1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
|
-- Inference in synthesis.
-- Copyright (C) 2017 Tristan Gingold
--
-- This file is part of GHDL.
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
-- MA 02110-1301, USA.
with Netlists.Utils; use Netlists.Utils;
with Netlists.Gates; use Netlists.Gates;
with Netlists.Gates_Ports; use Netlists.Gates_Ports;
with Netlists.Locations; use Netlists.Locations;
with Netlists.Errors; use Netlists.Errors;
with Netlists.Internings;
with Netlists.Folds; use Netlists.Folds;
with Netlists.Memories; use Netlists.Memories;
with Synth.Source; use Synth.Source;
with Synth.Errors; use Synth.Errors;
with Synth.Flags;
package body Netlists.Inference is
-- DFF inference.
-- As an initial implementation, the following 'styles' must be
-- supported:
-- Note: rising_edge is any clock_edge; '<=' can be ':='.
--
-- 1)
-- if rising_edge(clk) then
-- r <= x;
-- end if;
--
-- 2)
-- if rst = '0' then
-- r <= x;
-- elsif rising_edge (clk) then
-- r <= y;
-- end if;
--
-- 3)
-- wait until rising_edge(clk);
-- r <= x;
-- Which is equivalent to 1) when the wait statement is the only and first
-- statement, as it can be converted to an if statement.
--
-- Netlist derived from 1)
-- +------+
-- | |
-- | /| |
-- | |0+-+
-- Q --+--+ |
-- |1+--- D
-- \|
-- CLK
-- This is a memorizing element as there is a loop, the value is changed
-- to D on a rising edge of the clock.
--
-- Netlist derived from 2)
-- +------------+
-- | /| |
-- | /| |0+-+
-- | |0+---+ |
-- Q --+--+ | |1+----- D
-- |1+-+ \|
-- \| | CLK
-- RST +--------- '0'
-- This is a memorizing element as there is a loop. It is an asynchronous
-- reset as Q is forced to '0' when RST is asserted.
function Has_Clock (N : Net) return Boolean
is
Inst : constant Instance := Get_Net_Parent (N);
begin
case Get_Id (Inst) is
when Edge_Module_Id =>
return True;
when Id_And =>
-- Assume the condition is canonicalized, ie of the form:
-- CLK and EXPR.
-- FIXME: do it!
return Has_Clock (Get_Input_Net (Inst, 0));
when others =>
return False;
end case;
end Has_Clock;
-- Find the longest chain of mux starting from VAL with a final input
-- of PREV_VAL. Such a chain means this is a memorising element.
-- RES is the last mux in the chain, DIST the number of mux in the chain.
procedure Find_Longest_Loop
(Val : Net; Prev_Val : Net; Res : out Instance; Dist : out Integer)
is
Inst : constant Instance := Get_Net_Parent (Val);
begin
if Get_Id (Inst) = Id_Mux2 then
declare
Res0, Res1 : Instance;
Dist0, Dist1 : Integer;
begin
if Has_Clock (Get_Driver (Get_Mux2_Sel (Inst))) then
Res := Inst;
Dist := 1;
else
Find_Longest_Loop
(Get_Driver (Get_Mux2_I0 (Inst)), Prev_Val, Res0, Dist0);
Find_Longest_Loop
(Get_Driver (Get_Mux2_I1 (Inst)), Prev_Val, Res1, Dist1);
-- Input1 has an higher priority than input0 in case
-- the selector is a clock.
-- FIXME: improve algorithm.
