aboutsummaryrefslogtreecommitdiffstats
path: root/python/xtools/pnodes.py
blob: bb1ed8bea2d006f09e479a631cb5c44df33bd8b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding: 0 5px 0 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding: 0 5px 0 5px; }
.highlight .hll { background-color: #ffffcc }
.highlight { background: #ffffff; }
.highlight .c { color: #888888 } /* Comment */
.highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */
.highlight .k { color: #008800; font-weight: bold } /* Keyword */
.highlight .ch { color: #888888 } /* Comment.Hashbang */
.highlight .cm { color: #888888 } /* Comment.Multiline */
.highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */
.highlight .cpf { color: #888888 } /* Comment.PreprocFile */
.highlight .c1 { color: #888888 } /* Comment.Single */
.highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */
.highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #aa0000 } /* Generic.Error */
.highlight .gh { color: #333333 } /* Generic.Heading */
.highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #555555 } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #666666 } /* Generic.Subheading */
.highlight .gt { color: #aa0000 } /* Generic.Traceback */
.highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008800 } /* Keyword.Pseudo */
.highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */
.highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */
.highlight .na { color: #336699 } /* Name.Attribute */
.highlight .nb { color: #003388 } /* Name.Builtin */
.highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */
.highlight .no { color: #003366; font-weight: bold } /* Name.Constant */
.highlight .nd { color: #555555 } /* Name.Decorator */
.highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */
.highlight .nl { color: #336699; font-style: italic } /* Name.Label */
.highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */
.highlight .py { color: #336699; font-weight: bold } /* Name.Property */
.highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #336699 } /* Name.Variable */
.highlight .ow { color: #008800 } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */
.highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */
.highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */
.highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */
.highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */
.highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */
.highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */
.highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */
.highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */
.highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */
.highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */
.highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */
.highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */
.highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */
.highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */
.highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */
.highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */
.highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */
.highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */
.highlight .vc { color: #336699 } /* Name.Variable.Class */
.highlight .vg { color: #dd7700 } /* Name.Variable.Global */
.highlight .vi { color: #3333bb } /* Name.Variable.Instance */
.highlight .vm { color: #336699 } /* Name.Variable.Magic */
.highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
# How to Customize Your Keyboard's Behavior

For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.

This page does not assume any special knowledge about QMK, but reading [Understanding QMK](understanding_qmk.md) will help you understand what is going on at a more fundamental level.

## A Word on Core vs Keyboards vs Keymap

We have structured QMK as a hierarchy:

* Core (`_quantum`)
  * Keyboard/Revision (`_kb`)
    * Keymap (`_user`)

Each of the functions described below can be defined with a `_kb()` suffix or a `_user()` suffix. We intend for you to use the `_kb()` suffix at the Keyboard/Revision level, while the `_user()` suffix should be used at the Keymap level.

When defining functions at the Keyboard/Revision level it is important that your `_kb()` implementation call `_user()` before executing anything else- otherwise the keymap level function will never be called.

# Custom Keycodes

By far the most common task is to change the behavior of an existing keycode or to create a new keycode. From a code standpoint the mechanism for each is very similar.

## Defining a New Keycode

The first step to creating your own custom keycode(s) is to enumerate them. This means both naming them and assigning a unique number to that keycode. Rather than limit custom keycodes to a fixed range of numbers QMK provides the `SAFE_RANGE` macro. You can use `SAFE_RANGE` when enumerating your custom keycodes to guarantee that you get a unique number.


Here is an example of enumerating 2 keycodes. After adding this block to your `keymap.c` you will be able to use `FOO` and `BAR` inside your keymap.

```c
enum my_keycodes {
  FOO = SAFE_RANGE,
  BAR
};
```

## Programming the Behavior of Any Keycode

When you want to override the behavior of an existing key, or define the behavior for a new key, you should use the `process_record_kb()` and `process_record_user()` functions. These are called by QMK during key processing before the actual key event is handled. If these functions return `true` QMK will process the keycodes as usual. That can be handy for extending the functionality of a key rather than replacing it. If these functions return `false` QMK will skip the normal key handling, and it will be up to you to send any key up or down events that are required.

