aboutsummaryrefslogtreecommitdiffstats
path: root/src/synth/elab-vhdl_objtypes.adb
blob: bea919a4d7d37882f9a69df2ae5e4d612dc88203 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
--  Values in synthesis.
--  Copyright (C) 2017 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software: you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation, either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program.  If not, see <gnu.org/licenses>.

with Ada.Unchecked_Conversion;
with System; use System;

with Mutils; use Mutils;

package body Elab.Vhdl_Objtypes is
   function To_Rec_El_Array_Acc is new Ada.Unchecked_Conversion
     (System.Address, Rec_El_Array_Acc);

   function To_Type_Acc is new Ada.Unchecked_Conversion
     (System.Address, Type_Acc);

   function "+" (L, R : Value_Offsets) return Value_Offsets is
   begin
      return (L.Net_Off + R.Net_Off, L.Mem_Off + R.Mem_Off);
   end "+";

   function Is_Bounded_Type (Typ : Type_Acc) return Boolean is
   begin
      case Typ.Kind is
         when Type_Bit
           | Type_Logic
           | Type_Discrete
           | Type_Float
           | Type_Vector
           | Type_Slice
           | Type_Array
           | Type_Record
           | Type_Access
           | Type_File =>
            return True;
         when Type_Unbounded_Array
           | Type_Unbounded_Vector
           | Type_Unbounded_Record
           | Type_Protected =>
            return False;
      end case;
   end Is_Bounded_Type;

   function Are_Types_Equal (L, R : Type_Acc) return Boolean is
   begin
      if L.Kind /= R.Kind
        or else L.W /= R.W
      then
         return False;
      end if;
      if L = R then
         return True;
      end if;

      case L.Kind is
         when Type_Bit
           | Type_Logic =>
            return True;
         when Type_Discrete =>
            return L.Drange = R.Drange;
         when Type_Float =>
            return L.Frange = R.Frange;
         when Type_Array
           | Type_Vector =>
            if L.Alast /= R.Alast then
               return False;
            end if;
            if L.Abound /= R.Abound then
               return False;
            end if;
            return Are_Types_Equal (L.Arr_El, R.Arr_El);
         when Type_Unbounded_Array
           | Type_Unbounded_Vector =>
            if L.Ulast /= R.Ulast then
               return False;
            end if;
            --  Also check index ?
            return Are_Types_Equal (L.Uarr_El, R.Uarr_El);
         when Type_Slice =>
            return Are_Types_Equal (L.Slice_El, R.Slice_El);
         when Type_Record
           | Type_Unbounded_Record =>
            if L.Rec.Len /= R.Rec.Len then
               return False;
            end if;
            for I in L.Rec.E'Range loop
               if not Are_Types_Equal (L.Rec.E (I).Typ, R.Rec.E (I).Typ) then
                  return False;
               end if;
            end loop;
            return True;
         when Type_Access =>
            return Are_Types_Equal (L.Acc_Acc, R.Acc_Acc);
         when Type_File =>
            return Are_Types_Equal (L.File_Typ, R.File_Typ);
         when Type_Protected =>
            return False;
      end case;
   end Are_Types_Equal;

   function Is_Last_Dimension (Arr : Type_Acc) return Boolean is
   begin
      case Arr.Kind is
         when Type_Vector
           | Type_Array =>
            return Arr.Alast;
         when Type_Unbounded_Vector =>
            return True;
         when Type_Unbounded_Array =>
            return Arr.Ulast;
         when others =>
            raise Internal_Error;
      end case;
   end Is_Last_Dimension;

   function Is_Null_Range (Rng : Discrete_Range_Type) return Boolean is
   begin
      case Rng.Dir is
         when Dir_To =>
            return Rng.Left > Rng.Right;
         when Dir_Downto =>
            return Rng.Left < Rng.Right;
      end case;
   end Is_Null_Range;

   function Is_Scalar_Subtype_Compatible (L, R : Type_Acc) return Boolean is
   begin
      pragma Assert (L.Kind = R.Kind);
      case L.Kind is
         when Type_Bit
           | Type_Logic =>
            --  We have no bounds for that...
            return True;
         when Type_Discrete =>
            if Is_Null_Range (L.Drange) then
               return True;
            end if;
            return In_Range (R.Drange, L.Drange.Left)
              and then In_Range (R.Drange, L.Drange.Right);
         when Type_Float =>
            return L.Frange = R.Frange;
         when others =>
            raise Internal_Error;
      end case;
   end Is_Scalar_Subtype_Compatible;

