aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/netlists-memories.adb
blob: 84267ea442365136a8d85944d71296a407339213 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
--  Extract memories.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Ada.Unchecked_Deallocation;
with Errorout; use Errorout;

with Grt.Algos;

with Netlists.Gates; use Netlists.Gates;
with Netlists.Utils; use Netlists.Utils;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Errors; use Netlists.Errors;
with Netlists.Concats;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Inference;

with Synth.Errors; use Synth.Errors;

package body Netlists.Memories is
   --  If set, be verbose why a memory is not found.  But the messages are
   --  a little bit cryptic.
   Flag_Memory_Verbose : constant Boolean := False;

   --  TODO:
   --  * Add an offset to Id_Mem_Wr_Sync to handle partial write,
   --    and do not create multiple memories in case of partial writes.  This
   --    will allow a representation closer to the Yosys one.
   --  * Handle multi-dim memories with some fixed addresses.  Here we need
   --    to split a memory into multiple ones.
   --  * Improve detection of synchronous read ports.  See mem03/

   --  What is a memory ?
   --
   --  A memory is obviously a memorizing element.  This means there is a
   --  logical loop between input and output.  Because there is a loop, a
   --  name is required in the HDL input to create a loop.  You cannot create
   --  a memory without a signal/variable name (but you can create a ROM
   --  without it).
   --  TODO: can it be proved ?
   --
   --  A memory is not a flip-flop nor a latch.  The reason is that only a
   --  part of the memory is worked on.  Only a part of the memory is read,
   --  and only a part of the memory is written (but a variable part).
   --  So, the logical loop is modified by using dyn_insert and read by
   --  using dyn_extract.  And muxes.
   --
   --  HDL structure of a memory (RAM).
   --
   --  A memory can be only be read or written partially, using either an
   --  indexed name of a slice.
   --
   --  Example1:
   --    val1 := mem (addr1)
   --  Example2:
   --    mem (addr2) <= val2;
   --
   --  A read generates a dyn_extract, while a write generates a dyn_insert.
   --
   --  It is possible to use a write enable, which is synthesized as a mux.
   --
   --  Example3:
   --   if en then
   --     mem (addr3) <= val3;
   --   end if;
   --
   --  So a dyn_insert can be followed by a mux, using these connections:
   --            _
   --           / |----- dyn_insert ----+----+
   --    out --|  |                     |    +---- inp
   --           \_|---------------------/
   --
   --  There might be several muxes, but using the same input when not
   --  selecting the dyn_insert.  They could be merged.
   --
   --  Additionally, a mux can also select between two writes.
   --
   --  Example4:
   --  if sel then
   --    mem (addr4a) <= val4a;
   --  else
   --    mem (addr4b) <= val4b;
   --  end if;
   --
   --  The netlist generated for this structure is:
   --            _
   --           / |----- dyn_insert ----\
   --    out --|  |                     +--------- inp
   --           \_|----- dyn_insert ----/
   --
   --  Note: a Dff may have replaced a mux if the enable is a clock edge.
   --
   --  Any write can be followed by another write.  Can be a dual-port memory,
   --  of write to different bytes.
   --
   --  Example5:
   --    mem(addr5a) <= val5a;
   --    mem(addr5b) <= val5b;
   --
   --  So, there can be a combination any of these elements, each having
   --  one input and one output.
   --  - O := dyn_insert(I)
   --  - O := mux(sel, el(I), I)
   --  - O := mux(sel, el1(I), el2(I))
   --  - O := el1(el2(I))
   --
   --
   --  Reads can happen anywhere.  But we will first consider only reads
   --  that occurs just after the dff (so synchronous reads) or just before
   --  the dff (asynchronous reads).
   --
   --  If there is another logical element, then this is not a memory.
   --
   --  How rams/roms are detected ?
   --  All dyn_extract/dyn_insert are gathered, and walked to the signal.
   --  Then all those signals are gathered: that's the candidate memories.
   --
   --  How rams/roms are qualified (from candidate memories to memories) ?
   --  There must be only dyn_insert/dyn_extract + muxes on the logical loop.
   --  Use a mark algorithm.
   --
   --  Once qualified:
   --  Merge muxes to the dyn_inserts.
   --  FIXME: position of dyn_extract wrt dyn_insert:
   --    if en then
   --      mem(ad1) := val1;
   --      val2 := mem(ad2);
   --    end if;
   --
   --  Strategy: merge muxes until the logical loop is only composed of
   --  dyn_insert/dyn_extract (+ signal and maybe dff).

   --  Follow signal from ORIG to discover memory ports size.
   --  Should be the same.
   procedure Check_Memory_Read_Ports (Orig : Instance;
                                      Data_W : out Width;
                                      Size : out Width)
   is
      Orig_Net : constant Net := Get_Output (Orig, 0);
      W : Width;
   begin
      --  By default, error.
      Data_W := 0;
      Size := 0;

      --  Check readers.
      declare
         Inp : Input;
         Extr_Inst : Instance;
         Idx : Instance;
         Step : Uns32;
      begin
         Inp := Get_First_Sink (Orig_Net);
         while Inp /= No_Input loop
            Extr_Inst := Get_Input_Parent (Inp);
            case Get_Id (Extr_Inst) is
               when Id_Dyn_Extract =>
                  --  Extract step from memidx gate.
                  Idx := Get_Net_Parent (Get_Input_Net (Extr_Inst, 1));
                  while Get_Id (Idx) = Id_Addidx loop
                     --  Multi-dim arrays, lowest index is the last one.
                     Idx := Get_Net_Parent (Get_Input_Net (Idx, 1));
                  end loop;
                  pragma Assert (Get_Id (Idx) = Id_Memidx);
                  Step := Get_Param_Uns32 (Idx, 0);

                  --  Check offset
                  if Get_Param_Uns32 (Extr_Inst, 0) /= 0 then
                     Info_Msg_Synth
                       (+Extr_Inst, "partial read from memory %n",
                        (1 => +Orig));
                     Data_W := 0;
                     return;
                  end if;
                  --  Check data width.
                  W := Get_Width (Get_Output (Extr_Inst, 0));
                  pragma Assert (W > 0);
                  if W > Step then
                     Info_Msg_Synth
                       (+Extr_Inst, "overlapping read from memory %n",
                        (1 => +Orig));
                     Data_W := 0;
                     return;
                  end if;
                  if Data_W = 0 then
                     pragma Assert (Step /= 0);
                     Data_W := Step;
                  elsif Data_W /= Step then
                     Info_Msg_Synth
                       (+Extr_Inst, "read from memory %n with different size",
                        (1 => +Orig));
                     Data_W := 0;
                     return;
                  end if;
               when Id_Dyn_Insert
                  | Id_Dyn_Insert_En
                  | Id_Mux2 =>
                  --  Probably a writer.
                  --  FIXME: check it has already been by writes.
                  null;
               when others =>
                  Info_Msg_Synth
                    (+Extr_Inst, "full read from memory %n", (1 => +Orig));
                  Data_W := 0;
                  return;
            end case;

            Inp := Get_Next_Sink (Inp);
         end loop;
      end;

      if Data_W = 0 then
         Info_Msg_Synth (+Orig, "memory %n is never read", (1 => +Orig));
         Data_W := 0;
      else
         Size := Get_Width (Orig_Net) / Data_W;
      end if;
   end Check_Memory_Read_Ports;

   --  Count the number of memidx in a memory address.
   function Count_Memidx (Addr : Net) return Natural
   is
      N : Net;
      Inst : Instance;
      Res : Natural;
   begin
      N := Addr;
      Res := 0;
      loop
         Inst := Get_Net_Parent (N);
         case Get_Id (Inst) is
            when Id_Memidx =>
               return Res + 1;
            when Id_Addidx =>
               if Get_Id (Get_Input_Instance (Inst, 1)) /= Id_Memidx then
                  raise Internal_Error;
               end if;
               Res := Res + 1;
               N := Get_Input_Net (Inst, 0);
            when Id_Const_X =>
               --  For a null wire.
               pragma Assert (Res = 0);
               pragma Assert (Get_Width (N) = 0);
               return 0;
            when others =>
               raise Internal_Error;
         end case;
      end loop;
   end Count_Memidx;

   --  Lower memidx/addidx to simpler gates (concat).
   --  MEM_SIZE: size of the memory (in bits).
   --  ADDR is the address net with memidx/addidx gates.
   --  VAL_WD is the width of the data port.
   procedure Convert_Memidx (Ctxt : Context_Acc;
                             Mem_Size : Uns32;
                             Addr : in out Net;
                             Val_Wd : Width)
   is
      --  Number of memidx.
      Nbr_Idx : constant Positive := Count_Memidx (Addr);
      Can_Free : constant Boolean := not Is_Connected (Addr);

      Mem_Depth : Uns32;
      Last_Size : Uns32;
      Low_Addr : Net;

      type Idx_Data is record
         Inst : Instance;
         Addr : Net;
      end record;
      type Idx_Array is array (Natural range <>) of Idx_Data;
      Indexes : Idx_Array (1 .. Nbr_Idx);
   begin
      --  Fill the INDEXES array.
      --  The convention is that input 0 of addidx is a memidx.
      declare
         P : Natural;
         N : Net;
         Inst : Instance;
         Inst2 : Instance;
      begin
         N := Addr;
         P := 0;
         loop
            Inst := Get_Net_Parent (N);
            case Get_Id (Inst) is
               when Id_Memidx =>
                  P := P + 1;
                  Indexes (P) := (Inst => Inst, Addr => No_Net);
                  exit;
               when Id_Addidx =>
                  Inst2 := Get_Input_Instance (Inst, 0);
                  if Get_Id (Inst2) /= Id_Memidx then
                     raise Internal_Error;
                  end if;
                  P := P + 1;
                  Indexes (P) := (Inst => Inst2, Addr => No_Net);
                  N := Get_Input_Net (Inst, 1);
               when others =>
                  raise Internal_Error;
            end case;
         end loop;
         pragma Assert (P = Nbr_Idx);
      end;

      --  Memory size is a multiple of data width.
      --  FIXME: doesn't work if only a part of the reg is a memory.
      if Mem_Size mod Val_Wd /= 0 then
         raise Internal_Error;
      end if;
      Mem_Depth := Mem_Size / Val_Wd;
      pragma Unreferenced (Mem_Depth);

      --  Do checks on memidx.
      Last_Size := Mem_Size;
      for I in Indexes'Range loop
         declare
            Inst : constant Instance := Indexes (I).Inst;
            Step : constant Uns32 := Get_Param_Uns32 (Inst, 0);
            Sub_Addr : constant Net := Get_Input_Net (Inst, 0);
            Addr_W : constant Width := Get_Width (Sub_Addr);
            Max : constant Uns32 := Get_Param_Uns32 (Inst, 1);
            Max_W : constant Width := Clog2 (Max + 1);
            Sub_Addr1 : Net;
            Sz : Uns32;
         begin
            --  Check max (from previous dimension).
            --  Check the memidx can index its whole input.
            pragma Assert (Max /= 0);
            Sz := (Max + 1) * Step;
            if Sz /= Last_Size then
               raise Internal_Error;
            end if;
            Last_Size := Step;

            if I = Indexes'Last then
               if Step /= Val_Wd then
                  raise Internal_Error;
               end if;
            end if;

            --  Check addr width.
            if Addr_W = 0 then
               raise Internal_Error;
            end if;
            if Addr_W > Max_W then
               --  Need to truncate.
               Sub_Addr1 := Build2_Trunc
                 (Ctxt, Id_Utrunc, Sub_Addr, Max_W, Get_Location (Inst));
            else
               Sub_Addr1 := Sub_Addr;
            end if;
            Indexes (I).Addr := Sub_Addr1;
         end;
      end loop;

      --  Lower (just concat addresses).
      declare
         use Netlists.Concats;
         Concat : Concat_Type;
      begin
         for I in reverse Indexes'Range loop
            Append (Concat, Indexes (I).Addr);
         end loop;

         Build (Ctxt, Concat, Low_Addr);
      end;

      --  Free addidx and memidx.
      if Can_Free then
         declare
            N : Net;
            Inp : Input;
            Inst : Instance;
            Inst2 : Instance;
         begin
            N := Addr;
            loop
               Inst := Get_Net_Parent (N);
               case Get_Id (Inst) is
                  when Id_Memidx =>
                     Inp := Get_Input (Inst, 0);
                     Disconnect (Inp);
                     Remove_Instance (Inst);
                     exit;
                  when Id_Addidx =>
                     --  Remove the first input (a memidx).
                     Inp := Get_Input (Inst, 0);
                     Inst2 := Get_Net_Parent (Get_Driver (Inp));
                     pragma Assert (Get_Id (Inst2) = Id_Memidx);
                     Disconnect (Inp);
                     Inp := Get_Input (Inst2, 0);
                     Disconnect (Inp);
                     Remove_Instance (Inst2);

