1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
-- PSL - Small QM reduction
-- Copyright (C) 2002-2016 Tristan Gingold
--
-- This program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program. If not, see <gnu.org/licenses>.
with Ada.Text_IO;
with Types; use Types;
with PSL.Types; use PSL.Types;
with PSL.Errors; use PSL.Errors;
with PSL.Prints;
with PSL.CSE;
package body PSL.QM is
procedure Reset is
begin
for I in 1 .. Nbr_Terms loop
Set_HDL_Index (Term_Assoc (I), 0);
end loop;
Nbr_Terms := 0;
Term_Assoc := (others => Null_Node);
end Reset;
function Term (P : Natural) return Vector_Type is
begin
return Shift_Left (1, P - 1);
end Term;
procedure Disp_Primes_Set (Ps : Primes_Set)
is
use Ada.Text_IO;
use PSL.Prints;
Prime : Prime_Type;
T : Vector_Type;
First_Term : Boolean;
begin
if Ps.Nbr = 0 then
Put ("FALSE");
return;
end if;
for I in 1 .. Ps.Nbr loop
Prime := Ps.Set (I);
if I /= 1 then
Put (" | ");
end if;
if Prime.Set = 0 then
Put ("TRUE");
else
First_Term := True;
for J in 1 .. Max_Terms loop
T := Term (J);
if (Prime.Set and T) /= 0 then
if First_Term then
First_Term := False;
else
Put ('.');
end if;
if (Prime.Val and T) = 0 then
Put ('!');
end if;
Print_Expr (Term_Assoc (J));
end if;
end loop;
end if;
end loop;
end Disp_Primes_Set;
-- Return TRUE iff L includes R, ie
-- for all x, x in L => x in R.
function Included (L, R : Prime_Type) return Boolean is
begin
return ((L.Set or R.Set) = L.Set)
and then ((L.Val and R.Set) = (R.Val and R.Set));
end Included;
-- Return TRUE iff L and R have the same don't care set
-- and L and R can be merged into a new prime with a new don't care.
function Is_One_Change_Same (L, R : Prime_Type) return Boolean
is
V : Vector_Type;
begin
if L.Set /= R.Set then
return False;
end if;
V := L.Val xor R.Val;
return (V and -V) = V;
end Is_One_Change_Same;
-- Return true iff L can add a new DC in R.
function Is_One_Change (L, R : Prime_Type) return Boolean
is
V : Vector_Type;
begin
if (L.Set or R.Set) /= R.Set then
return False;
end if;
V := (L.Val xor R.Val) and L.Set;
return (V and -V) = V;
end Is_One_Change;
procedure Merge (Ps : in out Primes_Set; P : Prime_Type)
is
Do_Append : Boolean := True;
T : Prime_Type;
begin
for I in 1 .. Ps.Nbr loop
T := Ps.Set (I);
if Included (P, T) then
-- Already in the set.
return;
end if;
if Included (T, P) then
Ps.Set (I) := P;
Do_Append := False;
else
if Is_One_Change_Same (P, T) then
declare
V : constant Vector_Type := T.Val xor P.Val;
begin
Ps.Set (I).Set := T.Set and not V;
Ps.Set (I).Val := T.Val and not V;
end;
Do_Append := False;
end if;
if Is_One_Change (P, T) then
declare
V : constant Vector_Type := (T.Val xor P.Val) and P.Set;
begin
Ps.Set (I).Set := T.Set and not V;
Ps.Set (I).Val := T.Val and not V;
end;
-- continue.
end if;
end if;
end loop;
if Do_Append then
Ps.Nbr := Ps.Nbr + 1;
Ps.Set (Ps.Nbr) := P;
end if;
end Merge;
function Build_Primes_And (L, R : Primes_Set) return Primes_Set
is
Res : Primes_Set (L.Nbr * R.Nbr);
L_P, R_P : Prime_Type;
P : Prime_Type;
begin
for I in 1 .. L.Nbr loop
L_P := L.Set (I);
for J in 1 .. R.Nbr loop
R_P := R.Set (J);
-- In case of conflict, discard.