if Dist1 > Dist0 then
Dist := Dist1 + 1;
if Dist1 > 0 then
Res := Res1;
else
Res := Inst;
end if;
elsif Dist0 >= 0 then
Dist := Dist0 + 1;
if Dist0 > 0 then
Res := Res0;
else
Res := Inst;
end if;
else
pragma Assert (Dist1 < 0 and Dist0 < 0);
Res := No_Instance;
Dist := -1;
end if;
end if;
end;
elsif Val = Prev_Val then
Res := No_Instance;
Dist := 0;
else
Res := No_Instance;
Dist := -1;
end if;
end Find_Longest_Loop;
procedure Extract_Clock_And (Ctxt : Context_Acc; Inst : Instance)
is
begin
pragma Assert (Get_Id (Inst) = Id_And);
declare
I0 : constant Input := Get_Input (Inst, 0);
N0 : constant Net := Get_Driver (I0);
Inst0 : constant Instance := Get_Net_Parent (N0);
begin
case Get_Id (Inst0) is
when Edge_Module_Id =>
null;
when Id_And =>
Extract_Clock_And (Ctxt, Inst0);
-- If we have: AND convert to: AND
-- / \ / \
-- N1 AND0 ==> AND0 EDGE
-- / \ / \
-- N2 EDGE N1 N2
declare
I3 : constant Input := Get_Input (Inst0, 0);
N3 : constant Net := Get_Driver (I3);
Inst3 : constant Instance := Get_Net_Parent (N3);
begin
if Get_Id (Inst3) in Edge_Module_Id then
declare
Can_Rotate : constant Boolean :=
Has_One_Connection (N0);
I2 : constant Input := Get_Input (Inst0, 1);
N2 : constant Net := Get_Driver (I2);
I1 : constant Input := Get_Input (Inst, 1);
N1 : constant Net := Get_Driver (I1);
N4 : Net;
begin
Disconnect (I0);
Disconnect (I1);
Connect (I0, N3);
if Can_Rotate then
Disconnect (I2);
Disconnect (I3);
Connect (I1, N0);
Connect (I3, N2);
Connect (I2, N1);
else
N4 := Build_Dyadic (Ctxt, Id_And, N2, N1);
Copy_Location (N4, Inst);
Connect (I1, N4);
end if;
end;
end if;
end;
when others =>
null;
end case;
end;
declare
I0 : constant Input := Get_Input (Inst, 1);
N0 : constant Net := Get_Driver (I0);
Inst0 : constant Instance := Get_Net_Parent (N0);
begin
case Get_Id (Inst0) is
when Edge_Module_Id =>
-- Swap inputs 0 and 1.
declare
I1 : constant Input := Get_Input (Inst, 0);
N1 : constant Net := Get_Driver (I1);
begin
Disconnect (I0);
Disconnect (I1);
Connect (I1, N0);
Connect (I0, N1);
end;
when Id_And =>
Extract_Clock_And (Ctxt, Inst0);
-- If we have: AND convert to: AND
-- / \ / \
-- AND0 N1 ==> AND0 EDGE
-- / \ / \
-- N2 EDGE N2 N1
declare
I3 : constant Input := Get_Input (Inst0, 0);
N3 : constant Net := Get_Driver (I3);
begin
if Get_Id (Get_Net_Parent (N3)) in Edge_Module_Id then
declare
Can_Rotate : constant Boolean :=
Has_One_Connection (N0);
I1 : constant Input := Get_Input (Inst, 0);
N1 : constant Net := Get_Driver (I1);
N4 : Net;
begin
Disconnect (I3);
Disconnect (I1);
Connect (I1, N3);
if Can_Rotate then
Connect (I3, N1);
else
N4 := Build_Dyadic
(Ctxt, Id_And, N1, Get_Input_Net (Inst0, 1));
Connect (I3, N4);
end if;
end;
end if;
end;
when others =>
null;
end case;
end;
end Extract_Clock_And;
-- Walk the And-net N, and extract clock (posedge/negedge) if found.
-- ENABLE is N without the clock.
-- If not found, CLK and ENABLE are set to No_Net.
procedure Extract_Clock
(Ctxt : Context_Acc; N : Net; Clk : out Net; Enable : out Net)
is
Inst : constant Instance := Get_Net_Parent (N);
begin
Clk := No_Net;
Enable := No_Net;
case Get_Id (Inst) is
when Edge_Module_Id =>
Clk := N;
when Id_And =>
-- Canonicalize conditions.