                     --  Continue with the second input.
                     Inp := Get_Input (Inst, 1);
                     N := Get_Driver (Inp);
                     Disconnect (Inp);

                     --  Remove the addidx.
                     Remove_Instance (Inst);
                  when others =>
                     raise Internal_Error;
               end case;
            end loop;
         end;
      end if;

      Addr := Low_Addr;
   end Convert_Memidx;

   procedure Convert_Memidx (Ctxt : Context_Acc;
                             Mem : Instance;
                             Addr : in out Net;
                             Val_Wd : Width)
   is
      Mem_Size : constant Uns32 := Get_Width (Get_Output (Mem, 0));
   begin
      Convert_Memidx (Ctxt, Mem_Size, Addr, Val_Wd);
   end Convert_Memidx;

   --  Return True iff MUX_INP is a mux2 input whose output is connected to a
   --  dff to create a DFF with enable (the other mux2 input is connected to
   --  the dff output).
   function Is_Enable_Dff (Mux_Inp : Input) return Boolean
   is
      Mux_Inst : constant Instance := Get_Input_Parent (Mux_Inp);
      pragma Assert (Get_Id (Mux_Inst) = Id_Mux2);
      Mux_Out : constant Net := Get_Output (Mux_Inst, 0);
      Inp : Input;
      Dff_Inst : Instance;
      Dff_Out : Net;
   begin
      Inp := Get_First_Sink (Mux_Out);
      if Inp = No_Input or else Get_Next_Sink (Inp) /= No_Input then
         --  The output of the mux must be connected to one input.
         return False;
      end if;
      Dff_Inst := Get_Input_Parent (Inp);
      if Get_Id (Dff_Inst) /= Id_Dff then
         return False;
      end if;
      Dff_Out := Get_Output (Dff_Inst, 0);

      if Mux_Inp = Get_Input (Mux_Inst, 1) then
         return Skip_Signal (Get_Input_Net (Mux_Inst, 2)) = Dff_Out;
      else
         return Skip_Signal (Get_Input_Net (Mux_Inst, 1)) = Dff_Out;
      end if;
   end Is_Enable_Dff;

   --  INST is a Dyn_Extract.
   --  If INST is followed by a dff or a dff+enable (with mux2), return the
   --  dff in LAST_INST, the clock in CLK and the enable in EN.
   procedure Extract_Extract_Dff (Ctxt : Context_Acc;
                                  Inst : Instance;
                                  Last_Inst : out Instance;
                                  Clk : out Net;
                                  En : out Net)
   is
      Val : constant Net := Get_Output (Inst, 0);
      Inp : Input;
      Iinst : Instance;
   begin
      Inp := Get_First_Sink (Val);
      if Get_Next_Sink (Inp) = No_Input then
         --  There is a single input.
         Iinst := Get_Input_Parent (Inp);
         if Get_Id (Iinst) = Id_Dff then
            --  The output of the dyn_extract is directly connected to a dff.
            --  So this is a synchronous read without enable.
            declare
               Clk_Inp : Input;
            begin
               Clk_Inp := Get_Input (Iinst, 0);
               Clk := Get_Driver (Clk_Inp);
               Disconnect (Clk_Inp);
               En := No_Net;
               Disconnect (Inp);
               Last_Inst := Iinst;
               return;
            end;
         elsif Get_Id (Iinst) = Id_Mux2 and then Is_Enable_Dff (Inp) then
            declare
               Mux_Out : constant Net := Get_Output (Iinst, 0);
               Mux_En_Inp : constant Input := Get_Input (Iinst, 0);
               Mux_I0_Inp : constant Input := Get_Input (Iinst, 1);
               Mux_I1_Inp : constant Input := Get_Input (Iinst, 2);
               Dff_Din : constant Input := Get_First_Sink (Mux_Out);
               Dff_Inst : constant Instance := Get_Input_Parent (Dff_Din);
               Dff_Out : constant Net := Get_Output (Dff_Inst, 0);
               Clk_Inp : constant Input := Get_Input (Dff_Inst, 0);
            begin
               Clk := Get_Driver (Clk_Inp);
               En := Get_Driver (Mux_En_Inp);
               if Dff_Out = Get_Driver (Mux_I1_Inp) then
                  En := Build_Monadic (Ctxt, Id_Not, En);
                  Copy_Location (En, Iinst);
               end if;
               Disconnect (Mux_En_Inp);
               Disconnect (Mux_I0_Inp);
               Disconnect (Mux_I1_Inp);
               Disconnect (Dff_Din);
               Disconnect (Clk_Inp);
               Remove_Instance (Iinst);
               Last_Inst := Dff_Inst;
               return;
            end;
         end if;
      end if;

      Last_Inst := Inst;
      Clk := No_Net;
      En := No_Net;
   end Extract_Extract_Dff;

   --  If dyn_extract gate EXTRACT is followed by a concat and a dff, then
   --  swap the dff and the concat.  This will allow to merge the dff during
   --  the build of mem_rd_sync.
   --  This creates new gates (the dff is replicated) that will be removed.
   procedure Maybe_Swap_Concat_Mux_Dff (Ctxt : Context_Acc; Extract : Instance)
   is
      Extr_Out : constant Net := Get_Output (Extract, 0);
      Concat : Instance;
      Concat_Out : Net;
      Dff : Instance;
      Clk, En : Net;
      Loc : Location_Type;
   begin
      if not Has_One_Connection (Extr_Out) then
         --  The dyn_extract is connected to more than one gate.
         return;
      end if;

      Concat := Get_Input_Parent (Get_First_Sink (Extr_Out));
      case Get_Id (Concat) is
         when Concat_Module_Id
           |  Id_Concatn =>
            null;
         when others =>
            --  Not a concat.
            return;
      end case;

      Concat_Out := Get_Output (Concat, 0);
      if not Has_One_Connection (Concat_Out) then
         --  The concat is connected to more than one gate.
         return;
      end if;
      for I in 1 .. Get_Nbr_Inputs (Concat) loop
         declare
            Src : constant Net := Get_Input_Net (Concat, I - 1);
         begin
            if Get_Id (Get_Net_Parent (Src)) /= Id_Dyn_Extract then
               --  A source of concat is not a dyn_extract.
               return;
            end if;
            if not Has_One_Connection (Src) then
               --  A source of concat drives something else!
               return;
            end if;
         end;
      end loop;

      Extract_Extract_Dff (Ctxt, Concat, Dff, Clk, En);
      if Clk = No_Net then
         return;
      end if;

      --  Replicate the dff.
      Loc := Get_Location (Dff);
      for I in 1 .. Get_Nbr_Inputs (Concat) loop
         declare
            Inp : constant Input := Get_Input (Concat, I - 1);
            Dff2 : Net;
            Mux : Net;
            Dff2_Inp : Input;
            Src : Net;
         begin
            Src := Disconnect_And_Get (Inp);

            Dff2 := Build_Dff (Ctxt, Clk, Src);
            Set_Location (Dff2, Loc);
            Connect (Inp, Dff2);

            if En /= No_Net then
               Dff2_Inp := Get_Input (Get_Net_Parent (Dff2), 1);
               Mux := Build_Mux2 (Ctxt, En, Dff2, Src);
               Set_Location (Mux, Loc);
               Disconnect (Dff2_Inp);
               Connect (Dff2_Inp, Mux);
            end if;
         end;
      end loop;

      --  Reconnect the concat.
      Redirect_Inputs (Get_Output (Dff, 0), Concat_Out);
      Remove_Instance (Dff);
   end Maybe_Swap_Concat_Mux_Dff;

   procedure Maybe_Swap_Mux_Concat_Dff (Ctxt : Context_Acc; Extract : Instance)
   is
      Concat     : Instance;
      Concat_Out : Net;
      Dff        : Instance;
      Dff_Inp    : Input;
      Dff_Out    : Net;
      Dff_Off    : Uns32;
      Clk, En    : Net;
      Loc        : Location_Type;
   begin
      declare
         Extr_Out   : constant Net := Get_Output (Extract, 0);
         Mux_Inp    : Input;
         Mux        : Instance;
         Mux_Out    : Net;
         Concat_Inp : Input;
      begin
         if not Has_One_Connection (Extr_Out) then
            --  The dyn_extract is connected to more than one gate.
            return;
         end if;

         --  The output is connected to a Mux2.
         Mux_Inp := Get_First_Sink (Extr_Out);
         Mux := Get_Input_Parent (Mux_Inp);
         if Get_Id (Mux) /= Id_Mux2 then
            --  Not a mux2.
            return;
         end if;
         Mux_Out := Get_Output (Mux, 0);

         if not Has_One_Connection (Mux_Out) then
            return;
         end if;

         --  The Mux2 output is connected to a concat.
         Concat_Inp := Get_First_Sink (Mux_Out);
         Concat := Get_Input_Parent (Concat_Inp);
         case Get_Id (Concat) is
            when Concat_Module_Id
               | Id_Concatn =>
               null;
            when others =>
               --  Not a concat.
               return;
         end case;

         --  The concat is connected to a dff.
         Concat_Out := Get_Output (Concat, 0);
         if not Has_One_Connection (Concat_Out) then
            --  The concat is connected to more than one gate.
            return;
         end if;
         Dff_Inp := Get_First_Sink (Concat_Out);
         Dff := Get_Input_Parent (Dff_Inp);
         if Get_Id (Dff) /= Id_Dff then
            return;
         end if;
      end;

      --  Check all concat inputs are connected to a mux2, which is
      --  connected to a dyn_extract.
      Dff_Out := Get_Output (Dff, 0);
      Dff_Off := 0;
      for I in reverse 1 .. Get_Nbr_Inputs (Concat) loop
         declare
            Mux_Net   : constant Net := Get_Input_Net (Concat, I - 1);
            Mux_Inst  : constant Instance := Get_Net_Parent (Mux_Net);
            Extr_Net  : Net;
            Extr_Inst : Instance;
         begin
            if Get_Id (Mux_Inst) /= Id_Mux2 then
               return;
            end if;
            if not Has_One_Connection (Mux_Net) then
               --  A source of concat drives something else!
               return;
            end if;

            Extr_Net := Get_Input_Net (Mux_Inst, 2);
            if Get_Id (Get_Net_Parent (Extr_Net)) /= Id_Dyn_Extract then
               --  A source of concat is not a dyn_extract.
               return;
            end if;
            if not Has_One_Connection (Extr_Net) then
               --  A source of concat drives something else!
               return;
            end if;

            --  Check the Mux2 is a enable for the dff.
            Extr_Net := Get_Input_Net (Mux_Inst, 1);
            Extr_Inst := Get_Net_Parent (Extr_Net);
            if Get_Id (Extr_Inst) /= Id_Extract then
               return;
            end if;
            if Get_Param_Uns32 (Extr_Inst, 0) /= Dff_Off then
               return;
            end if;
            if Get_Input_Net (Extr_Inst, 0) /= Dff_Out then
               return;
            end if;
            Dff_Off := Dff_Off + Get_Width (Mux_Net);
         end;
      end loop;

      Extract_Extract_Dff (Ctxt, Concat, Dff, Clk, En);
      if Clk = No_Net then
         return;
      end if;
      --  There is no additional enabler for the dff.
      pragma Assert (En = No_Net);

      --  Replicate the dff.
      Loc := Get_Location (Dff);
      for I in 1 .. Get_Nbr_Inputs (Concat) loop
         declare
            Inp       : constant Input := Get_Input (Concat, I - 1);
            Dff2      : Net;
            Mux_Inst2 : Instance;
            Mux_Inp2  : Input;
            Src       : Net;
            Extr_Out2 : Net;
            Extr_Inst2 : Instance;
         begin
            --  Disconnect the mux2.
            Src := Disconnect_And_Get (Inp);

            Dff2 := Build_Dff (Ctxt, Clk, Src);
            Set_Location (Dff2, Loc);
            Connect (Inp, Dff2);

            Mux_Inst2 := Get_Net_Parent (Src);
            Mux_Inp2 := Get_Input (Mux_Inst2, 1);
            Extr_Out2 := Disconnect_And_Get (Mux_Inp2);
            Connect (Mux_Inp2, Dff2);