   function Discrete_Range_Width (Rng : Discrete_Range_Type) return Uns32
   is
      Lo, Hi : Int64;
      W : Uns32;
   begin
      case Rng.Dir is
         when Dir_To =>
            Lo := Rng.Left;
            Hi := Rng.Right;
         when Dir_Downto =>
            Lo := Rng.Right;
            Hi := Rng.Left;
      end case;
      if Lo > Hi then
         --  Null range.
         W := 0;
      elsif Lo >= 0 then
         --  Positive.
         W := Uns32 (Clog2 (Uns64 (Hi) + 1));
      elsif Lo = Int64'First then
         --  Handle possible overflow.
         W := 64;
      elsif Hi < 0 then
         --  Negative only.
         W := Uns32 (Clog2 (Uns64 (-Lo))) + 1;
      else
         declare
            Wl : constant Uns32 := Uns32 (Clog2 (Uns64 (-Lo)));
            Wh : constant Uns32 := Uns32 (Clog2 (Uns64 (Hi) + 1));
         begin
            W := Uns32'Max (Wl, Wh) + 1;
         end;
      end if;
      return W;
   end Discrete_Range_Width;

   function In_Bounds (Bnd : Bound_Type; V : Int32) return Boolean is
   begin
      case Bnd.Dir is
         when Dir_To =>
            return V >= Bnd.Left and then V <= Bnd.Right;
         when Dir_Downto =>
            return V <= Bnd.Left and then V >= Bnd.Right;
      end case;
   end In_Bounds;

   function In_Range (Rng : Discrete_Range_Type; V : Int64) return Boolean is
   begin
      case Rng.Dir is
         when Dir_To =>
            return V >= Rng.Left and then V <= Rng.Right;
         when Dir_Downto =>
            return V <= Rng.Left and then V >= Rng.Right;
      end case;
   end In_Range;

   function Build_Discrete_Range_Type
     (L : Int64; R : Int64; Dir : Direction_Type) return Discrete_Range_Type is
   begin
      return (Dir => Dir,
              Left => L,
              Right => R,
              Is_Signed => L < 0 or R < 0);
   end Build_Discrete_Range_Type;

   function Create_Bit_Type return Type_Acc
   is
      subtype Bit_Type_Type is Type_Type (Type_Bit);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Bit_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Bit,
                                                Wkind => Wkind_Net,
                                                Drange => (Left => 0,
                                                           Right => 1,
                                                           Dir => Dir_To,
                                                           Is_Signed => False),
                                                Al => 0,
                                                Sz => 1,
                                                W => 1)));
   end Create_Bit_Type;

   function Create_Logic_Type return Type_Acc
   is
      subtype Logic_Type_Type is Type_Type (Type_Logic);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Logic_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Logic,
                                                Wkind => Wkind_Net,
                                                Drange => (Left => 0,
                                                           Right => 8,
                                                           Dir => Dir_To,
                                                           Is_Signed => False),
                                                Al => 0,
                                                Sz => 1,
                                                W => 1)));
   end Create_Logic_Type;

   function Create_Discrete_Type (Rng : Discrete_Range_Type;
                                  Sz : Size_Type;
                                  W : Uns32)
                                 return Type_Acc
   is
      subtype Discrete_Type_Type is Type_Type (Type_Discrete);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Discrete_Type_Type);
      Al : Palign_Type;
   begin
      if Sz <= 1 then
         Al := 0;
      elsif Sz <= 4 then
         Al := 2;
      else
         pragma Assert (Sz <= 8);
         Al := 3;
      end if;
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Discrete,
                                                Wkind => Wkind_Net,
                                                Al => Al,
                                                Sz => Sz,
                                                W => W,
                                                Drange => Rng)));
   end Create_Discrete_Type;

   function Create_Float_Type (Rng : Float_Range_Type) return Type_Acc
   is
      subtype Float_Type_Type is Type_Type (Type_Float);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Float_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Float,
                                                Wkind => Wkind_Net,
                                                Al => 3,
                                                Sz => 8,
                                                W => 64,
                                                Frange => Rng)));
   end Create_Float_Type;