Extract_Clock_And (Ctxt, Inst);
-- Condition should be in the form: CLK and EXPR
declare
I0 : constant Net := Get_Input_Net (Inst, 0);
Inst0 : constant Instance := Get_Net_Parent (I0);
begin
if Get_Id (Inst0) in Edge_Module_Id then
-- INST is clearly not synthesizable (boolean operation on
-- an edge). Will be removed at the end by
-- remove_unused_instances. Do not remove it now as its
-- output may be used by other nets.
Clk := I0;
Enable := Get_Input_Net (Inst, 1);
return;
end if;
end;
when others =>
null;
end case;
end Extract_Clock;
function Is_Prev_FF_Value (V : Net; Prev_Val : Net; Off : Uns32)
return Boolean
is
Inst : Instance;
begin
if V = Prev_Val then
pragma Assert (Off = 0);
return True;
end if;
Inst := Get_Net_Parent (V);
return Get_Id (Inst) = Id_Extract
and then Get_Param_Uns32 (Inst, 0) = Off
and then Get_Input_Net (Inst, 0) = Prev_Val;
end Is_Prev_FF_Value;
-- Build the FF or the RAM according to the inputs.
function Infere_FF_Create (Ctxt : Context_Acc;
Prev_Val : Net;
Off : Uns32;
Last_Mux : Instance;
Init : Net;
Rst : Net;
Rst_Val : Net;
Data : Net;
Els : Net;
Clk : Net;
Clk_Enable : Net;
Loc : Location_Type) return Net
is
Ndata : Net;
Res : Net;
Els_Net : Net;
Els_Inst : Instance;
begin
Els_Net := Els;
pragma Unreferenced (Els);
if Off = 0
and then Rst = No_Net
and then not Synth.Flags.Flag_Debug_Nomemory1
and then Can_Infere_RAM (Data, Prev_Val)
then
-- Maybe it is a RAM.
Res := Infere_RAM (Ctxt, Data, Els_Net, Clk, Clk_Enable);
else
if Clk_Enable /= No_Net then
-- If there is a condition with the clock, that's an enable which
-- keep the previous value if the condition is false. Add the mux
-- for it, to create a synchronous enable.
declare
Prev : Net;
begin
Prev := Build2_Extract (Ctxt, Prev_Val, Off, Get_Width (Data));
Ndata := Build_Mux2 (Ctxt, Clk_Enable, Prev, Data);
Copy_Location (Ndata, Clk_Enable);
end;
else
Ndata := Data;
end if;
-- Create the FF.
if Rst = No_Net then
-- No async reset
pragma Assert (Rst_Val = No_Net);
if Els_Net /= No_Net then
Els_Inst := Get_Net_Parent (Els_Net);
if Get_Id (Els_Inst) in Dff_Module_Id
and then Same_Clock (Clk, Get_Input_Net (Els_Inst, 0))
then
Els_Net := No_Net;
end if;
end if;
if Els_Net = No_Net then
if Init /= No_Net then
Res := Build_Idff (Ctxt, Clk, D => Ndata, Init => Init);
else
Res := Build_Dff (Ctxt, Clk, D => Ndata);
end if;
else
if Init /= No_Net then
Res := Build_Midff (Ctxt, Clk, D => Ndata,
Els => Els_Net, Init => Init);
else
Res := Build_Mdff (Ctxt, Clk, D => Ndata, Els => Els_Net);
end if;
end if;
else
if Els_Net /= No_Net then
Error_Msg_Synth
(Loc, "synchronous code does not expect else part");
end if;
if Init /= No_Net then
Res := Build_Iadff (Ctxt, Clk, D => Ndata,
Rst => Rst, Rst_Val => Rst_Val,
Init => Init);
else
Res := Build_Adff (Ctxt, Clk, D => Ndata,
Rst => Rst, Rst_Val => Rst_Val);
end if;
end if;
Set_Location (Res, Loc);
end if;
-- The output may already be used (if the target is a variable that
-- is read). So redirect the net.
