Iir_To =>
Off := Uns32 (L_Add - Pfx_Bnd.Left);
Width := Uns32 (R_Add - L_Add + 1);
when Iir_Downto =>
Off := Uns32 (R_Add - Pfx_Bnd.Right);
Width := Uns32 (L_Add - R_Add + 1);
end case;
end Synth_Extract_Dyn_Suffix;
procedure Synth_Slice_Const_Suffix (Name : Node;
Pfx_Bnd : Bound_Type;
L, R : Int64;
Dir : Iir_Direction;
El_Wd : Width;
Res_Bnd : out Bound_Type;
Off : out Uns32;
Wd : out Width)
is
Len : Uns32;
begin
if Pfx_Bnd.Dir /= Dir then
Error_Msg_Synth (+Name, "direction mismatch in slice");
Off := 0;
Wd := 0;
return;
end if;
if not In_Bounds (Pfx_Bnd, Int32 (L))
or else not In_Bounds (Pfx_Bnd, Int32 (R))
then
Error_Msg_Synth (+Name, "index not within bounds");
Wd := 0;
Off := 0;
return;
end if;
case Pfx_Bnd.Dir is
when Iir_To =>
Len := Uns32 (R - L + 1);
Res_Bnd := (Dir => Iir_To,
Wbounds => Pfx_Bnd.Wbounds,
Len => Len,
Left => Int32 (L),
Right => Int32 (R));
Off := Uns32 (Pfx_Bnd.Right - Res_Bnd.Right) * El_Wd;
when Iir_Downto =>
Len := Uns32 (L - R + 1);
Res_Bnd := (Dir => Iir_Downto,
Wbounds => Pfx_Bnd.Wbounds,
Len => Len,
Left => Int32 (L),
Right => Int32 (R));
Off := Uns32 (Res_Bnd.Right - Pfx_Bnd.Right) * El_Wd;
end case;
Wd := Len * El_Wd;
end Synth_Slice_Const_Suffix;
procedure Synth_Slice_Suffix (Syn_Inst : Synth_Instance_Acc;
Name : Node;
Pfx_Bnd : Bound_Type;
El_Wd : Width;
Res_Bnd : out Bound_Type;
Inp : out Net;
Off : out Uns32;
Wd : out Width)
is
Expr : constant Node := Get_Suffix (Name);
Left, Right : Value_Acc;
Dir : Iir_Direction;
Step : Uns32;
Max : Uns32;
Inp_W : Width;
begin
Off := 0;
case Get_Kind (Expr) is
when Iir_Kind_Range_Expression =>
Left := Synth_Expression_With_Basetype
(Syn_Inst, Get_Left_Limit (Expr));
Right := Synth_Expression_With_Basetype
(Syn_Inst, Get_Right_Limit (Expr));
Dir := Get_Direction (Expr);
when Iir_Kind_Range_Array_Attribute =>
declare
Rng : Discrete_Range_Type;
W : Width;
begin
Synth_Discrete_Range (Syn_Inst, Expr, Rng, W);
Inp := No_Net;
Synth_Slice_Const_Suffix (Name, Pfx_Bnd,
Rng.Left, Rng.Right, Rng.Dir,
El_Wd, Res_Bnd, Off, Wd);
return;
end;
when others =>
Error_Msg_Synth
(+Expr, "only range expression supported for slices");
end case;
if Is_Const_Val (Left) and then Is_Const_Val (Right) then
Inp := No_Net;
Synth_Slice_Const_Suffix
(Name, Pfx_Bnd,
Get_Const_Discrete (Left), Get_Const_Discrete (Right), Dir,
El_Wd, Res_Bnd, Off, Wd);
else
if Pfx_Bnd.Dir /= Dir then
Error_Msg_Synth (+Name, "direction mismatch in slice");
Inp := No_Net;
Off := 0;
Wd := 0;
return;
end if;
if Is_Const (Left) or else Is_Const (Right) then
Error_Msg_Synth
(+Name, "left and right bounds of a slice must be "
& "either constant or dynamic");
return;
end if;
Synth_Extract_Dyn_Suffix
(Name, Pfx_Bnd, Get_Net (Left), Get_Net (Right),
Inp, Step, Off, Wd);
Inp_W := Get_Width (Inp);
-- FIXME: convert range to offset.