These function are called every time a key is pressed or released.

### Example `process_record_user()` Implementation

This example does two things. It defines the behavior for a custom keycode called `FOO`, and it supplements our Enter key by playing a tone whenever it is pressed.

```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
  switch (keycode) {
    case FOO:
      if (record->event.pressed) {
        // Do something when pressed
      } else {
        // Do something else when release
      }
      return false; // Skip all further processing of this key
    case KC_ENTER:
      // Play a tone when enter is pressed
      if (record->event.pressed) {
        PLAY_NOTE_ARRAY(tone_qwerty);
      }
      return true; // Let QMK send the enter press/release events
    default:
      return true; // Process all other keycodes normally
  }
}
```

### `process_record_*` Function Documentation

* Keyboard/Revision: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
* Keymap: `bool process_record_user(uint16_t keycode, keyrecord_t *record)`

The `keycode` argument is whatever is defined in your keymap, eg `MO(1)`, `KC_L`, etc. You should use a `switch...case` block to handle these events.

The `record` argument contains information about the actual press:

```c
keyrecord_t record {
  keyevent_t event {
    keypos_t key {
      uint8_t col
      uint8_t row
    }
    bool     pressed
    uint16_t time
  }
}
```

# LED Control

This allows you to control the 5 LED's defined as part of the USB Keyboard spec. It will be called when the state of one of those 5 LEDs changes.

* `USB_LED_NUM_LOCK`
* `USB_LED_CAPS_LOCK`
* `USB_LED_SCROLL_LOCK`
* `USB_LED_COMPOSE`
* `USB_LED_KANA`

### Example `led_set_user()` Implementation

```c
void led_set_user(uint8_t usb_led) {
    if (usb_led & (1<<USB_LED_NUM_LOCK)) {
        PORTB |= (1<<0);
    } else {
        PORTB &= ~(1<<0);
    }
    if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
        PORTB |= (1<<1);
    } else {
        PORTB &= ~(1<<1);
    }
    if (usb_led & (1<<USB_LED_SCROLL_LOCK)) {
        PORTB |= (1<<2);
    } else {
        PORTB &= ~(1<<2);
    }
    if (usb_led & (1<<USB_LED_COMPOSE)) {
        PORTB |= (1<<3);
    } else {
        PORTB &= ~(1<<3);
    }
    if (usb_led & (1<<USB_LED_KANA)) {
        PORTB |= (1<<4);
    } else {
        PORTB &= ~(1<<4);
    }
}
```

### `led_set_*` Function Documentation

* Keyboard/Revision: `void led_set_kb(uint8_t usb_led)`
* Keymap: `void led_set_user(uint8_t usb_led)`


# Matrix Initialization Code

Before a keyboard can be used the hardware must be initialized. QMK handles initialization of the keyboard matrix itself, but if you have other hardware like LED's or i&#xb2;c controllers you will need to set up that hardware before it can be used.


### Example `matrix_init_user()` Implementation

This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.

```c
void matrix_init_user(void) {
  // Call the keymap level matrix init.

  // Set our LED pins as output
  DDRB |= (1<<1);
  DDRB |= (1<<2);
  DDRB |= (1<<3);
}
```

### `matrix_init_*` Function Documentation

* Keyboard/Revision: `void matrix_init_kb(void)`
* Keymap: `void matrix_init_user(void)`

# Matrix Scanning Code

Whenever possible you should customize your keyboard by using `process_record_*()` and hooking into events that way, to ensure that your code does not have a negative performance impact on your keyboard. However, in rare cases it is necessary to hook into the matrix scanning. Be extremely careful with the performance of code in these functions, as it will be called at least 10 times per second.