Redirect_Inputs (Get_Output (Last_Mux, 0), Res);
return Res;
end Infere_FF_Create;
-- Remove the Mux2 and handle the 'else' branch.
procedure Infere_FF_Mux (Ctxt : Context_Acc;
Prev_Val : Net;
Off : Uns32;
Last_Mux : Instance;
Els : out Net;
Data : out Net)
is
Mux_Loc : constant Location_Type := Get_Location (Last_Mux);
Sel : constant Input := Get_Mux2_Sel (Last_Mux);
I0 : constant Input := Get_Mux2_I0 (Last_Mux);
I1 : constant Input := Get_Mux2_I1 (Last_Mux);
Els_Inst : Instance;
Els_Clk : Net;
Els_En : Net;
Els_Data : Net;
Els_Els : Net;
begin
Els := Get_Driver (I0);
if Is_Prev_FF_Value (Els, Prev_Val, Off) then
-- The 'else' part of the mux2 is the logical loop.
Els := No_Net;
else
-- The 'else' part is not a loop. It should be a second FF for a
-- DDR (not yet supported) or a true-dual-port RAM.
Els_Inst := Get_Net_Parent (Els);
if Get_Id (Els_Inst) = Id_Mux2 then
Extract_Clock (Ctxt, Get_Driver (Get_Mux2_Sel (Els_Inst)),
Els_Clk, Els_En);
else
Els_Clk := No_Net;
end if;
if Els_Clk = No_Net then
Error_Msg_Synth
(Mux_Loc, "clocked logic requires clocked logic on else part");
Els := No_Net;
else
-- Create and return the DFF.
-- 1. Remove the mux that creates the loop (will be replaced by
-- the dff).
Infere_FF_Mux (Ctxt, Prev_Val, Off, Els_Inst, Els_Els, Els_Data);
Els := Infere_FF_Create (Ctxt, Prev_Val, Off, Els_Inst, No_Net,
No_Net, No_Net, Els_Data, Els_Els,
Els_Clk, Els_En, Get_Location (Els_Inst));
Remove_Instance (Els_Inst);
end if;
end if;
Disconnect (Sel);
-- Don't try to free driver of I0 as this is Prev_Val or a selection
-- of it.
Disconnect (I0);
Data := Get_Driver (I1);
-- Don't try to free driver of I1 as it is reconnected.
Disconnect (I1);
end Infere_FF_Mux;
-- A Mux2 with a logical loop and a clock has been found.
-- Determine the kind of FF and extract the asynchronous reset.
-- Build the FF (or the RAM).
--
-- CLOCK_MUX is the mux whose input 0 is the loop and clock for selector.
function Infere_FF (Ctxt : Context_Acc;
Val : Net;
Prev_Val : Net;
Off : Uns32;
Clock_Mux : Instance;
Clk : Net;
Clk_Enable : Net;
Stmt : Synth.Source.Syn_Src) return Net
is
O : constant Net := Get_Output (Clock_Mux, 0);
Mux_Loc : constant Location_Type := Get_Location (Clock_Mux);
Data : Net;
Res : Net;
Sig : Instance;
Init : Net;
Rst : Net;
Rst_Val : Net;
Enable : Net;
Els : Net;
Last_Mux : Instance;
-- Previous mux to be free.
Prev_Mux : Instance;
begin
-- Create and return the DFF.
-- 1. Remove the mux that creates the loop (will be replaced by the
-- dff).
Infere_FF_Mux (Ctxt, Prev_Val, Off, Clock_Mux, Els, Data);
-- If the signal declaration has an initial value, get it.
Sig := Get_Net_Parent (Prev_Val);
case Get_Id (Get_Module (Sig)) is
when Id_Isignal
| Id_Ioutput =>
Init := Get_Input_Net (Sig, 1);
Init := Build2_Extract (Ctxt, Init, Off, Get_Width (O));
when others =>
Init := No_Net;
end case;
-- As an enable signal, start with the enable extracted from the clock
-- to handle conditions like: `rising_edge(clk) and en`
Enable := Clk_Enable;
-- Look for asynchronous set/reset. They are muxes after the loop
-- mux. In theory, there can be many set/reset with a defined order.