-- Extract max from the range.
-- example: len=128 wd=8 step=8 => max=16
-- len=8 wd=4 step=1 => max=4
-- max so that max*step+wd <= len - off
-- max <= (len - off - wd) / step
Max := (Pfx_Bnd.Len - Off - Wd) / Step;
if Clog2 (Uns64 (Max)) > Natural (Inp_W) then
-- The width of Inp limits the max.
Max := 2**Natural (Inp_W) - 1;
end if;
Inp := Build_Memidx
(Get_Build (Syn_Inst),
Inp, Step * El_Wd, Max,
Inp_W + Width (Clog2 (Uns64 (Step * El_Wd))));
Wd := Wd * El_Wd;
end if;
end Synth_Slice_Suffix;
-- Match: clk_signal_name'event
-- and return clk_signal_name.
function Extract_Event_Expr_Prefix (Expr : Node) return Node is
begin
if Get_Kind (Expr) = Iir_Kind_Event_Attribute then
return Get_Prefix (Expr);
else
return Null_Node;
end if;
end Extract_Event_Expr_Prefix;
function Is_Same_Node (Left, Right : Node) return Boolean is
begin
if Get_Kind (Left) /= Get_Kind (Right) then
return False;
end if;
case Get_Kind (Left) is
when Iir_Kind_Simple_Name =>
return Get_Named_Entity (Left) = Get_Named_Entity (Right);
when others =>
Error_Kind ("is_same_node", Left);
end case;
end Is_Same_Node;
-- Match: clk_signal_name = '1' | clk_signal_name = '0'
function Extract_Clock_Level
(Syn_Inst : Synth_Instance_Acc; Expr : Node; Prefix : Node) return Net
is
Clk : Net;
Imp : Node;
Left, Right : Node;
Lit : Node;
Posedge : Boolean;
begin
Clk := Get_Net (Synth_Name (Syn_Inst, Prefix));
if Get_Kind (Expr) /= Iir_Kind_Equality_Operator then
Error_Msg_Synth (+Expr, "ill-formed clock-level, '=' expected");
return Build_Edge (Build_Context, Clk);
end if;
Imp := Get_Implementation (Expr);
if Get_Implicit_Definition (Imp) /= Iir_Predefined_Enum_Equality then
Error_Msg_Synth (+Expr, "ill-formed clock-level, '=' expected");
return Build_Edge (Build_Context, Clk);
end if;
Left := Get_Left (Expr);
Right := Get_Right (Expr);
if Get_Kind (Right) /= Iir_Kind_Character_Literal then
Error_Msg_Synth
(+Expr, "ill-formed clock-level, '0' or '1' expected");
return Build_Edge (Build_Context, Clk);
end if;
Lit := Get_Named_Entity (Right);
if Lit = Vhdl.Std_Package.Bit_0
or else Lit = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_0
then
Posedge := False;
elsif Lit = Vhdl.Std_Package.Bit_1
or else Lit = Vhdl.Ieee.Std_Logic_1164.Std_Ulogic_1
then
Posedge := True;
else
Error_Msg_Synth
(+Lit, "ill-formed clock-level, '0' or '1' expected");
Posedge := True;
end if;
if not Is_Same_Node (Prefix, Left) then
Error_Msg_Synth
(+Left, "clock signal name doesn't match");
end if;
if not Posedge then
Clk := Build_Monadic (Build_Context, Id_Not, Clk);
end if;
return Build_Edge (Build_Context, Clk);
end Extract_Clock_Level;
-- Try to match: clk'event and clk = X
-- or: clk = X and clk'event
-- where X is '0' or '1'.
function Synth_Clock_Edge
(Syn_Inst : Synth_Instance_Acc; Left, Right : Node) return Net
is
Prefix : Node;
begin
-- Try with left.
Prefix := Extract_Event_Expr_Prefix (Left);
if Is_Valid (Prefix) then
return Extract_Clock_Level (Syn_Inst, Right, Prefix);
end if;
-- Try with right.