### Example `matrix_scan_*` Implementation

This example has been deliberately omitted. You should understand enough about QMK internals to write this without an example before hooking into such a performance sensitive area. If you need help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) or [chat with us on Discord](https://discord.gg/Uq7gcHh).

### `matrix_scan_*` Function Documentation

* Keyboard/Revision: `void matrix_scan_kb(void)`
* Keymap: `void matrix_scan_user(void)`

This function gets called at every matrix scan, which is basically as often as the MCU can handle. Be careful what you put here, as it will get run a lot.

You should use this function if you need custom matrix scanning code. It can also be used for custom status output (such as LED's or a display) or other functionality that you want to trigger regularly even when the user isn't typing.


# Keyboard Idling/Wake Code

If the board supports it, it can be "idled", by stopping a number of functions.  A good example of this is RGB lights or backlights.   This can save on power consumption, or may be better behavior for your keyboard.

This is controlled by two functions: `suspend_power_down_*` and `suspend_wakeup_init_*`, which are called when the system is board is idled and when it wakes up, respectively.


### Example suspend_power_down_user() and suspend_wakeup_init_user() Implementation

This example, at the keyboard level, sets up B1, B2, and B3 as LED pins.

```c
void suspend_power_down_user(void)
{
    rgb_matrix_set_suspend_state(true);
}

void suspend_wakeup_init_user(void)
{
    rgb_matrix_set_suspend_state(false);
}

```

### `keyboard_init_*` Function Documentation

* Keyboard/Revision: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
* Keymap: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`

# Layer Change Code

This runs code every time that the layers get changed.  This can be useful for layer indication, or custom layer handling.