Rst_Val := No_Net;
Rst := No_Net;
declare
Mux : Instance;
Sel : Net;
Last_Out : Net;
Mux_Not_Rst : Net;
Mux_Rst : Net;
Mux_Rst_Val : Net;
Prev_Input : Input;
begin
Prev_Mux := Clock_Mux;
-- LAST_MUX is the last handled mux and LAST_OUT its output.
Last_Mux := Clock_Mux;
Last_Out := O;
-- Initially, the final output is not connected. So walk from the
-- clocked mux until reaching the final output.
while Last_Out /= Val loop
if not Has_One_Connection (Last_Out)
and then not Is_Const_Net (Last_Out)
then
-- TODO.
raise Internal_Error;
end if;
-- The parent must be a mux (it's a chain of muxes).
Mux := Get_Input_Parent (Get_First_Sink (Last_Out));
if Get_Id (Mux) = Id_Nop then
-- Should have stopped.
exit;
end if;
pragma Assert (Get_Id (Mux) = Id_Mux2);
-- Extract the reset condition and the reset value.
Sel := Get_Driver (Get_Mux2_Sel (Mux));
Prev_Input := Get_Mux2_I0 (Mux);
if Get_Driver (Prev_Input) = Last_Out then
-- Normal reset
Mux_Rst_Val := Get_Driver (Get_Mux2_I1 (Mux));
Mux_Rst := Sel;
else
-- Inverted reset.
Prev_Input := Get_Mux2_I1 (Mux);
pragma Assert (Get_Driver (Prev_Input) = Last_Out);
Mux_Rst_Val := Get_Driver (Get_Mux2_I0 (Mux));
Mux_Rst := Build_Monadic (Ctxt, Id_Not, Sel);
end if;
-- Disconnect this mux.
Disconnect (Get_Mux2_I0 (Mux));
Disconnect (Get_Mux2_I1 (Mux));
Disconnect (Get_Mux2_Sel (Mux));
-- Next net to be handled.
Last_Mux := Mux;
Last_Out := Get_Output (Mux, 0);
if Is_Prev_FF_Value (Mux_Rst_Val, Prev_Val, Off) then
-- The mux is like an enable. Like in this example, q2 is not
-- assigned when RST is true:
-- if rst then
-- q1 <= '0';
-- elsif rising_edge(clk) then
-- q2 <= d2;
-- q1 <= d1;
-- end if;
-- Add the negation of the condition to the enable signal.
-- Negate the condition for the current reset.
Mux_Not_Rst := Build_Monadic (Ctxt, Id_Not, Mux_Rst);
Set_Location (Mux_Not_Rst, Stmt);
if Rst /= No_Net then
Rst := Build_Dyadic (Ctxt, Id_And, Rst, Mux_Not_Rst);
Set_Location (Rst, Stmt);
end if;
if Enable = No_Net then
Enable := Mux_Not_Rst;
else
Enable := Build_Dyadic (Ctxt, Id_And, Enable, Mux_Not_Rst);
Set_Location (Enable, Stmt);
end if;
if Prev_Mux /= No_Instance then
Remove_Instance (Prev_Mux);
end if;
Prev_Mux := Mux;
else
-- Assume this is a reset value.
-- FIXME: check for no logical loop.
if Rst = No_Net then
-- First async reset condition.
-- Keep reset value and condition
Rst := Mux_Rst;
Rst_Val := Mux_Rst_Val;
-- Remove the last mux. Will free this mux.
if Prev_Mux /= No_Instance then
Remove_Instance (Prev_Mux);
end if;
Prev_Mux := Mux;
else
-- New async reset condition.
Rst := Build_Dyadic (Ctxt, Id_Or, Mux_Rst, Rst);
Copy_Location (Rst, Mux_Rst);
-- Use prev_mux to select the reset value.
Connect (Get_Mux2_Sel (Prev_Mux), Mux_Rst);
Connect (Get_Mux2_I0 (Prev_Mux), Rst_Val);
Connect (Get_Mux2_I1 (Prev_Mux), Mux_Rst_Val);
-- The reset value is the output of prev_mux.
Rst_Val := Get_Output (Prev_Mux, 0);
-- Allow to free this mux.