            Extr_Inst2 := Get_Net_Parent (Extr_Out2);
            Disconnect (Get_Input (Extr_Inst2, 0));
            Remove_Instance (Extr_Inst2);
         end;
      end loop;

      --  Reconnect the concat.
      Redirect_Inputs (Get_Output (Dff, 0), Concat_Out);
      Remove_Instance (Dff);
   end Maybe_Swap_Mux_Concat_Dff;

   --  Generic procedure to call CB on each memory future port (dyn_insert
   --  or dyn_extract).
   generic
      type Data_Type is private;
      with procedure Cb (Inst : Instance;
                         Data : in out Data_Type;
                         Fail : out Boolean);
   procedure Foreach_Port (Sig : Instance; Data : in out Data_Type);

   procedure Foreach_Port (Sig : Instance; Data : in out Data_Type)
   is
      Fail : Boolean;
      Inst, Inst2 : Instance;
      Inp2        : Input;
   begin
      --  Top-level loop, for each parallel path of multiport RAMs.
      Inp2 := Get_First_Sink (Get_Output (Sig, 0));
      while Inp2 /= No_Input loop
         Inst2 := Get_Input_Parent (Inp2);
         case Get_Id (Inst2) is
            when Id_Dyn_Extract =>
               Cb (Inst2, Data, Fail);
               if Fail then
                  return;
               end if;
            when Id_Dyn_Insert
               | Id_Dyn_Insert_En =>
               Cb (Inst2, Data, Fail);
               if Fail then
                  return;
               end if;
               --  Walk till the signal.
               Inst := Inst2;
               loop
                  declare
                     Inp : Input;
                     N_Inst : Instance;
                     In_Inst : Instance;
                  begin
                     --  Check gates connected to the output.
                     Inp := Get_First_Sink (Get_Output (Inst, 0));
                     N_Inst := No_Instance;
                     while Inp /= No_Input loop
                        In_Inst := Get_Input_Parent (Inp);
                        case Get_Id (In_Inst) is
                           when Id_Dyn_Extract =>
                              Cb (In_Inst, Data, Fail);
                              if Fail then
                                 return;
                              end if;
                           when Id_Dyn_Insert_En
                              | Id_Dyn_Insert =>
                              Cb (In_Inst, Data, Fail);
                              if Fail then
                                 return;
                              end if;
                              pragma Assert (N_Inst = No_Instance);
                              N_Inst := In_Inst;
                           when Id_Signal
                              | Id_Isignal
                              | Id_Mem_Multiport
                              | Id_Dff
                              | Id_Idff =>
                              pragma Assert (N_Inst = No_Instance);
                              N_Inst := In_Inst;
                           when Id_Mdff
                              | Id_Midff =>
                              if Inp = Get_Input (In_Inst, 1) then
                                 pragma Assert (N_Inst = No_Instance);
                                 N_Inst := In_Inst;
                              end if;
                           when others =>
                              raise Internal_Error;
                        end case;
                        Inp := Get_Next_Sink (Inp);
                     end loop;
                     Inst := N_Inst;
                     exit when Inst = Sig;
                  end;
               end loop;
            when others =>
               raise Internal_Error;
         end case;
         Inp2 := Get_Next_Sink (Inp2);
      end loop;
   end Foreach_Port;

   type Gather_Ports_Type is record
      Ports : Instance_Array_Acc;
      Nports : Nat32;
   end record;

   procedure Gather_Ports_Cb
     (Inst : Instance; Data : in out Gather_Ports_Type; Fail : out Boolean) is
   begin
      Data.Nports := Data.Nports + 1;
      Data.Ports (Data.Nports) := Inst;
      Fail := False;
   end Gather_Ports_Cb;

   procedure Gather_Ports_Foreach is
     new Foreach_Port (Data_Type => Gather_Ports_Type,
                       Cb => Gather_Ports_Cb);

   --  Fill PORTS with all the ports from the SIG chain.
   procedure Gather_Ports (Sig : Instance; Ports : Instance_Array_Acc)
   is
      Data : Gather_Ports_Type;
   begin
      Data := (Ports, 0);
      Gather_Ports_Foreach (Sig, Data);
      pragma Assert (Data.Nports = Ports'Last);
   end Gather_Ports;

   --  Check if the index of Memidx MIDX is of the form: MAX - off,
   --  where MAX is the maximum value of off.
   function Is_Reverse_Range (Midx : Instance) return Boolean
   is
      pragma Assert (Get_Id (Midx) = Id_Memidx);
      Sub : constant Instance := Get_Input_Instance (Midx, 0);
      Val : Instance;
   begin
      if Get_Id (Sub) /= Id_Sub then
         return False;
      end if;
      Val := Get_Input_Instance (Sub, 0);
      if Get_Id (Val) /= Id_Const_UB32 then
         return False;
      end if;
      return Get_Param_Uns32 (Val, 0) = Get_Param_Uns32 (Midx, 1);
   end Is_Reverse_Range;

   --  Direction TO in address port generates a sub (as vectors are normalized
   --  on the DOWNTO direction).  Simply remap the memory by removing all the
   --  subs.
   procedure Maybe_Remap_Address
     (Ctxt : Context_Acc; Sig : Instance; Nbr_Ports : Nat32)
   is
      pragma Unreferenced (Ctxt);
      Ports : Instance_Array_Acc;
   begin
      Ports := new Instance_Array (1 .. Nbr_Ports);

      --  1. Gather all ports.
      Gather_Ports (Sig, Ports);

      --  2. From ports, get the index.
      for I in Ports'Range loop
         declare
            P   : constant Instance := Ports (I);
            Idx : Input;
         begin
            case Get_Id (P) is
               when Id_Dyn_Extract =>
                  Idx := Get_Input (P, 1);
               when Id_Dyn_Insert
                  | Id_Dyn_Insert_En =>
                  Idx := Get_Input (P, 2);
               when others =>
                  raise Internal_Error;
            end case;
            Ports (I) := Get_Net_Parent (Get_Driver (Idx));
         end;
      end loop;

      --  3.  For each dimension
      loop
         declare
            M          : Instance;
            Done       : Boolean;
            Idx        : Net;
            Is_Reverse : Boolean;
            W          : Width;
            Step       : Uns32;
            Max        : Uns32;
         begin
            Done := False;
            for I in Ports'Range loop
               --  Get the index (memidx gate).
               M := Ports (I);
               case Get_Id (M) is
                  when Id_Memidx =>
                     null;
                  when Id_Addidx =>
                     M := Get_Input_Instance (M, 0);
                     pragma Assert (Get_Id (M) = Id_Memidx);
                  when others =>
                     raise Internal_Error;
               end case;

               Idx := Get_Input_Net (M, 0);
               if I = 1 then
                  W := Get_Width (Idx);
                  Step := Get_Param_Uns32 (M, 0);
                  Max := Get_Param_Uns32 (M, 1);
                  Is_Reverse := Is_Reverse_Range (M);
               else
                  if Get_Width (Idx) /= W
                    or else Get_Param_Uns32 (M, 0) /= Step
                    or else Get_Param_Uns32 (M, 1) /= Max
                    or else Is_Reverse_Range (M) /= Is_Reverse
                  then
                     --  Different width, steps or direction.
                     Done := True;
                     exit;
                  end if;
               end if;
            end loop;

            exit when Done;

            --  Update ports.
            for I in Ports'Range loop
               M := Ports (I);
               case Get_Id (M) is
                  when Id_Memidx =>
                     Ports (I) := No_Instance;
                     Done := True;
                  when Id_Addidx =>
                     Ports (I) := Get_Input_Instance (M, 1);
                     M := Get_Input_Instance (M, 0);
                     pragma Assert (Get_Id (M) = Id_Memidx);
                  when others =>
                     raise Internal_Error;
               end case;

               if Is_Reverse then
                  declare
                     Inp : constant Input := Get_Input (M, 0);
                     Sub : constant Instance :=
                       Get_Net_Parent (Get_Driver (Inp));
                     Addr_Inp : constant Input := Get_Input (Sub, 1);
                     Val : Net;
                  begin
                     --  Disconnect the sub, and connect the address directly.
                     Disconnect (Inp);
                     Connect (Inp, Disconnect_And_Get (Addr_Inp));
                     --  Remove the sub and the constant.
                     Val := Disconnect_And_Get (Get_Input (Sub, 0));
                     Remove_Instance (Get_Net_Parent (Val));
                     Remove_Instance (Sub);
                  end;
               end if;
            end loop;
            exit when Done;
         end;
      end loop;

      Free_Instance_Array (Ports);
   end Maybe_Remap_Address;

   --  Create a mem_rd/mem_rd_sync from a dyn_extract gate.
   --  LAST is the last memory port on the chain.
   --  ADDR is the address (from the dyn_extract).
   --  VAL is the output of the dyn_extract.
   --
   --  Infere a synchronous read if the dyn_extract is connected to a dff.
   function Create_ROM_Read_Port
     (Ctxt : Context_Acc; Last : Net; Addr : Net; Val : Net; Step : Width)
     return Instance
   is
      W : constant Width := Get_Width (Val);
      Res : Instance;
      Inp : Input;
      Iinst : Instance;
      N : Net;
   begin
      Inp := Get_First_Sink (Val);
      if Get_Next_Sink (Inp) = No_Input then
         --  There is a single input.
         Iinst := Get_Input_Parent (Inp);
         if Get_Id (Iinst) = Id_Dff then
            --  The output of the dyn_extract is directly connected to a dff.
            --  So this is a synchronous read without enable.
            declare
               Clk_Inp : Input;
               Clk : Net;
               En : Net;
            begin
               Clk_Inp := Get_Input (Iinst, 0);
               Clk := Get_Driver (Clk_Inp);
               Disconnect (Clk_Inp);
               En := Build_Const_UB32 (Ctxt, 1, 1);
               Disconnect (Inp);
               Res := Build_Mem_Rd_Sync (Ctxt, Last, Addr, Clk, En, Step);

               --  Slice the output.
               N := Get_Output (Res, 1);
               N := Build2_Extract (Ctxt, N, 0, W);

               Redirect_Inputs (Get_Output (Iinst, 0), N);
               Remove_Instance (Iinst);
               return Res;
            end;
         elsif Get_Id (Iinst) = Id_Mux2 and then Is_Enable_Dff (Inp) then
            declare
               Mux_Out : constant Net := Get_Output (Iinst, 0);
               Mux_En_Inp : constant Input := Get_Input (Iinst, 0);
               Mux_I0_Inp : constant Input := Get_Input (Iinst, 1);
               Mux_I1_Inp : constant Input := Get_Input (Iinst, 2);
               Dff_Din : constant Input := Get_First_Sink (Mux_Out);
               Dff_Inst : constant Instance := Get_Input_Parent (Dff_Din);
               Dff_Out : constant Net := Get_Output (Dff_Inst, 0);
               Clk_Inp : constant Input := Get_Input (Dff_Inst, 0);
               Clk : constant Net := Get_Driver (Clk_Inp);
               En : Net;
            begin
               En := Get_Driver (Mux_En_Inp);
               if Dff_Out = Get_Driver (Mux_I1_Inp) then
                  En := Build_Monadic (Ctxt, Id_Not, En);
                  Copy_Location (En, Dff_Inst);
               end if;
               Disconnect (Mux_En_Inp);
               Disconnect (Mux_I0_Inp);
               Disconnect (Mux_I1_Inp);
               Disconnect (Dff_Din);
               Disconnect (Clk_Inp);
               Remove_Instance (Iinst);
               Res := Build_Mem_Rd_Sync (Ctxt, Last, Addr, Clk, En, Step);
               Set_Location (Res, Get_Location (Dff_Inst));

               --  Slice the output.
               N := Get_Output (Res, 1);
               N := Build2_Extract (Ctxt, N, 0, W);

               Redirect_Inputs (Dff_Out, N);
               Remove_Instance (Dff_Inst);
               return Res;
            end;
         end if;
      end if;

      --  Replace Dyn_Extract with mem_rd.
      Res := Build_Mem_Rd (Ctxt, Last, Addr, Step);

      --  Slice the output.
      N := Get_Output (Res, 1);
      N := Build2_Extract (Ctxt, N, 0, W);

      Redirect_Inputs (Val, N);

      return Res;
   end Create_ROM_Read_Port;