### Example `layer_state_set_*` Implementation

This example shows how to set the [RGB Underglow](feature_rgblight.md) lights based on the layer, using the Planck as an example

```c
uint32_t layer_state_set_user(uint32_t state) {
    switch (biton32(state)) {
    case _RAISE:
        rgblight_setrgb (0x00,  0x00, 0xFF);
        break;
    case _LOWER:
        rgblight_setrgb (0xFF,  0x00, 0x00);
        break;
    case _PLOVER:
        rgblight_setrgb (0x00,  0xFF, 0x00);
        break;
    case _ADJUST:
        rgblight_setrgb (0x7A,  0x00, 0xFF);
        break;
    default: //  for any other layers, or the default layer
;Iir_Kinds_"
type_name = "Iir_Kind"
node_type = "Iir"
conversions = ['uc', 'pos', 'grp']


class FuncDesc:
    def __init__(self, name, fields, conv, acc,
                 pname, ptype, rname, rtype):
        self.name = name
        self.fields = fields  # List of physical fields used
        self.conv = conv
        self.acc = acc  # access: Chain, Chain_Next, Ref, Of_Ref, Maybe_Ref,
        #                 Forward_Ref, Maybe_Forward_Ref
        self.pname = pname  # Parameter mame
        self.ptype = ptype  # Parameter type
        self.rname = rname  # value name (for procedure)
        self.rtype = rtype  # value type


class NodeDesc:
    def __init__(self, name, format, fields, attrs):
        self.name = name
        self.format = format
        self.fields = fields  # {field: FuncDesc} dict, defined for all fields
        self.attrs = attrs    # A {attr: FuncDesc} dict
        self.order = []       # List of fields name, in order of appearance.


class line:
    def __init__(self, string, no):
        self.l = string
        self.n = no


class EndOfFile(Exception):
    def __init__(self, filename):
        self.filename = filename

    def __str__(self):
        return "end of file " + self.filename


class linereader:
    def __init__(self, filename):
        self.filename = filename
        self.f = open(filename)
        self.lineno = 0
        self.l = ''

    def get(self):
        self.l = self.f.readline()
        if not self.l:
            raise EndOfFile(self.filename)
        self.lineno = self.lineno + 1
        return self.l


class ParseError(Exception):
    def __init__(self, lr, msg):
        self.lr = lr
        self.msg = msg

    def __str__(self):
        return 'Error: ' + self.msg
        return 'Parse error at ' + self.lr.filname + ':' + self.lr.lineno + \
               ': ' + self.msg


# Return fields description.
# This is a dictionary.  The keys represent the possible format of a node.
# The values are dictionnaries representing fields.  Keys are fields name, and
# values are fields type.
def read_fields(file):
    fields = {}
    formats = []
    lr = linereader(file)

    #  Search for 'type Format_Type is'
    while lr.get() != '   type Format_Type is\n':
        pass

    # Skip '('
    if lr.get() != '     (\n':
        raise 'no open parenthesis after Format_Type'

    # Read formats
    l = lr.get()
    pat_field_name = re.compile('      Format_(\w+),?\n')
    while l != '     );\n':
        m = pat_field_name.match(l)
        if m is None:
            print l
            raise 'bad literal within Format_Type'
        name = m.group(1)
        formats.append(name)
        fields[name] = {}
        l = lr.get()

    # Read fields
    l = lr.get()
    pat_fields = re.compile('   -- Fields of Format_(\w+):\n')
    pat_field_desc = re.compile('   --   (\w+) : (\w+).*\n')
    format_name = ''
    common_desc = {}

    # Read until common fields.
    while l != '   -- Common fields are:\n':
        l = lr.get()
    format_name = 'Common'
    nbr_formats = 0

    while True:
        # 1) Read field description
        l = lr.get()
        desc = common_desc.copy()
        while True:
            m = pat_field_desc.match(l)
            if m is None:
                break
            desc[m.group(1)] = m.group(2)
            l = lr.get()
            # print 'For: ' + format_name + ': ' + m.group(1)

        # 2) Disp
        if format_name == 'Common':
            common_desc = desc
        else:
            fields[format_name] = desc

        # 3) Read next format
        if l == '\n':
            if nbr_formats == len(fields):
                break
            else:
                l = lr.get()

        # One for a format
        m = pat_fields.match(l)
        if m is not None:
            format_name = m.group(1)
            if format_name not in fields:
                raise ParseError(
                    lr, 'Format ' + format_name + ' is unknown')
            nbr_formats = nbr_formats + 1
        else:
            raise ParseError(lr, 'unhandled format line')

    return (formats, fields)


# Read kinds and kinds ranges.
def read_kinds(filename):
    lr = linereader(filename)
    kinds = []
    #  Search for 'type Iir_Kind is'
    while lr.get() != '   type ' + type_name + ' is\n':
        pass
    # Skip '('
    if lr.get() != '     (\n':
        raise ParseError(
            lr, 'no open parenthesis after "type ' + type_name + '"')