   function Create_Vector_Type (Bnd : Bound_Type; El_Type : Type_Acc)
                               return Type_Acc
   is
      subtype Vector_Type_Type is Type_Type (Type_Vector);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Vector_Type_Type);
   begin
      pragma Assert (El_Type.Kind in Type_Nets);
      return To_Type_Acc
        (Alloc (Current_Pool, (Kind => Type_Vector,
                               Wkind => Wkind_Net,
                               Al => El_Type.Al,
                               Sz => El_Type.Sz * Size_Type (Bnd.Len),
                               W => Bnd.Len,
                               Alast => True,
                               Abound => Bnd,
                               Arr_El => El_Type)));
   end Create_Vector_Type;

   function Create_Slice_Type (Len : Uns32; El_Type : Type_Acc)
                              return Type_Acc
   is
      subtype Slice_Type_Type is Type_Type (Type_Slice);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Slice_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool,
                                 (Kind => Type_Slice,
                                  Wkind => El_Type.Wkind,
                                  Al => El_Type.Al,
                                  Sz => Size_Type (Len) * El_Type.Sz,
                                  W => Len * El_Type.W,
                                  Slice_El => El_Type)));
   end Create_Slice_Type;

   function Create_Vec_Type_By_Length (Len : Uns32; El : Type_Acc)
                                      return Type_Acc is
   begin
      return Create_Vector_Type ((Dir => Dir_Downto,
                                  Left => Int32 (Len) - 1,
                                  Right => 0,
                                  Len => Len),
                                 El);
   end Create_Vec_Type_By_Length;

   function Create_Array_Type
     (Bnd : Bound_Type; Last : Boolean; El_Type : Type_Acc) return Type_Acc
   is
      subtype Array_Type_Type is Type_Type (Type_Array);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Array_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool,
                                 (Kind => Type_Array,
                                  Wkind => El_Type.Wkind,
                                  Al => El_Type.Al,
                                  Sz => El_Type.Sz * Size_Type (Bnd.Len),
                                  W => El_Type.W * Bnd.Len,
                                  Abound => Bnd,
                                  Alast => Last,
                                  Arr_El => El_Type)));
   end Create_Array_Type;

   function Create_Unbounded_Array
     (Idx : Type_Acc; Last : Boolean; El_Type : Type_Acc) return Type_Acc
   is
      subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Array);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Array,
                                                Wkind => El_Type.Wkind,
                                                Al => El_Type.Al,
                                                Sz => 0,
                                                W => 0,
                                                Ulast => Last,
                                                Uarr_El => El_Type,
                                                Uarr_Idx => Idx)));
   end Create_Unbounded_Array;

   function Create_Unbounded_Vector (El_Type : Type_Acc; Idx : Type_Acc)
                                    return Type_Acc
   is
      subtype Unbounded_Type_Type is Type_Type (Type_Unbounded_Vector);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Unbounded_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Vector,
                                                Wkind => El_Type.Wkind,
                                                Al => El_Type.Al,
                                                Sz => 0,
                                                W => 0,
                                                Ulast => True,
                                                Uarr_El => El_Type,
                                                Uarr_Idx => Idx)));
   end Create_Unbounded_Vector;

   function Get_Array_Element (Arr_Type : Type_Acc) return Type_Acc is
   begin
      case Arr_Type.Kind is
         when Type_Vector
           | Type_Array =>
            return Arr_Type.Arr_El;
         when Type_Unbounded_Array
           | Type_Unbounded_Vector =>
            return Arr_Type.Uarr_El;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Element;

   function Get_Array_Bound (Typ : Type_Acc) return Bound_Type is
   begin
      case Typ.Kind is
         when Type_Vector
           | Type_Array =>
            return Typ.Abound;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Bound;

   function Get_Uarray_Index (Typ : Type_Acc) return Type_Acc is
   begin
      case Typ.Kind is
         when Type_Unbounded_Vector
           | Type_Unbounded_Array =>
            return Typ.Uarr_Idx;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Uarray_Index;

   function Get_Range_Length (Rng : Discrete_Range_Type) return Uns32
   is
      Len : Int64;
   begin
      case Rng.Dir is
         when Dir_To =>
            Len := Rng.Right - Rng.Left + 1;
         when Dir_Downto =>
            Len := Rng.Left - Rng.Right + 1;
      end case;
      if Len < 0 then
         return 0;
      else
         return Uns32 (Len);
      end if;
   end Get_Range_Length;