   --  MEM_INST is the memory instance.
   procedure Replace_ROM_Read_Ports
     (Ctxt : Context_Acc; Orig : Instance; Mem_Inst : Instance; Step : Width)
   is
      Orig_Net : constant Net := Get_Output (Orig, 0);
      Last : Net;
      Inp : Input;
      Next_Inp : Input;
      Extr_Inst : Instance;
      Addr_Inp : Input;
      Addr : Net;
      Val : Net;
      Port_Inst : Instance;
   begin
      Last := Get_Output (Mem_Inst, 0);

      --  Convert readers.
      Inp := Get_First_Sink (Orig_Net);
      while Inp /= No_Input loop
         Next_Inp := Get_Next_Sink (Inp);
         Extr_Inst := Get_Input_Parent (Inp);
         case Get_Id (Extr_Inst) is
            when Id_Memory_Init =>
               null;
            when Id_Dyn_Extract =>
               Disconnect (Inp);

               --  Check offset
               if Get_Param_Uns32 (Extr_Inst, 0) /= 0 then
                  raise Internal_Error;
               end if;

               --  Convert memidx.
               Addr_Inp := Get_Input (Extr_Inst, 1);
               Addr := Get_Driver (Addr_Inp);
               Disconnect (Addr_Inp);
               Val := Get_Output (Extr_Inst, 0);
               Convert_Memidx (Ctxt, Orig, Addr, Step);

               --  Replace Dyn_Extract with mem_rd.
               Port_Inst := Create_ROM_Read_Port (Ctxt, Last, Addr, Val, Step);

               Remove_Instance (Extr_Inst);

               Last := Get_Output (Port_Inst, 0);
            when others =>
               raise Internal_Error;
         end case;
         Inp := Next_Inp;
      end loop;

      --  Close the loop.
      Connect (Get_Input (Mem_Inst, 0), Last);
   end Replace_ROM_Read_Ports;

   --  ORIG (the memory) must be Const.
   procedure Replace_ROM_Memory
     (Ctxt : Context_Acc; Orig : Instance; Step : Width)
   is
      Orig_Net : constant Net := Get_Output (Orig, 0);
      Name : constant Sname := New_Internal_Name (Ctxt);
      Inst : Instance;
   begin
      Inst := Build_Memory_Init (Ctxt, Name, Get_Width (Orig_Net), Orig_Net);

      Replace_ROM_Read_Ports (Ctxt, Orig, Inst, Step);
   end Replace_ROM_Memory;

   type Get_Next_Status is
     (
      Status_None,
      Status_One,
      Status_Multiple
     );

   --  O is the output of a gate.  Returns the gate driven by O, ignoring
   --  Dyn_Extract or muxes to Dyn_Extract.
   --  Return No_Instance if there is no output or multiple outputs.
   procedure Get_Next_Non_Extract (O : Net;
                                   Status : out Get_Next_Status;
                                   Res : out Instance)
   is
      Inp : Input;
   begin
      Status := Status_None;
      Res := No_Instance;

      --  Scan all the gates driven by the output.
      Inp := Get_First_Sink (O);
      while Inp /= No_Input loop
         declare
            Pinst : constant Instance := Get_Input_Parent (Inp);
            This_Next_Inst : Instance;
         begin
            This_Next_Inst := No_Instance;

            case Get_Id (Pinst) is
               when Id_Dyn_Extract =>
                  --  Ignore dyn_extract
                  null;
               when Id_Mux2 =>
                  --  It is OK to have mux2, provided it is connected to
                  --  a dyn_extract.
                  declare
                     Mux_Out : constant Net := Get_Output (Pinst, 0);
                     Sub_Status : Get_Next_Status;
                     Sub_Res : Instance;
                  begin
                     if Mux_Out = O then
                        --  Avoid simple infinite recursion
                        Status := Status_None;
                        Res := No_Instance;
                        return;
                     end if;
                     Get_Next_Non_Extract (Mux_Out, Sub_Status, Sub_Res);
                     --  Expect Dyn_Extract, so no next.
                     if Sub_Status /= Status_None then
                        Status := Status_Multiple;
                        Res := No_Instance;
                        return;
                     end if;
                  end;
               when others =>
                  This_Next_Inst := Pinst;
            end case;
            if This_Next_Inst /= No_Instance then
               if Res /= No_Instance then
                  --  More than one next gate.
                  Status := Status_Multiple;
                  Res := No_Instance;
                  return;
               end if;
               Status := Status_One;
               Res := This_Next_Inst;
            end if;
         end;
         Inp := Get_Next_Sink (Inp);
      end loop;
   end Get_Next_Non_Extract;

   --  Try to reach Id_Signal/Id_Isignal (TODO: Id_Output) from dyn_insert
   --  gate FIRST_INST.  Can only walk through dyn_insert and muxes.
   --  Return the memory if found.
   function Walk_From_Insert (First_Inst : Instance) return Instance
   is
      Status : Get_Next_Status;
      Inst : Instance;
      Next_Inst : Instance;
      Last : Instance;
      O : Net;
   begin
      --  LAST is the last interesting gate (dyn_insert) which has a
      --  meaningful location.
      Last := First_Inst;

      Inst := First_Inst;
      loop
         case Get_Id (Inst) is
            when Id_Dyn_Insert
               | Id_Dyn_Insert_En =>
               if Get_Mark_Flag (Inst) then
                  --  Already seen.
                  return No_Instance;
               end if;
               Set_Mark_Flag (Inst, True);
               Last := Inst;
               O := Get_Output (Inst, 0);
            when Id_Mux2
               | Id_Mux4 =>
               O := Get_Output (Inst, 0);
            when Id_Dff
               | Id_Idff
               | Id_Mdff
               | Id_Midff =>
               O := Get_Output (Inst, 0);
            when Id_Isignal
               | Id_Signal =>
               return Inst;
            when Id_Mem_Multiport =>
               O := Get_Output (Inst, 0);
            when others =>
               if Flag_Memory_Verbose then
                  Info_Msg_Synth (+Last, "gate %i cannot be part of a memory",
                                  (1 => +Inst));
               end if;
               return No_Instance;
         end case;

         --  Next gate.
         Get_Next_Non_Extract (O, Status, Next_Inst);
         case Status is
            when Status_Multiple =>
                     --  More than one next gate.
               if Flag_Memory_Verbose then
                  Info_Msg_Synth
                    (+Last, "gate %i drives several gates", (1 => +Inst));
               end if;
               return No_Instance;
            when Status_None =>
               if Flag_Memory_Verbose then
                  Info_Msg_Synth
                    (+Last, "gate %i drives no gate", (1 => +Inst));
               end if;
               return No_Instance;
            when Status_One =>
               Inst := Next_Inst;
         end case;
      end loop;
   end Walk_From_Insert;

   function Walk_From_Extract (First_Inst : Instance) return Instance
   is
      Inst : Instance;
      Last : Instance;
   begin
      --  LAST is the last interesting gate (dyn_extract) which has a
      --  meaningful location.
      Last := First_Inst;

      Inst := First_Inst;
      loop
         case Get_Id (Inst) is
            when Id_Dyn_Extract =>
               if Get_Mark_Flag (Inst) then
                  --  Already seen.
                  return No_Instance;
               end if;
               Set_Mark_Flag (Inst, True);
               Last := Inst;
               Inst := Get_Input_Instance (Inst, 0);
            when Id_Isignal
               | Id_Signal
               | Id_Const_Bit
               | Id_Const_Log =>
               return Inst;
            when others =>
               if Flag_Memory_Verbose then
                  Info_Msg_Synth (+Last, "gate %i cannot be part of a memory",
                                  (1 => +Last));
               end if;
               return No_Instance;
         end case;
      end loop;
   end Walk_From_Extract;

   procedure Unmark_Table (Els : Instance_Tables.Instance)
   is
      Inst : Instance;
   begin
      for I in Instance_Tables.First .. Instance_Tables.Last (Els) loop
         Inst := Els.Table (I);
         Set_Mark_Flag (Inst, False);
      end loop;
   end Unmark_Table;

   --  INSERT is a Dyn_Insert[_En].  Get the next gates until reaching a
   --  signal.
   --  Validate that signal SIG is a RAM.  It must be a loop of inserts
   --  and extracts.
   function Validate_RAM_Simple (Insert : Instance) return Instance
   is
      Inst : Instance;
      N : Net;
      Inp : Input;
   begin
      --  For each gate of the chain, starting from LAST and going forward
      --  until the signal.
      N := Get_Output (Insert, 0);
      while N /= No_Net loop
         Inp := Get_First_Sink (N);
         N := No_Net;

         while Inp /= No_Input loop
            Inst := Get_Input_Parent (Inp);
            case Get_Id (Inst) is
               when Id_Dyn_Insert_En
                  | Id_Dyn_Insert
                  | Id_Mem_Multiport
                  | Id_Dff
                  | Id_Idff =>
                  if N /= No_Net then
                     --  There must be only one such gate per stage.
                     return No_Instance;
                  end if;
                  N := Get_Output (Inst, 0);
               when Id_Mdff
                 | Id_Midff =>
                  if Inp = Get_Input (Inst, 1) then
                     --  Data.
                     if N /= No_Net then
                        --  There must be only one such gate per stage.
                        return No_Instance;
                     end if;
                     N := Get_Output (Inst, 0);
                  else
                     --  Ignore.
                     null;
                  end if;
               when Id_Dyn_Extract =>
                  null;
               when Id_Isignal
                  | Id_Signal =>
                  return Inst;
               when others =>
                  return No_Instance;
            end case;
            Inp := Get_Next_Sink (Inp);
         end loop;
      end loop;
      return No_Instance;
   end Validate_RAM_Simple;

   --  Validate that signal SIG is a RAM.  It must be a loop of inserts
   --  and extracts.
   function Validate_RAM_Multiple (Sig : Instance) return Boolean
   is
      Ok : Boolean;
      Inst : Instance;
      N : Net;
      Inp : Input;
   begin
      Ok := False;
      N := Get_Output (Sig, 0);
      Inp := Get_First_Sink (N);

      --  For multiple ports, there can be parallel pathes.
      while Inp /= No_Input loop
         Inst := Get_Input_Parent (Inp);
         case Get_Id (Inst) is
            when Id_Dyn_Insert_En
               | Id_Dyn_Insert =>
               --  Look.
               if Validate_RAM_Simple (Inst) /= Sig then
                  return False;
               end if;
               Ok := True;
            when Id_Dyn_Extract =>
               null;
            when others =>
               return False;
         end case;
         Inp := Get_Next_Sink (Inp);
      end loop;

      --  Need at least one dyn_insert.
      return Ok;
   end Validate_RAM_Multiple;

   --  Test if V is part of the conjunction CONJ generated by mux2 controls.
   function In_Conjunction (Conj : Net; V : Net; Negate : Boolean)
                           return Boolean
   is
      Inst : Instance;
      N : Net;
   begin
      --  Simple case (but important for the memories)
      if V = Conj then
         return (not Negate);
      end if;

      N := Conj;
      Inst := Get_Net_Parent (N);
      loop
         Inst := Get_Net_Parent (N);
         if Get_Id (Inst) /= Id_And then
            return (N = V) xor Negate;
         end if;

         --  Inst is AND2.
         if Get_Input_Net (Inst, 0) = V then
            return (not Negate);
         end if;
         N := Get_Input_Net (Inst, 1);
      end loop;
   end In_Conjunction;

   --  Subroutine of Reduce_Extract_Muxes.
   --  MUX is a mux2 that is removed if possible.
   procedure Reduce_Extract_Muxes_Mux2 (Mux : Instance; Port : Port_Idx)
   is
      pragma Assert (Get_Id (Mux) = Id_Mux2);
      Sel : constant Net := Get_Input_Net (Mux, 0);
      Val : constant Net := Get_Input_Net (Mux, 1 + Port);
      Old : constant Net := Get_Input_Net (Mux, 1 + (1 - Port));
      First_Parent, Last_Parent : Instance;
      P : Instance;
      N : Net;
   begin
      --  Search the parent.
      First_Parent := Get_Net_Parent (Val);
      P := First_Parent;
      loop
         if Get_Id (P) /= Id_Dyn_Insert_En then
            if Flag_Memory_Verbose then
               Info_Msg_Synth
                 (+Mux, "mux %i before extract is not a bypass", (1 => +Mux));
            end if;
            return;
         end if;
         --  Get the MEM input.
         N := Get_Input_Net (P, 0);
         exit when N = Old;
         P := Get_Net_Parent (N);
      end loop;
      Last_Parent := P;