Prefix := Extract_Event_Expr_Prefix (Right);
if Is_Valid (Prefix) then
return Extract_Clock_Level (Syn_Inst, Left, Prefix);
end if;
return No_Net;
end Synth_Clock_Edge;
function Synth_Type_Conversion (Syn_Inst : Synth_Instance_Acc; Conv : Node)
return Value_Acc
is
Expr : constant Node := Get_Expression (Conv);
Conv_Type : constant Node := Get_Type (Conv);
Conv_Typ : constant Type_Acc := Get_Value_Type (Syn_Inst, Conv_Type);
Val : Value_Acc;
begin
Val := Synth_Expression_With_Basetype (Syn_Inst, Expr);
case Get_Kind (Conv_Type) is
when Iir_Kind_Integer_Subtype_Definition =>
if Val.Typ.Kind = Type_Discrete then
-- Int to int.
return Val;
elsif Val.Typ.Kind = Type_Float then
return Create_Value_Discrete (Int64 (Val.Fp), Conv_Typ);
else
Error_Msg_Synth (+Conv, "unhandled type conversion (to int)");
return null;
end if;
when Iir_Kind_Floating_Subtype_Definition =>
if Is_Const (Val) then
return Create_Value_Float (Fp64 (Val.Scal), Conv_Typ);
else
Error_Msg_Synth (+Conv, "unhandled type conversion (to float)");
return null;
end if;
when Iir_Kind_Array_Type_Definition
| Iir_Kind_Array_Subtype_Definition =>
case Conv_Typ.Kind is
when Type_Vector
| Type_Unbounded_Vector =>
return Val;
when others =>
Error_Msg_Synth
(+Conv, "unhandled type conversion (to array)");
return Val;
end case;
when others =>
Error_Msg_Synth (+Conv, "unhandled type conversion");
return null;
end case;
end Synth_Type_Conversion;
function Synth_Assoc_In (Syn_Inst : Synth_Instance_Acc;
Assoc : Node) return Value_Acc is
begin
if Get_Kind (Assoc) = Iir_Kind_Association_Element_By_Expression then
return Synth_Expression (Syn_Inst, Get_Actual (Assoc));
else
Error_Kind ("synth_assoc_in", Assoc);
end if;
end Synth_Assoc_In;
procedure Error_Unknown_Operator (Imp : Node; Loc : Node) is
begin
if Get_Kind (Get_Parent (Imp)) = Iir_Kind_Package_Declaration
and then (Get_Identifier
(Get_Library
(Get_Design_File (Get_Design_Unit (Get_Parent (Imp)))))
= Std_Names.Name_Ieee)
then
Error_Msg_Synth (+Loc, "unhandled predefined IEEE operator %i", +Imp);
Error_Msg_Synth (+Imp, " declared here");
else
Error_Msg_Synth (+Loc, "user defined operator %i not handled", +Imp);
end if;
end Error_Unknown_Operator;
function Synth_String_Literal
(Syn_Inst : Synth_Instance_Acc; Str : Node; Str_Typ : Type_Acc)
return Value_Acc
is
pragma Assert (Get_Kind (Str) = Iir_Kind_String_Literal8);
Id : constant String8_Id := Get_String8_Id (Str);
Str_Type : constant Node := Get_Type (Str);
El_Type : Type_Acc;
Bounds : Bound_Type;
Bnds : Bound_Array_Acc;
Res_Type : Type_Acc;
Res : Value_Acc;
Arr : Value_Array_Acc;
Pos : Nat8;
begin
case Str_Typ.Kind is
when Type_Vector =>
Bounds := Str_Typ.Vbound;
when Type_Array =>
Bounds := Str_Typ.Abounds.D (1);
when Type_Unbounded_Vector
| Type_Unbounded_Array =>
Bounds := Synth_Array_Bounds (Syn_Inst, Str_Type, 0);
when others =>
raise Internal_Error;
end case;
El_Type := Get_Value_Type (Syn_Inst, Get_Element_Subtype (Str_Type));
if El_Type.Kind in Type_Nets then
Res_Type := Create_Vector_Type (Bounds, El_Type);
else
Bnds := Create_Bound_Array (1);
Bnds.D (1) := Bounds;
Res_Type := Create_Array_Type (Bnds, El_Type);
end if;
Arr := Create_Value_Array (Iir_Index32 (Bounds.Len));
for I in Arr.V'Range loop
-- FIXME: use literal from type ??