   function Create_Rec_El_Array (Nels : Iir_Index32) return Rec_El_Array_Acc
   is
      subtype Data_Type is Rec_El_Array (Nels);
      Res : Address;
   begin
      --  Manually allocate the array to handle large arrays without
      --  creating a large temporary value.
      Areapools.Allocate
        (Current_Pool.all, Res,
         Data_Type'Size / Storage_Unit, Data_Type'Alignment);

      declare
         --  Discard the warnings for no pragma Import as we really want
         --  to use the default initialization.
         pragma Warnings (Off);
         Addr1 : constant Address := Res;
         Init : Data_Type;
         for Init'Address use Addr1;
         pragma Warnings (On);
      begin
         null;
      end;

      return To_Rec_El_Array_Acc (Res);
   end Create_Rec_El_Array;

   function Align (Off : Size_Type; Al : Palign_Type) return Size_Type
   is
      Mask : constant Size_Type := 2 ** Natural (Al) - 1;
   begin
      return (Off + Mask) and not Mask;
   end Align;

   function Create_Record_Type (Els : Rec_El_Array_Acc) return Type_Acc
   is
      subtype Record_Type_Type is Type_Type (Type_Record);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Record_Type_Type);
      Wkind : Wkind_Type;
      W : Uns32;
      Al : Palign_Type;
      Sz : Size_Type;
   begin
      --  Layout the record.
      Wkind := Wkind_Net;
      Al := 0;
      Sz := 0;
      W := 0;
      for I in Els.E'Range loop
         declare
            E : Rec_El_Type renames Els.E (I);
         begin
            --  For nets.
            E.Offs.Net_Off := W;
            if E.Typ.Wkind /= Wkind_Net then
               Wkind := Wkind_Undef;
            end if;
            W := W + E.Typ.W;

            --  For memory.
            Al := Palign_Type'Max (Al, E.Typ.Al);
            Sz := Align (Sz, E.Typ.Al);
            E.Offs.Mem_Off := Sz;
            Sz := Sz + E.Typ.Sz;
         end;
      end loop;
      Sz := Align (Sz, Al);

      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Record,
                                                Wkind => Wkind,
                                                Al => Al,
                                                Sz => Sz,
                                                W => W,
                                                Rec => Els)));
   end Create_Record_Type;

   function Create_Unbounded_Record (Els : Rec_El_Array_Acc) return Type_Acc
   is
      subtype Unbounded_Record_Type_Type is Type_Type (Type_Unbounded_Record);
      function Alloc is
         new Areapools.Alloc_On_Pool_Addr (Unbounded_Record_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Unbounded_Record,
                                                Wkind => Wkind_Net,
                                                Al => 0,
                                                Sz => 0,
                                                W => 0,
                                                Rec => Els)));
   end Create_Unbounded_Record;

   function Create_Access_Type (Acc_Type : Type_Acc) return Type_Acc
   is
      subtype Access_Type_Type is Type_Type (Type_Access);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Access_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Access,
                                                Wkind => Wkind_Sim,
                                                Al => 2,
                                                Sz => 4,
                                                W => 1,
                                                Acc_Acc => Acc_Type)));
   end Create_Access_Type;

   function Create_File_Type (File_Type : Type_Acc) return Type_Acc
   is
      subtype File_Type_Type is Type_Type (Type_File);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (File_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_File,
                                                Wkind => Wkind_Sim,
                                                Al => 2,
                                                Sz => 4,
                                                W => 1,
                                                File_Typ => File_Type,
                                                File_Signature => null)));
   end Create_File_Type;

   function Create_Protected_Type return Type_Acc
   is
      subtype Protected_Type_Type is Type_Type (Type_Protected);
      function Alloc is new Areapools.Alloc_On_Pool_Addr (Protected_Type_Type);
   begin
      return To_Type_Acc (Alloc (Current_Pool, (Kind => Type_Protected,
                                                Wkind => Wkind_Sim,
                                                Al => 2,
                                                Sz => 4,
                                                W => 1)));
   end Create_Protected_Type;

   function Vec_Length (Typ : Type_Acc) return Iir_Index32 is
   begin
      return Iir_Index32 (Typ.Abound.Len);
   end Vec_Length;

   function Get_Array_Flat_Length (Typ : Type_Acc) return Iir_Index32 is
   begin
      case Typ.Kind is
         when Type_Vector =>
            return Iir_Index32 (Typ.Abound.Len);
         when Type_Array =>
            declare
               Len : Uns32;
               T : Type_Acc;
            begin
               Len := 1;
               T := Typ;
               loop
                  Len := Len * T.Abound.Len;
                  exit when T.Alast;
                  T := T.Arr_El;
               end loop;
               return Iir_Index32 (Len);
            end;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Array_Flat_Length;