      --  Check not SEL (resp. SEL) implies disable for all dyn_insert_en
      --  parents.
      P := First_Parent;
      loop
         --  Get the enable of Dyn_Insert_En parent.
         N := Get_Input_Net (P, 3);
         if not In_Conjunction (N, Sel, Port = 0) then
            if Flag_Memory_Verbose then
               Info_Msg_Synth
                 (+Mux, "mux %i before extract is required",
                  (1 => +Mux));
            end if;
            return;
         end if;
         exit when P = Last_Parent;
         P := Get_Net_Parent (Get_Input_Net (P, 0));
      end loop;

      --  So Mux2 is not required.
      Disconnect (Get_Input (Mux, 0));
      Disconnect (Get_Input (Mux, 1));
      Disconnect (Get_Input (Mux, 2));
      Redirect_Inputs (Get_Output (Mux, 0), Val);
      Remove_Instance (Mux);
   end Reduce_Extract_Muxes_Mux2;

   --  SIG is a signal/isignal at the start of a memory, which consists of
   --  one or more chain of Dyn_Insert.  Dyn_Extract are also allowed on this
   --  chain.  It is also possible to have Mux2 before Dyn_Extract because of
   --  enable signals.
   --  Try to remove these mux2.
   --  * They should be between the output of a dyn_insert and the input of
   --    a dyn_extract
   --  * The other input of the mux2 must be a parent of the dyn_insert input
   --    (in the chain of dyn_insert).
   --  * All the dyn_insert until the parent must be disabled when the mux2 is
   --    disabled.
   procedure Reduce_Extract_Muxes (Sig : Instance)
   is
      N : Net;
      Inp : Input;
      Next_Inp : Input;
      Inst : Instance;
   begin
      N := Get_Output (Sig, 0);
      Inp := Get_First_Sink (N);
      while Inp /= No_Input loop
         --  INP can be removed, so get the next input now.
         Next_Inp := Get_Next_Sink (Inp);

         Inst := Get_Input_Parent (Inp);
         case Get_Id (Inst) is
            when Id_Dyn_Insert
               | Id_Dyn_Insert_En =>
               --  Recurse on it.
               Reduce_Extract_Muxes (Inst);
               Next_Inp := Get_Next_Sink (Inp);

            when Id_Mux2 =>
               if Inp = Get_Input (Inst, 1) then
                  --  Selected when Sel = 0
                  Reduce_Extract_Muxes_Mux2 (Inst, 0);
               elsif Inp = Get_Input (Inst, 2) then
                  --  Selected when Sel = 1
                  Reduce_Extract_Muxes_Mux2 (Inst, 1);
               else
                  raise Internal_Error;
               end if;
            when Id_Isignal
               | Id_Signal
               | Id_Mem_Multiport =>
               --  Stop here: do not recurse.
               null;
            when Id_Dyn_Extract =>
               --  Ignore.
               null;
            when others =>
               null;
         end case;
         Inp := Next_Inp;
      end loop;
   end Reduce_Extract_Muxes;

   type Off_Array is array (Int32 range <>) of Uns32;
   type Off_Array_Acc is access Off_Array;

   procedure Free_Off_Array is new Ada.Unchecked_Deallocation
     (Off_Array, Off_Array_Acc);

   function Off_Array_Search (Arr : Off_Array; Off : Uns32) return Int32 is
   begin
      for I in Arr'Range loop
         if Arr (I) = Off then
            return I;
         end if;
      end loop;
      raise Internal_Error;
   end Off_Array_Search;

   procedure Off_Array_To_Idx (Arr: Off_Array;
                               Off : Uns32;
                               Wd : Uns32;
                               Idx : out Int32;
                               Len : out Int32)
   is
      Idx2 : Int32;
   begin
      Idx := Off_Array_Search (Arr, Off);
      Idx2 := Off_Array_Search (Arr (Idx + 1 .. Arr'Last), Off + Wd);
      Len := Idx2 - Idx;
   end Off_Array_To_Idx;

   type Copy_Mode_Type is (Copy_Mode_Bit, Copy_Mode_Val, Copy_Mode_Zx);

   procedure Copy_Const_Content (Src : Instance;
                                 Src_Off : Width;
                                 Src_Wd : Width;
                                 Dst : Instance;
                                 Dst_Wd : Width;
                                 Depth : Uns32;
                                 Mode : Copy_Mode_Type)
   is
      function Off_To_Param (Off : Uns32) return Param_Idx
      is
         Res : constant Param_Idx := Param_Idx (Off / 32);
      begin
         case Mode is
            when Copy_Mode_Bit =>
               return Res;
            when Copy_Mode_Val =>
               return Res * 2;
            when Copy_Mode_Zx =>
               return Res * 2 + 1;
         end case;
      end Off_To_Param;

      Boff : Uns32;
      Nbits : Uns32;
      Word_Idx : Param_Idx;
      Word_Off : Uns32;

      Soff : Uns32;
      Slen : Uns32;
      Sval : Uns32;

      Doff : Uns32;
      Dlen : Uns32;
      Dval : Uns32;
   begin
      Boff := Src_Off;
      Doff := 0;
      for I in 0 .. Depth - 1 loop
         Nbits := Dst_Wd;
         Soff := Boff;
         while Nbits > 0 loop
            --  Try to read as much as possible.
            Word_Idx := Off_To_Param (Soff);
            Word_Off := Soff mod 32;
            Slen := 32 - Word_Off;
            if Slen > Nbits then
               Slen := Nbits;
            end if;
            Sval := Get_Param_Uns32 (Src, Word_Idx);
            --  Reframe (put at bit 0, mask extra bits).
            Sval := Shift_Right (Sval, Natural (Word_Off));
            Sval := Sval and Shift_Right (16#ffff_ffff#,
                                          Natural (32 - Slen));

            Soff := Soff + Slen;
            Nbits := Nbits - Slen;

            --  Store.
            while Slen > 0 loop
               Word_Idx := Off_To_Param (Doff);
               Word_Off := Doff mod 32;
               Dlen := 32 - Word_Off;
               if Dlen > Slen then
                  Dlen := Slen;
               end if;
               Dval := Sval and Shift_Right (16#ffff_ffff#,
                                             Natural (32 - Dlen));
               Dval := Shift_Left (Dval, Natural (Word_Off));
               Dval := Dval or Get_Param_Uns32 (Dst, Word_Idx);
               Set_Param_Uns32 (Dst, Word_Idx, Dval);

               Sval := Shift_Right (Sval, Natural (Dlen));
               Slen := Slen - Dlen;
               Doff := Doff + Dlen;
            end loop;
         end loop;
         Boff := Boff + Src_Wd;
      end loop;
   end Copy_Const_Content;

   --  From constant net CST (used to initialize a memory), extract DEPTH sub
   --  words (bits OFF:OFF + WD - 1).
   --  Used when memories are split.
   function Extract_Sub_Constant (Ctxt : Context_Acc;
                                  Cst : Instance;
                                  Cst_Wd : Uns32;
                                  Off : Uns32;
                                  Wd : Uns32;
                                  Depth : Uns32) return Net
   is
      pragma Assert (Depth /= 0);
      Mem_Wd : constant Width := Wd * Depth;
      Res : Instance;
   begin
      case Get_Id (Cst) is
         when Id_Const_Bit =>
            Res := Build_Const_Bit (Ctxt, Mem_Wd);
            Copy_Const_Content (Cst, Off, Cst_Wd, Res, Wd, Depth,
                                Copy_Mode_Bit);
            return Get_Output (Res, 0);
         when Id_Const_Log =>
            Res := Build_Const_Log (Ctxt, Mem_Wd);
            Copy_Const_Content (Cst, Off, Cst_Wd, Res, Wd, Depth,
                                Copy_Mode_Val);
            Copy_Const_Content (Cst, Off, Cst_Wd, Res, Wd, Depth,
                                Copy_Mode_Zx);
            return Get_Output (Res, 0);
         when Id_Const_UB32 =>
            declare
               N : Net;
            begin
               N := Build_Const_UB32 (Ctxt, 0, Mem_Wd);
               --  Optimize: no need to copy if the value is 0.
               if Get_Param_Uns32 (Cst, 0) /= 0 then
                  Res := Get_Net_Parent (N);
                  Copy_Const_Content (Cst, Off, Cst_Wd, Res, Wd, Depth,
                                      Copy_Mode_Bit);
               end if;
               return N;
            end;
         when Id_Const_UL32 =>
            declare
               N : Net;
            begin
               N := Build_Const_UL32 (Ctxt, 0, 0, Mem_Wd);
               --  Optimize: no need to copy if the value is 0.
               Res := Get_Net_Parent (N);
               Copy_Const_Content (Cst, Off, Cst_Wd, Res, Wd, Depth,
                                   Copy_Mode_Val);
               Copy_Const_Content (Cst, Off, Cst_Wd, Res, Wd, Depth,
                                   Copy_Mode_Zx);
               return N;
            end;
         when Id_Const_X =>
            return Build_Const_X (Ctxt, Mem_Wd);
         when others =>
            raise Internal_Error;
      end case;
   end Extract_Sub_Constant;

   --  Physical dimension of the memory.
   type Mem_Dim_Type is record
      Data_Wd : Width;
      Depth : Uns32;
      --  Number of dimensions.
      Dim : Natural;
   end record;

   --  Subroutine of Convert_To_Memory.
   --
   --  Compute the number of ports (dyn_extract and dyn_insert) and the width
   --  of the memory.  Just walk all the gates.
   procedure Compute_Ports_And_Dim
     (Sig : Instance; Nbr_Ports : out Int32; Dim : out Mem_Dim_Type)
   is
      type Ports_And_Dim_Data is record
         Nbr_Ports : Int32;
         Dim : Mem_Dim_Type;
         Sig : Instance;
      end record;

      procedure Ports_And_Dim_Cb (Dyn_Inst : Instance;
                                  Data : in out Ports_And_Dim_Data;
                                  Fail : out Boolean)
      is
         Res : Mem_Dim_Type;
         Inst : Instance;
         Idx : Instance;
      begin
         Fail := False;

         case Get_Id (Dyn_Inst) is
            when Id_Dyn_Extract =>
               Inst := Get_Input_Instance (Dyn_Inst, 1);
            when Id_Dyn_Insert
              | Id_Dyn_Insert_En =>
               Inst := Get_Input_Instance (Dyn_Inst, 2);
            when others =>
               raise Internal_Error;
         end case;

         Data.Nbr_Ports := Data.Nbr_Ports + 1;

         --  Extract the dim (equivalent to data width) of a dyn_insert or
         --  dyn_extract address.  This is either a memidx or an addidx gate.
         Res := (Data_Wd => 0, Depth => 1, Dim => 0);
         loop
            case Get_Id (Inst) is
               when Id_Addidx =>
                  --  Handle the memidx, ...
                  Idx := Get_Input_Instance (Inst, 0);
                  --  ..  and continue with the chain.
                  Inst := Get_Input_Instance (Inst, 1);
               when Id_Memidx =>
                  --  Just handle the memidx.
                  Idx := Inst;
                  Inst := No_Instance;
               when others =>
                  raise Internal_Error;
            end case;
            Res.Dim := Res.Dim + 1;
            Res.Data_Wd := Get_Param_Uns32 (Idx, 0);
            Res.Depth := Res.Depth * (Get_Param_Uns32 (Idx, 1) + 1);

            exit when Inst = No_Instance;
         end loop;

         if Data.Nbr_Ports = 1 then
            Data.Dim := Res;
         else
            --  TODO: handle different width and depth.
            if Res.Data_Wd /= Data.Dim.Data_Wd then
               Info_Msg_Synth (+Data.Sig, "memory %n uses different widths",
                               (1 => +Data.Sig));
               Data.Nbr_Ports := 0;
               Fail := True;
            elsif Res.Depth /= Data.Dim.Depth then
               Info_Msg_Synth (+Data.Sig, "memory %n uses different depth",
                               (1 => +Data.Sig));
               Data.Nbr_Ports := 0;
               Fail := True;
            end if;
         end if;
      end Ports_And_Dim_Cb;

      procedure Ports_And_Dim_Foreach_Port is new Foreach_Port
        (Data_Type => Ports_And_Dim_Data, Cb => Ports_And_Dim_Cb);

      Data : Ports_And_Dim_Data;
   begin
      Data := (Nbr_Ports => 0,
               Dim => (Data_Wd => 0, Depth => 0, Dim => 0),
               Sig => Sig);

      Ports_And_Dim_Foreach_Port (Sig, Data);