if ((L_P.Val xor R_P.Val) and (L_P.Set and R_P.Set)) /= 0 then
null;
else
P.Set := L_P.Set or R_P.Set;
P.Val := (R_P.Set and R_P.Val)
or ((L_P.Set and not R_P.Set) and L_P.Val);
Merge (Res, P);
end if;
end loop;
end loop;
return Res;
end Build_Primes_And;
function Build_Primes_Or (L, R : Primes_Set) return Primes_Set
is
Res : Primes_Set (L.Nbr + R.Nbr);
L_P, R_P : Prime_Type;
begin
for I in 1 .. L.Nbr loop
L_P := L.Set (I);
Merge (Res, L_P);
end loop;
for J in 1 .. R.Nbr loop
R_P := R.Set (J);
Merge (Res, R_P);
end loop;
return Res;
end Build_Primes_Or;
function Build_Primes (N : Node; Negate : Boolean) return Primes_Set is
begin
case Get_Kind (N) is
when N_HDL_Bool
| N_EOS =>
declare
Res : Primes_Set (1);
Index : Int32;
T : Vector_Type;
begin
Index := Get_HDL_Index (N);
if Index = 0 then
Nbr_Terms := Nbr_Terms + 1;
if Nbr_Terms > Max_Terms then
raise Program_Error;
end if;
Term_Assoc (Nbr_Terms) := N;
Index := Int32 (Nbr_Terms);
Set_HDL_Index (N, Index);
else
if Index not in 1 .. Int32 (Nbr_Terms)
or else Term_Assoc (Natural (Index)) /= N
then
raise Internal_Error;
end if;
end if;
T := Term (Natural (Index));
Res.Nbr := 1;
Res.Set (1).Set := T;
if Negate then
Res.Set (1).Val := 0;
else
Res.Set (1).Val := T;
end if;
return Res;
end;
when N_False =>
declare
Res : Primes_Set (0);
begin
return Res;
end;
when N_True =>
declare
Res : Primes_Set (1);
begin
Res.Nbr := 1;
Res.Set (1).Set := 0;
Res.Set (1).Val := 0;
return Res;
end;
when N_Not_Bool =>
return Build_Primes (Get_Boolean (N), not Negate);
when N_And_Bool =>
if Negate then
-- !(a & b) <-> !a || !b
return Build_Primes_Or (Build_Primes (Get_Left (N), True),
Build_Primes (Get_Right (N), True));
else
return Build_Primes_And (Build_Primes (Get_Left (N), False),
Build_Primes (Get_Right (N), False));
end if;
when N_Or_Bool =>
if Negate then
-- !(a || b) <-> !a && !b
return Build_Primes_And (Build_Primes (Get_Left (N), True),
Build_Primes (Get_Right (N), True));
else
return Build_Primes_Or (Build_Primes (Get_Left (N), False),
Build_Primes (Get_Right (N), False));
end if;
when N_Imp_Bool =>
if not Negate then
-- a -> b <-> !a || b
return Build_Primes_Or (Build_Primes (Get_Left (N), True),
Build_Primes (Get_Right (N), False));
else
-- !(a -> b) <-> a && !b
return Build_Primes_And (Build_Primes (Get_Left (N), False),
Build_Primes (Get_Right (N), True));
end if;
when N_Equiv_Bool =>
if not Negate then
-- a <-> b <-> (a && b) || (!a && !b)
return Build_Primes_Or
(Build_Primes_And (Build_Primes (Get_Left (N), False),
Build_Primes (Get_Right (N), False)),
Build_Primes_And (Build_Primes (Get_Left (N), True),
Build_Primes (Get_Right (N), True)));
else
-- !(a <-> b) <-> (!a && b) || (a && !b)
return Build_Primes_Or
(Build_Primes_And (Build_Primes (Get_Left (N), True),
Build_Primes (Get_Right (N), False)),
Build_Primes_And (Build_Primes (Get_Left (N), False),
Build_Primes (Get_Right (N), True)));
end if;
when others =>
Error_Kind ("build_primes", N);
end case;
end Build_Primes;
function Build_Primes (N : Node) return Primes_Set is
begin
return Build_Primes (N, False);
end Build_Primes;
function Build_Node (P : Prime_Type) return Node
is
Res : Node := Null_Node;
N : Node;
S : Vector_Type := P.Set;
T : Vector_Type;
begin
if S = 0 then
return True_Node;
end if;
for I in Natural range 1 .. Vector_Type'Modulus loop
T := Term (I);
if (S and T) /= 0 then
N := Term_Assoc (I);
if (P.Val and T) = 0 then
N := PSL.CSE.Build_Bool_Not (N);
end if;
if Res = Null_Node then
Res := N;
else
Res := PSL.CSE.Build_Bool_And (Res, N);
end if;
S := S and not T;
exit when S = 0;
end if;
end loop;
return Res;
end Build_Node;
function Build_Node (Ps : Primes_Set) return Node
is
Res : Node;
begin
if Ps.Nbr = 0 then
return False_Node;
else
Res := Build_Node (Ps.Set (1));
for I in 2 .. Ps.Nbr loop
Res := PSL.CSE.Build_Bool_Or (Res, Build_Node (Ps.Set (I)));
end loop;
return Res;
end if;
end Build_Node;
-- FIXME: finish the work: do a real Quine-McKluskey minimization.
function Reduce (N : Node) return Node is
begin
return Build_Node (Build_Primes (N));
end Reduce;
end PSL.QM;
|