   function Get_Type_Width (Atype : Type_Acc) return Uns32 is
   begin
      pragma Assert (Atype.Kind /= Type_Unbounded_Array);
      return Atype.W;
   end Get_Type_Width;

   function Get_Bound_Length (T : Type_Acc) return Uns32 is
   begin
      case T.Kind is
         when Type_Vector
           | Type_Array =>
            return T.Abound.Len;
         when Type_Slice =>
            return T.W;
         when others =>
            raise Internal_Error;
      end case;
   end Get_Bound_Length;

   function Is_Matching_Bounds (L, R : Type_Acc) return Boolean is
   begin
      case L.Kind is
         when Type_Bit
           | Type_Logic
           | Type_Discrete
           | Type_Float =>
            pragma Assert (L.Kind = R.Kind);
            return True;
         when Type_Vector
           | Type_Slice =>
            return Get_Bound_Length (L) = Get_Bound_Length (R);
         when Type_Array =>
            pragma Assert (L.Alast = R.Alast);
            if Get_Bound_Length (L) /= Get_Bound_Length (R) then
               return False;
            end if;
            if L.Alast then
               return True;
            end if;
            return Get_Bound_Length (L.Arr_El) = Get_Bound_Length (R.Arr_El);
         when Type_Unbounded_Array
           | Type_Unbounded_Vector
           | Type_Unbounded_Record =>
            raise Internal_Error;
         when Type_Record =>
            --  FIXME: handle vhdl-08
            return True;
         when Type_Access =>
            return True;
         when Type_File
           |  Type_Protected =>
            raise Internal_Error;
      end case;
   end Is_Matching_Bounds;

   function Read_U8 (Mt : Memtyp) return Ghdl_U8
   is
      pragma Assert (Mt.Typ.Sz = 1);
   begin
      return Read_U8 (Mt.Mem);
   end Read_U8;


   function Read_Fp64 (Mt : Memtyp) return Fp64 is
   begin
      return Read_Fp64 (Mt.Mem);
   end Read_Fp64;

   function Read_Discrete (Mem : Memory_Ptr; Typ : Type_Acc) return Int64 is
   begin
      case Typ.Sz is
         when 1 =>
            return Int64 (Read_U8 (Mem));
         when 4 =>
            return Int64 (Read_I32 (Mem));
         when 8 =>
            return Int64 (Read_I64 (Mem));
         when others =>
            raise Internal_Error;
      end case;
   end Read_Discrete;

   function Read_Discrete (Mt : Memtyp) return Int64 is
   begin
      return Read_Discrete (Mt.Mem, Mt.Typ);
   end Read_Discrete;

   procedure Write_Discrete (Mem : Memory_Ptr; Typ : Type_Acc; Val : Int64) is
   begin
      case Typ.Sz is
         when 1 =>
            Write_U8 (Mem, Ghdl_U8 (Val));
         when 4 =>
            Write_I32 (Mem, Ghdl_I32 (Val));
         when 8 =>
            Write_I64 (Mem, Ghdl_I64 (Val));
         when others =>
            raise Internal_Error;
      end case;
   end Write_Discrete;

   function Alloc_Memory (Sz : Size_Type; Align2 : Natural) return Memory_Ptr
   is
      function To_Memory_Ptr is new Ada.Unchecked_Conversion
        (System.Address, Memory_Ptr);
      M : System.Address;
   begin
      Areapools.Allocate (Current_Pool.all, M, Sz, Size_Type (2 ** Align2));
      return To_Memory_Ptr (M);
   end Alloc_Memory;

   function Alloc_Memory (Vtype : Type_Acc) return Memory_Ptr is
   begin
      return Alloc_Memory (Vtype.Sz, Natural (Vtype.Al));
   end Alloc_Memory;

   function Create_Memory (Vtype : Type_Acc) return Memtyp is
   begin
      return (Vtype, Alloc_Memory (Vtype));
   end Create_Memory;

   function Create_Memory_Zero (Vtype : Type_Acc) return Memtyp
   is
      Mem : Memory_Ptr;
   begin
      Mem := Alloc_Memory (Vtype);
      for I in 1 .. Vtype.Sz loop
         Write_U8 (Mem + (I - 1), 0);
      end loop;
      return (Vtype, Mem);
   end Create_Memory_Zero;