      Nbr_Ports := Data.Nbr_Ports;
      Dim := Data.Dim;
   end Compute_Ports_And_Dim;

   --  Subroutine of Convert_To_Memory.
   --
   --  Extract offsets/width of each port.
   procedure Extract_Ports_Offsets
     (Sig : Instance; Offs : Off_Array_Acc; Nbr_Offs : out Int32)
   is
      type Ports_Offsets_Data is record
         Offs : Off_Array_Acc;
         Nbr_Offs : Int32;
      end record;

      procedure Ports_Offsets_Cb (Inst : Instance;
                                  Data : in out Ports_Offsets_Data;
                                  Fail : out Boolean)
      is
         Off : Uns32;
         Wd : Uns32;
         Ow : Off_Array (1 .. 2);
      begin
         case Get_Id (Inst) is
            when Id_Dyn_Extract =>
               Off := Get_Param_Uns32 (Inst, 0);
               Wd := Get_Width (Get_Output (Inst, 0));
            when Id_Dyn_Insert_En
              | Id_Dyn_Insert =>
               Off := Get_Param_Uns32 (Inst, 0);
               Wd := Get_Width (Get_Input_Net (Inst, 1));
            when others =>
               raise Internal_Error;
         end case;

         Ow := (Off, Off + Wd);
         if Data.Nbr_Offs = 0 or else Ow /= Data.Offs (1 .. 2) then
            Data.Nbr_Offs := Data.Nbr_Offs + 2;
            Data.Offs (Data.Nbr_Offs -1 .. Data.Nbr_Offs) := Ow;
         end if;
         Fail := False;
      end Ports_Offsets_Cb;

      procedure Ports_Offsets_Foreach_Port is new Foreach_Port
        (Data_Type => Ports_Offsets_Data, Cb => Ports_Offsets_Cb);

      Data : Ports_Offsets_Data;
   begin
      Data := (Offs => Offs,
               Nbr_Offs => 0);

      Ports_Offsets_Foreach_Port (Sig, Data);
      Nbr_Offs := Data.Nbr_Offs;
   end Extract_Ports_Offsets;

   --  IN_INST is the Dyn_Extract gate.
   procedure Convert_RAM_Read_Port (Ctxt : Context_Acc;
                                    In_Inst : Instance;
                                    Mem_Sz : Uns32;
                                    Mem_W : Width;
                                    Offs : Off_Array_Acc;
                                    Tails : Net_Array_Acc;
                                    Outs : Net_Array_Acc)
   is
      Off : constant Uns32 := Get_Param_Uns32 (In_Inst, 0);
      Wd : constant Width := Get_Width (Get_Output (In_Inst, 0));
      Idx : Int32;
      Len : Int32;
      Addr : Net;
      Rd_Inst : Instance;
      Rd : Net;
      Inp2 : Input;
      En : Net;
      Clk : Net;
      Last_Inst : Instance;
   begin
      --  Find the corresponding memory/ies for the dyn_extract.
      Off_Array_To_Idx (Offs.all, Off, Wd, Idx, Len);

      Inp2 := Get_Input (In_Inst, 1);
      Addr := Get_Driver (Inp2);
      Disconnect (Inp2);

      --  Build the address net.
      Convert_Memidx (Ctxt, Mem_Sz, Addr, Mem_W);

      --  Optimize the network.
      Maybe_Swap_Concat_Mux_Dff (Ctxt, In_Inst);
      Maybe_Swap_Mux_Concat_Dff (Ctxt, In_Inst);

      Extract_Extract_Dff (Ctxt, In_Inst, Last_Inst, Clk, En);
      if Clk /= No_Net and then En = No_Net then
         En := Build_Const_UB32 (Ctxt, 1, 1);
      end if;
      --  iterate to build mem_rd/mem_rd_sync
      for I in Idx .. Idx + Len - 1 loop
         if Clk /= No_Net then
            Rd_Inst := Build_Mem_Rd_Sync (Ctxt, Tails (I), Addr, Clk, En,
                                          Offs (Idx + 1) - Offs (Idx));
         else
            Rd_Inst := Build_Mem_Rd (Ctxt, Tails (I), Addr,
                                     Offs (Idx + 1) - Offs (Idx));
         end if;
         Tails (I) := Get_Output (Rd_Inst, 0);
         Outs (I) := Get_Output (Rd_Inst, 1);
      end loop;
      Rd := Build2_Concat (Ctxt, Outs (Idx .. Idx + Len - 1));
      Redirect_Inputs (Get_Output (Last_Inst, 0), Rd);
      if Last_Inst /= In_Inst then
         Remove_Instance (Last_Inst);
      end if;
   end Convert_RAM_Read_Port;

   --  Subroutine of Convert_To_Memory.
   --
   --  Convert dyn_insert/dyn_extract to memory write/read ports.
   --  SIG is the isignal/signal gate.
   --  TAILS is the output of memories (so the next value to be read).
   --  OUTS is a temporary array.
   procedure Create_RAM_Ports (Ctxt : Context_Acc;
                               Sig : Instance;
                               Mem_Sz : Uns32;
                               Mem_W : Width;
                               Offs : Off_Array_Acc;
                               Tails : Net_Array_Acc;
                               Outs : Net_Array_Acc;
                               Ports : Instance_Array_Acc)
   is
      Inst, Inst2 : Instance;
      Inp, Inp2 : Input;
      N_Inp, N_Inp2 : Input;
      N_Inst : Instance;
      In_Inst : Instance;
      N_Ports : Nat32;
   begin
      --  Start from the end.
      --  First: the read ports at the end.
      Inp2 := Get_First_Sink (Get_Output (Sig, 0));
      while Inp2 /= No_Input loop
         N_Inp2 := Get_Next_Sink (Inp2);
         Inst2 := Get_Input_Parent (Inp2);
         case Get_Id (Inst2) is
            when Id_Dyn_Extract =>
               Convert_RAM_Read_Port
                 (Ctxt, Inst2, Mem_Sz, Mem_W, Offs, Tails, Outs);
               Disconnect (Get_Input (Inst2, 0));
               Remove_Instance (Inst2);
            when Id_Dyn_Insert_En
              | Id_Dyn_Insert =>
               null;
            when others =>
               raise Internal_Error;
         end case;
         Inp2 := N_Inp2;
      end loop;

      --  Second, the chains.
      Inp2 := Get_First_Sink (Get_Output (Sig, 0));
      N_Ports := 0;
      while Inp2 /= No_Input loop
         N_Inp2 := Get_Next_Sink (Inp2);
         Inst2 := Get_Input_Parent (Inp2);

         --  Do the real work: transform gates to ports.
         Disconnect (Get_Input (Inst2, 0));
         Inst := Inst2;
         loop
            --  Handle Inst.  If the output is connected to a write port,
            --  add it (after the read ports).
            case Get_Id (Inst) is
               when Id_Dyn_Insert_En
                 | Id_Dyn_Insert =>
                  declare
                     Off : constant Uns32 := Get_Param_Uns32 (Inst, 0);
                     Wd : constant Width :=
                       Get_Width (Get_Input_Net (Inst, 1));
                     Idx : Int32;
                     Len : Int32;
                     Addr : Net;
                     Wr_Inst : Instance;
                     Inp2 : Input;
                     Dat : Net;
                     En : Net;
                  begin
                     Off_Array_To_Idx (Offs.all, Off, Wd, Idx, Len);
                     Inp2 := Get_Input (Inst, 2);
                     Addr := Get_Driver (Inp2);
                     Disconnect (Inp2);
                     Convert_Memidx (Ctxt, Mem_Sz, Addr, Mem_W);
                     if Get_Id (Inst) = Id_Dyn_Insert_En then
                        Inp2 := Get_Input (Inst, 3);
                        En := Get_Driver (Inp2);
                        Disconnect (Inp2);
                     else
                        En := No_Net;
                     end if;
                     Inp2 := Get_Input (Inst, 1);
                     Dat := Get_Driver (Inp2);
                     for I in Idx .. Idx + Len - 1 loop
                        Wr_Inst := Build_Mem_Wr_Sync
                          (Ctxt, Tails (I), Addr, No_Net, En,
                           Build2_Extract (Ctxt, Dat, Offs (I) - Offs (Idx),
                                           Offs (I + 1) - Offs (I)));
                        --  Keep instance to add clock.
                        N_Ports := N_Ports + 1;
                        Ports (N_Ports) := Wr_Inst;
                        Tails (I) := Get_Output (Wr_Inst, 0);
                     end loop;
                     Disconnect (Inp2);
                  end;
               when Id_Dff
                  | Id_Idff
                  | Id_Mdff
                  | Id_Midff =>
                  --  Extract clock.
                  declare
                     En : Net;
                     Clk : Net;
                  begin
                     Inp2 := Get_Input (Inst, 0);
                     Inference.Extract_Clock
                       (Ctxt, Get_Driver (Inp2), Clk, En);
                     Disconnect (Inp2);
                     --  Assign clock.
                     for I in Ports'First .. N_Ports loop
                        declare
                           P : constant Instance := Ports (I);
                           En_Inp : constant Input := Get_Input (P, 3);
                           Mem_En : Net;
                        begin
                           Connect (Get_Input (P, 2), Clk);
                           Mem_En := Get_Driver (En_Inp);
                           if Mem_En /= No_Net then
                              Disconnect (En_Inp);
                              if En /= No_Net then
                                 Mem_En := Build_Dyadic (Ctxt, Id_And,
                                                     Mem_En, En);
                                 Copy_Location (Mem_En, Inst);
                              end if;
                           else
                              if En = No_Net then
                                 Mem_En := Build_Const_UB32 (Ctxt, 1, 1);
                              else
                                 Mem_En := En;
                              end if;
                           end if;
                           Connect (En_Inp, Mem_En);
                        end;
                     end loop;
                     N_Ports := 0;
                  end;
               when Id_Signal
                  | Id_Isignal =>
                  null;
               when others =>
                  raise Internal_Error;
            end case;

            --  Check gates connected to the output.
            --  First the read ports (dyn_extract), and also find the next
            --  gate in the loop.
            N_Inst := No_Instance;
            Inp := Get_First_Sink (Get_Output (Inst, 0));
            while Inp /= No_Input loop
               In_Inst := Get_Input_Parent (Inp);
               N_Inp := Get_Next_Sink (Inp);
               case Get_Id (In_Inst) is
                  when Id_Dyn_Extract =>
                     Convert_RAM_Read_Port
                       (Ctxt, In_Inst, Mem_Sz, Mem_W, Offs, Tails, Outs);
                     pragma Assert (Inp = Get_Input (In_Inst, 0));
                     Disconnect (Inp);
                     Remove_Instance (In_Inst);
                  when Id_Dyn_Insert_En
                     | Id_Dyn_Insert
                     | Id_Signal
                     | Id_Isignal =>
                     pragma Assert (Inp = Get_Input (In_Inst, 0));
                     Disconnect (Inp);
                     --  This is the next instance (and there must be only
                     --  one next instance).
                     pragma Assert (N_Inst = No_Instance);
                     N_Inst := In_Inst;
                  when Id_Mem_Multiport =>
                     Disconnect (Inp);
                     pragma Assert (N_Inst = No_Instance);
                     N_Inst := In_Inst;
                  when Id_Dff
                     | Id_Idff =>
                     Disconnect (Inp);
                     --  Disconnect outputs going to mdff.els
                     declare
                        Dout : constant Net := Get_Output (In_Inst, 0);
                        Inp2, N_Inp2 : Input;
                        Inp2_P : Instance;
                     begin
                        Inp2 := Get_First_Sink (Dout);
                        while Inp2 /= No_Input loop
                           N_Inp2 := Get_Next_Sink (Inp2);
                           Inp2_P := Get_Input_Parent (Inp2);
                           if (Get_Id (Inp2_P) = Id_Mdff
                                 or else Get_Id (Inp2_P) = Id_Midff)
                             and then Inp2 = Get_Input (Inp2_P, 2)
                           then
                              Disconnect (Inp2);
                           end if;
                           Inp2 := N_Inp2;
                        end loop;
                     end;
                     pragma Assert (N_Inst = No_Instance);
                     N_Inst := In_Inst;
                  when Id_Mdff
                     | Id_Midff =>
                     if Inp = Get_Input (In_Inst, 1) then
                        Disconnect (Inp);
                        pragma Assert (N_Inst = No_Instance);
                        N_Inst := In_Inst;
                     end if;
                  when others =>
                     raise Internal_Error;
               end case;
               Inp := N_Inp;
            end loop;