Prev_Mux := Mux;
end if;
end if;
end loop;
pragma Assert (Prev_Mux = No_Instance or else Prev_Mux = Last_Mux);
end;
Res := Infere_FF_Create (Ctxt, Prev_Val, Off, Last_Mux, Init,
Rst, Rst_Val, Data, Els, Clk, Enable, Mux_Loc);
if Prev_Mux /= No_Instance then
Remove_Instance (Prev_Mux);
end if;
return Res;
end Infere_FF;
-- Detect false combinational loop. They can easily appear when variables
-- are only used in one branch:
-- process (all)
-- variable a : std_logic;
-- begin
-- r <= '1';
-- if sel = '1' then
-- a := '1';
-- r <= '0';
-- end if;
-- end process;
-- There is a combinational path from 'a' to 'a' as
-- a := (sel = '1') ? '1' : a;
-- But this is a false loop because the value of 'a' is never used. In
-- that case, 'a' is assigned to 'x' and all the unused logic will be
-- removed during clean-up.
--
-- Detection is very simple: the closure of readers of 'a' must be only
-- muxes (which were inserted by controls).
function Is_False_Loop (Prev_Val : Net) return Boolean
is
package Inst_Interning renames
Netlists.Internings.Dyn_Instance_Interning;
use Inst_Interning;
T : Inst_Interning.Instance;
function Add_From_Net (N : Net) return Boolean
is
Inst : Netlists.Instance;
Inp : Input;
begin
Inp := Get_First_Sink (N);
while Inp /= No_Input loop
Inst := Get_Input_Parent (Inp);
case Get_Id (Inst) is
when Mux_Module_Id
| Id_Pmux =>
null;
when others =>
return False;
end case;
-- Add to T (if not already).
Get (T, Inst, Inst);
Inp := Get_Next_Sink (Inp);
end loop;
return True;
end Add_From_Net;
function Walk_Nets (N : Net) return Boolean
is
Inst : Netlists.Instance;
begin
-- Put gates that read the value.
if not Add_From_Net (N) then
return False;
end if;
-- Follow the outputs.
for I in First_Index .. Index_Type'Last loop
exit when I > Inst_Interning.Last_Index (T);
Inst := Get_By_Index (T, I);
if not Add_From_Net (Get_Output (Inst, 0)) then
return False;
end if;
end loop;
-- No external readers.
return True;
end Walk_Nets;
Res : Boolean;
begin
Inst_Interning.Init (T);
Res := Walk_Nets (Prev_Val);
Inst_Interning.Free (T);
return Res;
end Is_False_Loop;
function Infere_Latch (Ctxt : Context_Acc;
Val : Net;
Prev_Val : Net;
Stmt : Synth.Source.Syn_Src) return Net
is
Name : Sname;
begin
-- In case of false loop, do not close the loop but assign X.
if Is_False_Loop (Prev_Val) then
return Build_Const_X (Ctxt, Get_Width (Val));
end if;
-- Latch or combinational loop.
if Get_Id (Get_Net_Parent (Prev_Val)) = Id_Output then
-- Outputs are connected to a port. The port is the first connection
-- made, so it is the last sink. Be more tolerant and look for
-- the (only) port connected to the output.
declare
Inp : Input;
Inst : Instance;
begin
Inp := Get_First_Sink (Prev_Val);
loop
pragma Assert (Inp /= No_Input);
Inst := Get_Input_Parent (Inp);
if Get_Id (Inst) >= Id_User_None then
Name := Get_Output_Desc (Get_Module (Inst),
Get_Port_Idx (Inp)).Name;
exit;
end if;
Inp := Get_Next_Sink (Inp);
end loop;
end;
else
Name := Get_Instance_Name (Get_Net_Parent (Prev_Val));
end if;
Error_Msg_Synth (+Stmt, "latch infered for net %n", +Name);
return Val;
end Infere_Latch;
-- VAL is the value to be assigned to a wire at offset OFF.