Pos := Str_Table.Element_String8 (Id, Pos32 (I));
Arr.V (I) := Create_Value_Discrete (Int64 (Pos), El_Type);
end loop;
Res := Create_Value_Const_Array (Res_Type, Arr);
return Res;
end Synth_String_Literal;
function Synth_Expression_With_Type
(Syn_Inst : Synth_Instance_Acc; Expr : Node; Expr_Type : Type_Acc)
return Value_Acc
is
Res : Value_Acc;
begin
case Get_Kind (Expr) is
when Iir_Kinds_Dyadic_Operator =>
declare
Imp : constant Node := Get_Implementation (Expr);
Def : constant Iir_Predefined_Functions :=
Get_Implicit_Definition (Imp);
Edge : Net;
begin
-- Match clock-edge
if Def = Iir_Predefined_Boolean_And then
Edge := Synth_Clock_Edge (Syn_Inst,
Get_Left (Expr), Get_Right (Expr));
if Edge /= No_Net then
return Create_Value_Net (Edge, Boolean_Type);
end if;
end if;
-- FIXME: short-circuit operators ?
if Def in Iir_Predefined_Implicit
or else Def in Iir_Predefined_IEEE_Explicit
then
return Synth_Dyadic_Operation
(Syn_Inst, Imp, Get_Left (Expr), Get_Right (Expr), Expr);
else
Error_Unknown_Operator (Imp, Expr);
raise Internal_Error;
end if;
end;
when Iir_Kinds_Monadic_Operator =>
declare
Imp : constant Node := Get_Implementation (Expr);
Def : constant Iir_Predefined_Functions :=
Get_Implicit_Definition (Imp);
begin
if Def in Iir_Predefined_Implicit
or else Def in Iir_Predefined_IEEE_Explicit
then
return Synth_Monadic_Operation
(Syn_Inst, Imp, Get_Operand (Expr), Expr);
else
Error_Unknown_Operator (Imp, Expr);
raise Internal_Error;
end if;
end;
when Iir_Kind_Simple_Name
| Iir_Kind_Interface_Signal_Declaration -- For PSL.
| Iir_Kind_Signal_Declaration => -- For PSL.
return Synth_Name (Syn_Inst, Expr);
when Iir_Kind_Reference_Name =>
return Synth_Name (Syn_Inst, Get_Named_Entity (Expr));
when Iir_Kind_Indexed_Name
| Iir_Kind_Slice_Name =>
declare
Obj : Value_Acc;
Off : Uns32;
Typ : Type_Acc;
Voff : Net;
Rdwd : Width;
begin
Synth_Assignment_Prefix (Syn_Inst, Expr,
Obj, Off, Voff, Rdwd, Typ);
if Voff = No_Net and then Is_Const (Obj) then
pragma Assert (Off = 0);
return Obj;
end if;
return Synth_Read_Memory (Syn_Inst, Obj, Off, Voff, Typ, Expr);
end;
when Iir_Kind_Selected_Element =>
declare
Idx : constant Iir_Index32 :=
Get_Element_Position (Get_Named_Entity (Expr));
Pfx : constant Node := Get_Prefix (Expr);
Res_Typ : Type_Acc;
N : Net;
begin
Res := Synth_Expression (Syn_Inst, Pfx);
Strip_Const (Res);
Res_Typ := Res.Typ.Rec.E (Idx + 1).Typ;
if Res.Kind = Value_Const_Record then
return Res.Rec.V (Idx + 1);
else
N := Build_Extract
(Build_Context, Get_Net (Res),
Res.Typ.Rec.E (Idx + 1).Off, Get_Type_Width (Res_Typ));
Set_Location (N, Expr);
return Create_Value_Net (N, Res_Typ);
end if;
end;
when Iir_Kind_Character_Literal =>
return Synth_Expression_With_Type
(Syn_Inst, Get_Named_Entity (Expr), Expr_Type);
when Iir_Kind_Integer_Literal =>
return Create_Value_Discrete (Get_Value (Expr), Expr_Type);
when Iir_Kind_Floating_Point_Literal =>
return Create_Value_Float (Get_Fp_Value (Expr), Expr_Type);
when Iir_Kind_Physical_Int_Literal
| Iir_Kind_Physical_Fp_Literal =>
return Create_Value_Discrete
(Get_Physical_Value (Expr), Expr_Type);
when Iir_Kind_String_Literal8 =>