    # Read literals
    pat_node = re.compile('      ' + prefix_name + '(\w+),?( +-- .*)?\n')
    pat_comment = re.compile('( +-- .*)?\n')
    while True:
        l = lr.get()
        if l == '     );\n':
            break
        m = pat_node.match(l)
        if m:
            kinds.append(m.group(1))
            continue
        m = pat_comment.match(l)
        if not m:
            raise ParseError(lr, 'Unknown line within kind declaration')

    # Check subtypes
    pat_subtype = re.compile('   subtype ' + r'(\w+) is '
                              + type_name + ' range\n')
    pat_first = re.compile('     ' + prefix_name + r'(\w+) ..\n')
    pat_last = re.compile('     ' + prefix_name + r'(\w+);\n')
    pat_middle = re.compile('   --' + prefix_name + r'(\w+)\n')
    kinds_ranges = {}
    while True:
        l = lr.get()
        # Start of methods is also end of subtypes.
        if l == '   -- General methods.\n':
            break
        # Found a subtype.
        m = pat_subtype.match(l)
        if m:
            # Check first bound
            name = m.group(1)
            if not name.startswith(prefix_range_name):
                raise ParseError(lr, 'incorrect prefix for subtype')
            name = name[len(prefix_range_name):]
            l = lr.get()
            mf = pat_first.match(l)
            if not mf:
                raise ParseError(lr, 'badly formated first bound of subtype')
            first = kinds.index(mf.group(1))
            idx = first
            has_middle = None
            # Read until last bound
            while True:
                l = lr.get()
                ml = pat_middle.match(l)
                if ml:
                    # Check element in the middle
                    n = ml.group(1)
                    if n not in kinds:
                        raise ParseError(
                            lr, "unknown kind " + n + " in subtype")
                    if kinds.index(n) != idx + 1:
                        raise ParseError(
                            lr, "missing " + kinds[idx + 1] + " in subtype")
                    has_middle = True
                    idx = idx + 1
                else:
                    # Check last bound
                    ml = pat_last.match(l)
                    if ml:
                        last = kinds.index(ml.group(1))
                        if last != idx + 1 and has_middle:
                            raise ParseError(
                                lr, "missing " + kinds[idx] + " in subtype")
                        break
                    raise ParseError(lr, "unhandled line in subtype")
            kinds_ranges[name] = kinds[first:last+1]
    return (kinds, kinds_ranges)

# Read functions
def read_methods(filename):
    lr = linereader(filename)
    funcs = []
    pat_field = re.compile(r'   --  Field: ([\w,]+)( \w+)?( \(\w+\))?\n')
    pat_conv = re.compile(r'^ \((\w+)\)$')
    pat_func = re.compile(
        r'   function Get_(\w+) \((\w+) : (\w+)\) return (\w+);\n')
    pat_proc = re.compile(
        r'   procedure Set_(\w+) \((\w+) : (\w+); (\w+) : (\w+)\);\n')
    pat_end = re.compile('end [A-Za-z.]+;\n')
    while True:
        l = lr.get()
        # Start of methods
        if l == '   -- General methods.\n':
            break
    while True:
        l = lr.get()
        if pat_end.match(l):
            break
        m = pat_field.match(l)
        if m:
            fields = m.group(1).split(',')
            # Extract access modifier
            acc = m.group(2)
            if acc:
                acc = acc.strip()
            # Extract conversion
            conv = m.group(3)
            if conv:
                mc = pat_conv.match(conv)
                if not mc:
                    raise ParseError(lr, 'conversion ill formed')
                conv = mc.group(1)
                if conv not in conversions:
                    raise ParseError(lr, 'unknown conversion ' + conv)
            else:
                conv = None
            if len(fields) > 1 and conv != 'grp':
                raise ParseError(lr, 'bad conversion for multiple fields')
            # Read function
            l = lr.get()
            mf = pat_func.match(l)
            if not mf:
                raise ParseError(
                    lr, 'function declaration expected after Field')
            # Read procedure
            l = lr.get()
            mp = pat_proc.match(l)
            if not mp:
                raise ParseError(
                    lr, 'procedure declaration expected after function')
            # Consistency check between function and procedure
            if mf.group(1) != mp.group(1):
                raise ParseError(lr, 'function and procedure name mismatch')
            if mf.group(2) != mp.group(2):
                raise ParseError(lr, 'parameter name mismatch with function')
            if mf.group(3) != mp.group(3):
                raise ParseError(lr, 'parameter type mismatch with function')
            if mf.group(4) != mp.group(5):
                raise ParseError(lr, 'result type mismatch with function')