-- Note: PREV_VAL is the wire gate, so with full width and no offset.
function Infere (Ctxt : Context_Acc;
Val : Net;
Off : Uns32;
Prev_Val : Net;
Stmt : Synth.Source.Syn_Src;
Last_Use : Boolean) return Net
is
pragma Assert (Val /= No_Net);
pragma Assert (Prev_Val /= No_Net);
First_Mux, Last_Mux : Instance;
Len : Integer;
Sel : Input;
Clk : Net;
Enable : Net;
Res : Net;
begin
if Get_First_Sink (Prev_Val) = No_Input then
-- PREV_VAL is never read, so there cannot be any loop.
-- This is an important optimization for control signals.
return Val;
end if;
-- Infere tri-buf.
First_Mux := Get_Net_Parent (Val);
if Get_Id (First_Mux) = Id_Mux2 then
declare
Nsel, N0, N1 : Net;
begin
-- Check for VAL <= SEL ? N1 : 'Z'
if Get_Id (Get_Input_Instance (First_Mux, 1)) = Id_Const_Z then
-- Disconnect the mux.
Nsel := Disconnect_And_Get (First_Mux, 0);
N0 := Disconnect_And_Get (First_Mux, 1);
N1 := Disconnect_And_Get (First_Mux, 2);
-- Build the tri buf.
Res := Build_Tri (Ctxt, Nsel, N1);
-- Remove the 'Z' (shouldn't be connected).
Remove_Instance (Get_Net_Parent (N0));
-- Copy location.
Copy_Location (Res, First_Mux);
-- Redirect tri output.
Redirect_Inputs (Get_Output (First_Mux, 0), Res);
Remove_Instance (First_Mux);
return Res;
end if;
end;
end if;
Find_Longest_Loop (Val, Prev_Val, Last_Mux, Len);
if Len <= 0 then
-- No logical loop or self assignment.
return Val;
end if;
if Last_Use
and then Has_One_Connection (Prev_Val)
and then not Is_Connected (Val)
then
-- Value is not used, to be removed. Do not try to infere anything.
-- Conditions:
-- * last_use must be true: the signal won't be use after the call
-- to infere (because it goes out of scope).
-- * Prev_val must be connected once (to create a loop).
-- * Val must not be connected (for variables).
return Val;
end if;
-- So there is a logical loop.
Sel := Get_Mux2_Sel (Last_Mux);
Extract_Clock (Ctxt, Get_Driver (Sel), Clk, Enable);
if Clk = No_Net then
-- No clock -> latch or combinational loop
Res := Infere_Latch (Ctxt, Val, Prev_Val, Stmt);
else
-- Clock -> FF
First_Mux := Get_Net_Parent (Val);
pragma Assert (Get_Id (First_Mux) = Id_Mux2);
Res := Infere_FF (Ctxt, Val, Prev_Val, Off, Last_Mux,
Clk, Enable, Stmt);
end if;
return Res;
end Infere;
-- INST is a mux2 of a condition chain.
-- Return the input that is not 0. Could be either a mux2 or a const.
function Find_Condition_Chain_Next (Inst : Instance) return Instance
is
Mux_In0, Mux_In1 : Net;
In0_Inst, In1_Inst : Instance;
begin
Mux_In0 := Get_Input_Net (Inst, 1);
In0_Inst := Get_Net_Parent (Mux_In0);
Mux_In1 := Get_Input_Net (Inst, 2);
In1_Inst := Get_Net_Parent (Mux_In1);
if Get_Id (In0_Inst) /= Id_Const_UB32 then
-- The other input must be const 0.
pragma Assert (Get_Id (In1_Inst) = Id_Const_UB32
and then Get_Param_Uns32 (In1_Inst, 0) = 0);
return In0_Inst;
else
-- Either both are const, or the other input must be const 0.
if Get_Id (In1_Inst) = Id_Const_UB32 then
-- Both are const. Return the const 1.
if Get_Param_Uns32 (In1_Inst, 0) = 0 then
pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 1);
return In0_Inst;
else
pragma Assert (Get_Param_Uns32 (In1_Inst, 0) = 1);
pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 0);
return In1_Inst;
end if;
end if;
pragma Assert (Get_Param_Uns32 (In0_Inst, 0) = 0);
return In1_Inst;
end if;
end Find_Condition_Chain_Next;
-- VAL is a chain of mux2 that define the conditions to enable assertions.