   function Create_Memory_U8 (Val : Ghdl_U8; Vtype : Type_Acc)
                             return Memtyp
   is
      pragma Assert (Vtype.Sz = 1);
      Res : Memory_Ptr;
   begin
      Res := Alloc_Memory (Vtype);
      Write_U8 (Res, Val);
      return (Vtype, Res);
   end Create_Memory_U8;

   function Create_Memory_Fp64 (Val : Fp64; Vtype : Type_Acc)
                               return Memtyp
   is
      pragma Assert (Vtype.Sz = 8);
      Res : Memory_Ptr;
   begin
      Res := Alloc_Memory (Vtype);
      Write_Fp64 (Res, Val);
      return (Vtype, Res);
   end Create_Memory_Fp64;

   function Create_Memory_Discrete (Val : Int64; Vtype : Type_Acc)
                                   return Memtyp
   is
      Res : Memory_Ptr;
   begin
      Res := Alloc_Memory (Vtype);
      case Vtype.Sz is
         when 1 =>
            Write_U8 (Res, Ghdl_U8 (Val));
         when 4 =>
            Write_I32 (Res, Ghdl_I32 (Val));
         when 8 =>
            Write_I64 (Res, Ghdl_I64 (Val));
         when others =>
            raise Internal_Error;
      end case;
      return (Vtype, Res);
   end Create_Memory_Discrete;

   function Create_Memory_U32 (Val : Uns32) return Memtyp
   is
      Res : Memory_Ptr;
   begin
      Res := Alloc_Memory (4, 2);
      Write_U32 (Res, Ghdl_U32 (Val));
      return (null, Res);
   end Create_Memory_U32;

   function Is_Equal (L, R : Memtyp) return Boolean is
   begin
      if L = R then
         return True;
      end if;

      if L.Typ.Sz /= R.Typ.Sz then
         return False;
      end if;

      --  FIXME: not correct for records, not correct for floats!
      for I in 1 .. L.Typ.Sz loop
         if L.Mem (I - 1) /= R.Mem (I - 1) then
            return False;
         end if;
      end loop;
      return True;
   end Is_Equal;

   procedure Copy_Memory (Dest : Memory_Ptr; Src : Memory_Ptr; Sz : Size_Type)
   is
   begin
      for I in 1 .. Sz loop
         Dest (I - 1) := Src (I - 1);
      end loop;
   end Copy_Memory;

   function Unshare (Src : Memtyp; Pool : Areapool_Acc) return Memtyp
   is
      Prev_Pool : constant Areapool_Acc := Current_Pool;
      Res : Memory_Ptr;
   begin
      Current_Pool := Pool;
      Res := Alloc_Memory (Src.Typ);
      Copy_Memory (Res, Src.Mem, Src.Typ.Sz);
      Current_Pool := Prev_Pool;
      return (Src.Typ, Res);
   end Unshare;

   function Unshare (Src : Memtyp) return Memtyp
   is
      Res : Memory_Ptr;
   begin
      Res := Alloc_Memory (Src.Typ);
      Copy_Memory (Res, Src.Mem, Src.Typ.Sz);
      return (Src.Typ, Res);
   end Unshare;

   Bit0_Mem : constant Memory_Element := 0;
   Bit1_Mem : constant Memory_Element := 1;

   function To_Memory_Ptr is new Ada.Unchecked_Conversion
     (Address, Memory_Ptr);

   procedure Initialize is
   begin
      if Boolean_Type /= null then
         Release (Empty_Marker, Global_Pool);
      end if;

      Instance_Pool := Global_Pool'Access;
      Boolean_Type := Create_Bit_Type;
      Logic_Type := Create_Logic_Type;
      Bit_Type := Create_Bit_Type;
      Protected_Type := Create_Protected_Type;

      Bit0 := (Bit_Type, To_Memory_Ptr (Bit0_Mem'Address));
      Bit1 := (Bit_Type, To_Memory_Ptr (Bit1_Mem'Address));
   end Initialize;

   procedure Finalize is
   begin
      pragma Assert (Boolean_Type /= null);
      Release (Empty_Marker, Global_Pool);

      Instance_Pool := null;
      Boolean_Type := null;
      Logic_Type := null;
      Bit_Type := null;
      Protected_Type := null;

      Bit0 := Null_Memtyp;
      Bit1 := Null_Memtyp;
   end Finalize;
end Elab.Vhdl_Objtypes;