            --  Remove INST.
            case Get_Id (Inst) is
               when Id_Dyn_Insert_En
                  | Id_Dyn_Insert
                  | Id_Dff
                  | Id_Mdff =>
                  Remove_Instance (Inst);
               when Id_Midff =>
                  --  Foget initial value (the memory initial value is
                  --  extracted from the isignal).
                  Disconnect (Get_Input (Inst, 3));
                  Remove_Instance (Inst);
               when Id_Idff =>
                  --  Foget initial value (the memory initial value is
                  --  extracted from the isignal).
                  Disconnect (Get_Input (Inst, 2));
                  Remove_Instance (Inst);
               when Id_Signal
                  | Id_Isignal =>
                  null;
               when others =>
                  raise Internal_Error;
            end case;

            Inst := N_Inst;
            case Get_Id (Inst) is
               when Id_Signal
                  | Id_Isignal
                  | Id_Mem_Multiport =>
                  exit;
               when others =>
                  null;
            end case;
         end loop;
         Inp2 := N_Inp2;
      end loop;
   end Create_RAM_Ports;

   --  Return True iff the initial value of SIG is uniform (same value for
   --  all bits).
   function Is_Simple_Init (Sig : Instance) return Boolean
   is
      pragma Assert (Get_Id (Sig) = Id_Isignal);
      Cst : constant Instance := Get_Input_Instance (Sig, 1);
   begin
      case Get_Id (Cst) is
         when Id_Const_0
            | Id_Const_X =>
            return True;
         when Id_Const_UB32 =>
            return Get_Param_Uns32 (Cst, 0) = 0;
         when others =>
            return False;
      end case;
   end Is_Simple_Init;

   --  SIG is the signal/isignal.
   procedure Convert_To_Memory (Ctxt : Context_Acc; Sig : Instance)
   is
      --  Size of RAM (in bits).
      Mem_Sz : constant Uns32 := Get_Width (Get_Output (Sig, 0));

      Sig_Name : constant Sname := Get_Instance_Name (Sig);

      Dim : Mem_Dim_Type;

      --  Width of the RAM, computed from the step of memidx.
      --  Width is the length of the data bus.
      Mem_W : Width;

      --  Number of elements of the memory.
      --  Sz = W * Depth.
      Mem_Depth : Uns32;

      Nbr_Ports : Int32;
      Inst : Instance;
      Name : Sname;

      --  Table of offsets.
      --  The same RAM can be partially read or written: not all the bits of
      --  the data bus are read or written.  The RAM is split in several
      --  sub-rams which are fully read/written.
      --  This table will contain the offset of each sub-rams.
      Offs : Off_Array_Acc;
      Nbr_Offs : Int32;

      Heads : Instance_Array_Acc;
      Tails : Net_Array_Acc;
      Outs : Net_Array_Acc;
      Ports : Instance_Array_Acc;
   begin
      --  1. Walk to count number of insert/extract instances + extract width
      Nbr_Ports := 0;
      Mem_W := 0;
      Inst := Sig;
      Compute_Ports_And_Dim (Sig, Nbr_Ports, Dim);
      if Nbr_Ports = 0 then
         return;
      end if;
      Mem_W := Dim.Data_Wd;

      if Mem_W = 0 then
         --  No ports ?
         raise Internal_Error;
      end if;

      Mem_Depth := Mem_Sz / Mem_W;

      Info_Msg_Synth
        (+Sig, "found RAM %n, width: %v bits, depth: %v",
         (1 => +Sig, 2 => +Mem_W, 3 => +Mem_Depth));

      --  Change the address (convert 'to' direction to 'downto'), to simplify
      --  the logic.
      if Get_Id (Sig) = Id_Signal
        or else (Get_Id (Sig) = Id_Isignal and then Is_Simple_Init (Sig))
      then
         Maybe_Remap_Address (Ctxt, Sig, Nbr_Ports);
      end if;

      --  2. Walk to extract offsets/width
      --  NOTE: ideally, there are two kinds of offsets:
      --   * offsets within the width: when the data is a struct
      --   * offsets larger than the size: multiple memories, which may have
      --     different sizes.
      Offs := new Off_Array (1 .. 2 * Nbr_Ports);
      Extract_Ports_Offsets (Sig, Offs, Nbr_Offs);

      --  2.1 Sort the offsets.
      declare
         function Lt (Op1, Op2 : Natural) return Boolean is
         begin
            return Offs (Nat32 (Op1)) < Offs (Nat32 (Op2));
         end Lt;

         procedure Swap (From : Natural; To : Natural)
         is
            T : Uns32;
         begin
            T := Offs (Nat32 (From));
            Offs (Nat32 (From)) := Offs (Nat32 (To));
            Offs (Nat32 (To)) := T;
         end Swap;

         procedure Heap_Sort is new Grt.Algos.Heap_Sort
           (Lt => Lt, Swap => Swap);
      begin
         Heap_Sort (Natural (Nbr_Offs));
      end;

      --  2.2 Remove duplicates.
      declare
         P : Nat32;
      begin
         P := 1;
         for I in 2 .. Nbr_Offs loop
            if Offs (I) /= Offs (P) then
               P := P + 1;
               if P /= I then
                  Offs (P) := Offs (I);
               end if;
            end if;
         end loop;
         Nbr_Offs := P;
      end;

      if Offs (Nbr_Offs) < Mem_W then
         --  Be sure the whole data width is covered.
         --  FIXME: simply discard unused data bits ?
         Nbr_Offs := Nbr_Offs + 1;
         Offs (Nbr_Offs) := Mem_W;
      end if;

      --  3. Create array of instances
      --   HEADS contains the memory instance.
      --   TAILS contain the last link to the ports chain.
      --   OUTS is a temporary.
      Heads := new Instance_Array (1 .. Nbr_Offs - 1);
      Tails := new Net_Array (1 .. Nbr_Offs - 1);
      Outs := new Net_Array (1 .. Nbr_Offs - 1);
      Ports := new Instance_Array (1 .. Nbr_Ports * Nbr_Offs);

      --  4. Create Memory/Memory_Init from signal/isignal.
      for I in 1 .. Nbr_Offs - 1 loop
         --  Reuse signal name for the memory name.
         if Nbr_Offs = 2 then
            Name := Sig_Name;
         else
            Name := New_Sname_Version (Uns32 (I), Sig_Name);
         end if;

         declare
            Data_Wd : constant Width := Offs (I + 1) - Offs (I);
            Mem_Wd : constant Width := Data_Wd * Mem_Depth;
         begin
            case Get_Id (Sig) is
               when Id_Isignal =>
                  Heads (I) := Build_Memory_Init
                    (Ctxt, Name, Mem_Wd,
                     Extract_Sub_Constant
                       (Ctxt, Get_Input_Instance (Sig, 1),
                        Mem_W, Offs (I), Data_Wd, Mem_Depth));
               when Id_Signal =>
                  Heads (I) := Build_Memory (Ctxt, Name, Mem_Wd);
               when others =>
                  raise Internal_Error;
            end case;
            Copy_Instance_Attributes (Heads (I), Sig);
            Tails (I) := Get_Output (Heads (I), 0);
         end;
      end loop;

      --  5. For each part of the data, create memory ports
      Create_RAM_Ports (Ctxt, Sig, Mem_Sz, Mem_W, Offs, Tails, Outs, Ports);

      --  Close loops.
      for I in Heads'Range loop
         Connect (Get_Input (Heads (I), 0), Tails (I));
      end loop;

      --  Finish to remove the signal/isignal.
      case Get_Id (Inst) is
         when Id_Isignal =>
            Disconnect (Get_Input (Inst, 1));
         when Id_Signal =>
            null;
         when others =>
            raise Internal_Error;
      end case;

      declare
         Inst2 : Instance;
         Inp2 : Input;
         N2 : Net;
      begin
         --  The multiport.
         Inst2 := Inst;
         Inp2 := Get_Input (Inst2, 0);
         loop
            N2 := Get_Driver (Inp2);
            if N2 /= No_Net then
               Disconnect (Inp2);
               Remove_Instance (Inst2);
            else
               Remove_Instance (Inst2);
               exit;
            end if;
            Inst2 := Get_Net_Parent (N2);
            pragma Assert (Get_Id (Inst2) = Id_Mem_Multiport);
            pragma Assert (Get_Driver (Get_Input (Inst2, 0)) = No_Net);
            Inp2 := Get_Input (Inst2, 1);
         end loop;
      end;

      --  6. Cleanup.
      Free_Off_Array (Offs);
      Free_Instance_Array (Heads);
      Free_Net_Array (Tails);
      Free_Net_Array (Outs);
      Free_Instance_Array (Ports);
   end Convert_To_Memory;

   function Is_Const_Input (Inst : Instance) return Boolean is
   begin
      case Get_Id (Inst) is
         when Constant_Module_Id =>
            return True;
         when Id_Signal
           | Id_Isignal =>
            declare
               Inp : constant Net := Get_Input_Net (Inst, 0);
            begin
               if Inp = No_Net then
                  return False;
               else
                  return Is_Const_Input (Get_Net_Parent (Inp));
               end if;
            end;
         when others =>
            --  FIXME: handle other consts ?
            return False;
      end case;
   end Is_Const_Input;

   --  The main entry point.
   procedure Extract_Memories (Ctxt : Context_Acc; M : Module)
   is
      Dyns : Instance_Tables.Instance;
      Mems : Instance_Tables.Instance;
      Inst : Instance;
   begin
      Instance_Tables.Init (Dyns, 16);

      --  Gather all Dyn_Insert/Dyn_Extract.
      Inst := Get_First_Instance (M);
      while Inst /= No_Instance loop
         --  Walk all the instances of M:
         case Get_Id (Inst) is
            when Id_Dyn_Insert_En
              | Id_Dyn_Insert
              | Id_Dyn_Extract =>
               Instance_Tables.Append (Dyns, Inst);
               pragma Assert (Get_Mark_Flag (Inst) = False);
            when others =>
               null;
         end case;
         Inst := Get_Next_Instance (Inst);
      end loop;

      if Instance_Tables.Last (Dyns) < Instance_Tables.First then
         --  No dyn gates so no memory.  Early return.
         Instance_Tables.Free (Dyns);
         return;
      end if;

      Instance_Tables.Init (Mems, 16);

      --  Extract memories from dyn gates:
      --   get the isignal/signal/const gate at the origin of the dyn gate.
      for I in Instance_Tables.First .. Instance_Tables.Last (Dyns) loop
         Inst := Dyns.Table (I);
         if not Get_Mark_Flag (Inst) then
            case Get_Id (Inst) is
               when Id_Dyn_Insert
                 | Id_Dyn_Insert_En =>
                  Inst := Walk_From_Insert (Inst);
               when Id_Dyn_Extract =>
                  Inst := Walk_From_Extract (Inst);
               when others =>
                  raise Internal_Error;
            end case;
            if Inst /= No_Instance
              and then not Get_Mark_Flag (Inst)
            then
               --  New (candidate) memory !
               Set_Mark_Flag (Inst, True);
               Instance_Tables.Append (Mems, Inst);
            end if;
         end if;
      end loop;

      --  Unmark dyn gates.
      Unmark_Table (Dyns);
      Instance_Tables.Free (Dyns);

      --  Unmark memory gates.
      Unmark_Table (Mems);

      --  Convert to RAM or ROM.
      for I in Instance_Tables.First .. Instance_Tables.Last (Mems) loop
         --  INST is the memorizing instance, ie isignal/signal.
         Inst := Mems.Table (I);
         declare
            Data_W : Width;
            Size : Width;
         begin
            case Get_Id (Inst) is
               when Id_Isignal
                 | Id_Signal
                 | Id_Const_Bit
                 | Id_Const_Log =>
                  null;
               when others =>
                  raise Internal_Error;
            end case;

            if Is_Const_Input (Inst) then
               Check_Memory_Read_Ports (Inst, Data_W, Size);
               if Data_W /= 0 then
                  Info_Msg_Synth
                    (+Inst, "found ROM %n, width: %v bits, depth: %v",
                     (1 => +Inst, 2 => +Data_W, 3 => +Size));
                  Replace_ROM_Memory (Ctxt, Inst, Data_W);
               end if;
            else
               Reduce_Extract_Muxes (Inst);
               if Validate_RAM_Multiple (Inst) then
                  Convert_To_Memory (Ctxt, Inst);
               end if;
            end if;
         end;
      end loop;