function Infere_Assert (Ctxt : Context_Acc;
Val : Net;
En_Gate : Net;
Stmt : Synth.Source.Syn_Src) return Net
is
Loc : constant Location_Type := Synth.Source."+" (Stmt);
Inst : Instance;
First_Inst : Instance;
Last_Inst : Instance;
Clk, En : Net;
Areset : Net;
One : Net;
begin
-- Extract clock (if any) from VAL. Return VAL is no clock.
First_Inst := Get_Net_Parent (Val);
Inst := First_Inst;
loop
case Get_Id (Inst) is
when Id_Mux2 =>
null;
when Id_Const_UB32
| Id_Pmux =>
return Val;
when others =>
raise Internal_Error;
end case;
Extract_Clock (Ctxt, Get_Input_Net (Inst, 0), Clk, En);
exit when Clk /= No_Net;
-- No clock. Try the father.
Inst := Find_Condition_Chain_Next (Inst);
end loop;
-- INST is the mux2 with clock CLK.
-- Extract enable and asynchronous reset (if any).
Last_Inst := Inst;
Areset := No_Net;
Inst := First_Inst;
while Inst /= Last_Inst loop
declare
Cond : Net;
Next_Inst : Instance;
begin
Cond := Get_Input_Net (Inst, 0);
-- Find the next mux.
Next_Inst := Find_Condition_Chain_Next (Inst);
-- If the next mux is in1, negate COND.
if Next_Inst = Get_Net_Parent (Get_Input_Net (Inst, 2)) then
Cond := Build_Monadic (Ctxt, Id_Not, Cond);
Synth.Source.Set_Location (Cond, Stmt);
end if;
-- 'And' COND to Areset.
Areset := Build2_And (Ctxt, Areset, Cond, Loc);
Inst := Next_Inst;
end;
end loop;
-- Same for LAST_INST, but check it is on in1.
declare
Next_Inst : Instance;
begin
Next_Inst := Find_Condition_Chain_Next (Last_Inst);
if Next_Inst /= Get_Net_Parent (Get_Input_Net (Inst, 2)) then
Error_Msg_Synth
(+Last_Inst, "assertion checked on else branch of an edge");
return Val;
end if;
En := Build2_And (Ctxt, En, Get_Output (Next_Inst, 0), Loc);
end;
One := Build_Const_UB32 (Ctxt, 1, 1);
-- Build an idff/iadff for each condition of the assertions.
-- The caller will connect the returned value (En) to the enable gate.
declare
En_Inp : Input;
Assert_Inp : Input;
N : Net;
Dff : Net;
begin
En_Inp := Get_First_Sink (En_Gate);
pragma Assert (En_Inp /= No_Input);
while En_Inp /= No_Input loop
-- The Enable gate is connected to an implication.
Inst := Get_Input_Parent (En_Inp);
pragma Assert (Get_Id (Inst) = Id_Not);
N := Get_Output (Inst, 0);
pragma Assert (Has_One_Connection (N));
Inst := Get_Input_Parent (Get_First_Sink (N));
pragma Assert (Get_Id (Inst) = Id_Or);
N := Get_Output (Inst, 0);
pragma Assert (Has_One_Connection (N));
Inst := Get_Input_Parent (Get_First_Sink (N));
pragma Assert (Get_Id (Inst) = Id_Assert);
Assert_Inp := Get_Input (Inst, 0);
Disconnect (Assert_Inp);
if Areset = No_Net then
Dff := Build_Idff (Ctxt, Clk, N, One);
else
Dff := Build_Iadff (Ctxt, Clk, N, Areset, One, One);
end if;
Set_Location (Dff, Loc);
Connect (Assert_Inp, Dff);
En_Inp := Get_Next_Sink (En_Inp);
end loop;
end;
return En;
end Infere_Assert;
end Netlists.Inference;
|