return Synth_String_Literal (Syn_Inst, Expr, Expr_Type);
when Iir_Kind_Enumeration_Literal =>
return Synth_Name (Syn_Inst, Expr);
when Iir_Kind_Type_Conversion =>
return Synth_Type_Conversion (Syn_Inst, Expr);
when Iir_Kind_Qualified_Expression =>
return Synth_Expression_With_Type
(Syn_Inst, Get_Expression (Expr),
Get_Value_Type (Syn_Inst, Get_Type (Get_Type_Mark (Expr))));
when Iir_Kind_Function_Call =>
declare
Imp : constant Node := Get_Implementation (Expr);
Clk : Net;
Edge : Net;
begin
if Imp = Vhdl.Ieee.Std_Logic_1164.Rising_Edge then
Clk := Get_Net
(Synth_Assoc_In
(Syn_Inst, Get_Parameter_Association_Chain (Expr)));
Edge := Build_Edge (Build_Context, Clk);
return Create_Value_Net (Edge, Boolean_Type);
elsif Imp = Vhdl.Ieee.Std_Logic_1164.Falling_Edge then
Clk := Get_Net
(Synth_Assoc_In
(Syn_Inst, Get_Parameter_Association_Chain (Expr)));
Clk := Build_Monadic (Build_Context, Id_Not, Clk);
Edge := Build_Edge (Build_Context, Clk);
return Create_Value_Net (Edge, Boolean_Type);
elsif Get_Implicit_Definition (Imp) /= Iir_Predefined_None then
return Synth_Predefined_Function_Call (Syn_Inst, Expr);
else
return Synth_User_Function_Call (Syn_Inst, Expr);
end if;
end;
when Iir_Kind_Aggregate =>
return Synth_Aggregate (Syn_Inst, Expr, Expr_Type);
when Iir_Kind_Simple_Aggregate =>
return Synth_Simple_Aggregate (Syn_Inst, Expr);
when Iir_Kind_Left_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (Int64 (B.Left), Expr_Type);
end;
when Iir_Kind_Right_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (Int64 (B.Right), Expr_Type);
end;
when Iir_Kind_High_Array_Attribute =>
declare
B : Bound_Type;
V : Int32;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
case B.Dir is
when Iir_To =>
V := B.Right;
when Iir_Downto =>
V := B.Left;
end case;
return Create_Value_Discrete (Int64 (V), Expr_Type);
end;
when Iir_Kind_Low_Array_Attribute =>
declare
B : Bound_Type;
V : Int32;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
case B.Dir is
when Iir_To =>
V := B.Left;
when Iir_Downto =>
V := B.Right;
end case;
return Create_Value_Discrete (Int64 (V), Expr_Type);
end;
when Iir_Kind_Length_Array_Attribute =>
declare
B : Bound_Type;
begin
B := Synth_Array_Attribute (Syn_Inst, Expr);
return Create_Value_Discrete (Int64 (B.Len), Expr_Type);
end;
when Iir_Kind_Overflow_Literal =>
declare
N : Net;
begin
Error_Msg_Synth
(+Expr, "error detected during analysis injected");
N := Build_Const_X (Get_Build (Syn_Inst), Expr_Type.W);
return Create_Value_Net (N, Expr_Type);
end;
when others =>
Error_Kind ("synth_expression_with_type", Expr);
end case;
end Synth_Expression_With_Type;
function Synth_Expression (Syn_Inst : Synth_Instance_Acc; Expr : Node)
return Value_Acc is
begin
return Synth_Expression_With_Type
(Syn_Inst, Expr, Get_Value_Type (Syn_Inst, Get_Type (Expr)));
end Synth_Expression;
function Synth_Expression_With_Basetype
(Syn_Inst : Synth_Instance_Acc; Expr : Node) return Value_Acc
is
Basetype : Type_Acc;
begin
Basetype := Get_Value_Type (Syn_Inst, Get_Base_Type (Get_Type (Expr)));
return Synth_Expression_With_Type (Syn_Inst, Expr, Basetype);
end Synth_Expression_With_Basetype;
end Synth.Expr;
|