      Instance_Tables.Free (Mems);
   end Extract_Memories;

   --  Return True iff O is to MUX and any number of Dyn_Extract (possibly
   --  through mux2).
   function One_Write_Connection (O : Net; Mux : Instance) return Boolean
   is
      Inp : Input;
      Parent : Instance;
   begin
      Inp := Get_First_Sink (O);
      while Inp /= No_Input loop
         Parent := Get_Input_Parent (Inp);
         case Get_Id (Parent) is
            when Id_Dyn_Extract =>
               null;
            when Id_Mux2 =>
               if Parent /= Mux then
                  --  Can be a mux for a dyn_extract.
                  declare
                     In2 : Input;
                  begin
                     loop
                        In2 := Get_First_Sink (Get_Output (Parent, 0));
                        if In2 = No_Input
                          or else Get_Next_Sink (In2) /= No_Input
                        then
                           --  Drives more than one gate.
                           return False;
                        end if;
                        Parent := Get_Input_Parent (In2);
                        case Get_Id (Parent) is
                           when Id_Dyn_Extract =>
                              exit;
                           when Id_Mux2 =>
                              null;
                           when others =>
                              return False;
                        end case;
                     end loop;
                  end;
               end if;
            when others =>
               return False;
         end case;
         Inp := Get_Next_Sink (Inp);
      end loop;
      return True;
   end One_Write_Connection;

   procedure Reduce_Muxes_Mux2 (Ctxt : Context_Acc;
                                Clk  : Net;
                                Psel : Net;
                                Head : in out Instance;
                                Tail : out Instance);

   --  Remove the mux2 MUX (by adding enable to dyn_insert).
   --  Return the new head.
   procedure Reduce_Muxes (Ctxt : Context_Acc;
                           Clk : Net;
                           Sel : Net;
                           Head_In : Net;
                           Tail_In : Net;
                           Head_Out : out Instance;
                           Tail_Out : out Instance)
   is
      Inst : Instance;
      N : Net;
   begin
      --  Reduce Drv until Src.
      --  Transform dyn_insert to dyn_insert_en by adding SEL, or simply add
      --  SEL to existing dyn_insert_en.
      --  RES is the head of the result chain.
      N := Head_In;
      Head_Out := No_Instance;
      while N /= Tail_In loop
         Inst := Get_Net_Parent (N);
         case Get_Id (Inst) is
            when Id_Mux2 =>
               --  Recurse on the mux.
               Reduce_Muxes_Mux2 (Ctxt, Clk, Sel, Inst, Tail_Out);
            when Id_Dyn_Insert =>
               --  Transform dyn_insert to dyn_insert_en.
               declare
                  En : Net;
               begin
                  if Clk /= No_Net then
                     if Sel /= No_Net then
                        En := Build_Dyadic (Ctxt, Id_And, Clk, Sel);
                        Copy_Location (En, Sel);
                     else
                        En := Clk;
                     end if;
                  else
                     En := Sel;
                  end if;
                  if En /= No_Net then
                     Inst := Add_Enable_To_Dyn_Insert (Ctxt, Inst, En);
                  end if;
               end;
               Tail_Out := Inst;
            when Id_Dyn_Insert_En =>
               --  Simply add SEL to the enable input.
               declare
                  En_Inp : constant Input := Get_Input (Inst, 3);
                  En     : Net;
               begin
                  En := Get_Driver (En_Inp);
                  Disconnect (En_Inp);
                  if Sel /= No_Net then
                     En := Build_Dyadic (Ctxt, Id_And, En, Sel);
                     Copy_Location (En, Sel);
                  end if;
                  if Clk /= No_Net then
                     En := Build_Dyadic (Ctxt, Id_And, Clk, En);
                     Copy_Location (En, Inst);
                  end if;
                  Connect (En_Inp, En);
               end;
               Tail_Out := Inst;
            when Id_Signal
              | Id_Isignal =>
               pragma Assert (Tail_In = No_Net);
               Tail_Out := Inst;
               exit;
            when others =>
               raise Internal_Error;
         end case;
         --  If this is the head, keep it.
         if Head_Out = No_Instance then
            Head_Out := Inst;
         end if;
         --  Continue the walk with the next element.
         N := Get_Input_Net (Tail_Out, 0);
      end loop;

      --  For memories described by a single process like this:
      --      if wen then
      --        mem (addr) := din;
      --      end if;
      --      if rden then
      --        dout := mem (addr);
      --      end if;
      --  the writer has just been reduced, but the reader can also be reduced.
      --                                         _
      --             _                          / |0-----------------\
      --            / |1-- dyn_extract ---+----|  |                  |
      --   dout ---|  |                   |     \_|1--- dyn_insert --+--- mem
      --            \_|0-- dout           |      |                   |
      --             |                    |     wen                  |
      --            rden            _     |                          |
      --                           / |1---/                          |
      --   mem ----- isignal -----|  |                               |
      --                           \_|0------------------------------/
      --                            |
      --                           +clk
      --  Was just reduced to:
      --             _
      --            / |1-- dyn_extract ---+--- dyn_insert_en --+--- mem
      --   dout ---|  |                   |                    |
      --            \_|0-- dout           |                    |
      --             |                    |                    |
      --            rden            _     |                    |
      --                           / |1---/                    |
      --   mem ----- isignal -----|  |                         |
      --                           \_|0------------------------/
      --                            |
      --                           +clk

      --  Note: Previously, `+clk` and `wen` were fused to the same mux (as an
      --  optimization), requiring extraction.  Now the optimization is not
      --  performed when a wire is read, thus simplifying the reduction here.
   end Reduce_Muxes;

   --  Remove the mux2 HEAD (by adding enable to dyn_insert).
   --  Return the new head.
   procedure Reduce_Muxes_Mux2 (Ctxt : Context_Acc;
                                Clk : Net;
                                Psel : Net;
                                Head : in out Instance;
                                Tail : out Instance)
   is
      Mux : constant Instance := Head;
      Muxout : constant Net := Get_Output (Mux, 0);
      Sel_Inp : constant Input := Get_Input (Mux, 0);
      In0 : constant Input := Get_Input (Mux, 1);
      In1 : constant Input := Get_Input (Mux, 2);
      Sel : Net;
      Drv0 : Net;
      Drv1 : Net;
      Drv : Net;
      Src : Net;
      Res : Instance;
   begin
      Drv0 := Get_Driver (In0);
      Drv1 := Get_Driver (In1);
      Sel := Get_Driver (Sel_Inp);

      --  An enable mux has this shape:
      --            _
      --           / |----- dyn_insert ----+----+
      --    out --|  |                     |    +---- inp
      --           \_|---------------------/
      --
      --  The dyn_insert can be on one input or the other of the mux.
      --  The important point is that the output of the dyn_insert is connected
      --  only to the mux, while the other mux input is connected to two nodes.
      --
      --  There can be several dyn_inserts in a raw, like this:
      --            _
      --           / |-- dyn_insert --- dyn_insert ---+----+
      --    out --|  |                                |    +---- inp
      --           \_|--------------------------------/
      --
      --  Or even nested muxes:
      --                 _
      --           _    / |----- dyn_insert ----+----+
      --          / |--|  |                     |    |
      --   out --|  |   \_|---------------------/    |
      --          \_|--------------------------------+----- inp
      if One_Write_Connection (Drv0, Mux)
        and then not Has_One_Connection (Drv1)
      then
         Disconnect (In0);
         Disconnect (In1);
         Disconnect (Sel_Inp);
         Drv := Drv0;
         Src := Drv1;
         Sel := Build_Monadic (Ctxt, Id_Not, Sel);
         Copy_Location (Sel, Mux);
      elsif Has_One_Connection (Drv1) and then not Has_One_Connection (Drv0)
      then
         Disconnect (In0);
         Disconnect (In1);
         Disconnect (Sel_Inp);
         Drv := Drv1;
         Src := Drv0;
      else
         --  Not an enable mux.
         raise Internal_Error;
      end if;

      if Psel /= No_Net then
         Sel := Build_Dyadic (Ctxt, Id_And, Psel, Sel);
         Copy_Location (Sel, Psel);
      end if;

      --  Reduce Drv until Src.
      --  Transform dyn_insert to dyn_insert_en by adding SEL, or simply add
      --  SEL to existing dyn_insert_en.
      --  RES is the head of the result chain.
      Reduce_Muxes (Ctxt, Clk, Sel, Drv, Src, Res, Tail);

      Redirect_Inputs (Muxout, Get_Output (Res, 0));
      Remove_Instance (Mux);

      Head := Res;
   end Reduce_Muxes_Mux2;

   function Infere_RAM
     (Ctxt : Context_Acc; Val : Net; Tail : Net; Clk : Net; En : Net)
      return Net
   is
      --  pragma Assert (not Is_Connected (Val));
      New_Tail : Instance;
      Res : Instance;
   begin
      --  From VAL, move all the muxes to the dyn_insert.  The dyn_insert may
      --  be transformed to dyn_insert_en.
      --  At the end, the loop is linear and without muxes.
      --  Return the new head.
      Reduce_Muxes (Ctxt, Clk, En, Val, Tail, Res, New_Tail);
      return Get_Output (Res, 0);
   end Infere_RAM;

   function Can_Infere_RAM_Mux2 (Mux : Instance) return Instance
   is
      Drv0 : Net;
      Drv1 : Net;
      Drv : Net;
      Src : Net;
      Inst : Instance;
   begin
      --  An enable mux has this shape:
      --            _
      --           / |----- dyn_insert ----+----+
      --    out --|  |                     |    +---- inp
      --           \_|---------------------/
      --
      --  The dyn_insert can be on one input or the other of the mux.
      --  The important point is that the output of the dyn_insert is connected
      --  only to the mux, while the other mux input is connected to two nodes.
      --
      --  There can be several dyn_inserts in a raw, like this:
      --            _
      --           / |-- dyn_insert --- dyn_insert ---+----+
      --    out --|  |                                |    +---- inp
      --           \_|--------------------------------/
      --
      --  Or even nested muxes:
      --                 _
      --           _    / |----- dyn_insert ----+----+
      --          / |--|  |                     |    |
      --   out --|  |   \_|---------------------/    |
      --          \_|--------------------------------+----- inp
      --
      --  But there can be dyn_extract almost anywhere.
      Drv0 := Get_Input_Net (Mux, 1);
      Drv1 := Get_Input_Net (Mux, 2);
      if One_Write_Connection (Drv0, Mux)
        and then not One_Write_Connection (Drv1, Mux)
      then
         Drv := Drv0;
         Src := Drv1;
      elsif One_Write_Connection (Drv1, Mux)
        and then not One_Write_Connection (Drv0, Mux)
      then
         Drv := Drv1;
         Src := Drv0;
      else
         --  Not an enable mux.
         return No_Instance;
      end if;

      --  Walk Drv until Src.
      while Drv /= Src loop
         Inst := Get_Net_Parent (Drv);
         case Get_Id (Inst) is
            when Id_Mux2 =>
               --  Recurse on the mux.
               Inst := Can_Infere_RAM_Mux2 (Inst);
               if Inst = No_Instance then
                  return No_Instance;
               end if;
               --  But continue with the result: still need to add the SEL.
               Drv := Get_Output (Inst, 0);
            when Id_Dyn_Insert
               | Id_Dyn_Insert_En =>
               --  Continue the walk with the next element.
               Drv := Get_Input_Net (Inst, 0);
            when others =>
               return No_Instance;
         end case;
      end loop;

      return Get_Net_Parent (Src);
   end Can_Infere_RAM_Mux2;

   function Can_Infere_RAM (Val : Net; Prev_Val : Net) return Boolean
   is
      Inst : Instance;
   begin
      Inst := Get_Net_Parent (Val);

      --  Walk until the reaching Prev_Val.
      loop
         case Get_Id (Inst) is
            when Id_Mux2 =>
               --  Reduce the mux.
               Inst := Can_Infere_RAM_Mux2 (Inst);
               if Inst = No_Instance then
                  return False;
               end if;
            when Id_Dyn_Insert
              | Id_Dyn_Insert_En =>
               --  Skip the dyn_insert.
               Inst := Get_Input_Instance (Inst, 0);
            when Id_Dff =>
               --  Skip dff.
               Inst := Get_Input_Instance (Inst, 1);
            when Id_Signal
              | Id_Isignal =>
               return Get_Output (Inst, 0) = Prev_Val;
            when others =>
               return False;
         end case;
      end loop;
   end Can_Infere_RAM;
end Netlists.Memories;