            funcs.append(FuncDesc(mf.group(1), fields, conv, acc,
                                  mp.group(2), mp.group(3),
                                  mp.group(4), mp.group(5)))

    return funcs


# Read description for one node
# LR is the line reader.  NAMES is the list of (node name, format)
#  (one description may describe several nodes).
# A comment start at column 2 or 4 or later.
def read_nodes_fields(lr, names, fields, nodes, funcs_dict):
    pat_only = re.compile('   -- Only for ' + prefix_name + '(\w+):\n')
    pat_only_bad = re.compile ('   -- *Only for.*\n')
    pat_field = re.compile('   --   Get/Set_(\w+) \((Alias )?([\w,]+)\)\n')
    pat_comment = re.compile('   --(|  [^ ].*|    .*)\n')

    # Create nodes
    cur_nodes = []
    for (nm, fmt) in names:
        if fmt not in fields:
            raise ParseError(lr, 'unknown format "{}"'.format(fmt))
        n = NodeDesc(nm, fmt, {x: None for x in fields[fmt]}, {})
        nodes[nm] = n
        cur_nodes.append(n)

    # Skip comments
    l = lr.l
    while pat_comment.match(l):
        l = lr.get()

    # Look for fields
    while l != '\n':
        # Skip comments
        while pat_comment.match(l):
            l = lr.get()

        # Handle 'Only ...'
        m = pat_only.match(l)
        if m:
            only_nodes = []
            while True:
                name = m.group(1)
                n = nodes.get(name, None)
                if n is None:
                    raise ParseError(lr, 'node is unknown')
                if n not in cur_nodes:
                    raise ParseError(lr, 'node not currently described')
                only_nodes.append(n)
                l = lr.get()
                m = pat_only.match(l)
                if not m:
                    break
        else:
            # By default a field applies to all nodes.
            only_nodes = cur_nodes

        # Skip comments
        while pat_comment.match(l):
            l = lr.get()

        # Handle field: '--  Get/Set_FUNC (Alias? FIELD)'
        m = pat_field.match(l)
        if not m:
            if pat_only_bad.match(l):
                raise ParseError(lr, "misleading 'Only for' comment")
            else:
                raise ParseError(lr, 'bad line in node description')

        func = m.group(1)
        alias = m.group(2)
        fields = m.group(3).split(',')

        # Check the function exists and if the field is correct.
        if func not in funcs_dict:
            raise ParseError(lr, 'unknown function')
        func = funcs_dict[func]
        if func.fields != fields:
            raise ParseError(lr, 'fields mismatch')

        for c in only_nodes:
            for f in fields:
                if f not in c.fields:
                    raise ParseError(
                        lr, 'field ' + f + ' does not exist in node')
            if not alias:
                for f in fields:
                    if c.fields[f]:
                        raise ParseError(
                            lr, 'field ' + f + ' already used')
                    c.fields[f] = func
                    c.order.append(f)
            c.attrs[func.name] = func

        l = lr.get()


def read_nodes(filename, kinds, kinds_ranges, fields, funcs):
    """Read description for all nodes."""
    lr = linereader(filename)
    funcs_dict = {x.name: x for x in funcs}
    nodes = {}

    # Skip until start
    while lr.get() != '   -- Start of ' + type_name + '.\n':
        pass

    pat_decl = re.compile('   -- ' + prefix_name + '(\w+) \((\w+)\)\n')
    pat_decls = re.compile('   -- ' + prefix_range_name + '(\w+) \((\w+)\)\n')
    pat_comment_line = re.compile('   --+\n')
    pat_comment_box = re.compile('   --(  .*)?\n')
    while True:
        l = lr.get()
        if l == '   -- End of ' + type_name + '.\n':
            break
        if l == '\n':
            continue
        m = pat_decl.match(l)
        if m:
            # List of nodes being described by the current description.
            names = []

            # Declaration of the first node
            while True:
                name = m.group(1)
                if name not in kinds:
                    raise ParseError(lr, 'unknown node')
                fmt = m.group(2)
                names.append((name, fmt))
                if name in nodes:
                    raise ParseError(
                        lr, 'node {} already described'.format(name));
                # There might be several nodes described at once.
                l = lr.get()
                m = pat_decl.match(l)
                if not m:
                    break
            read_nodes_fields(lr, names, fields, nodes, funcs_dict)
            continue
        m = pat_decls.match(l)
        if m:
            # List of nodes being described by the current description.
            name = m.group(1)
            fmt = m.group(2)
            names = [(k, fmt) for k in kinds_ranges[name]]
            l = lr.get()
            read_nodes_fields(lr, names, fields, nodes, funcs_dict)
            continue
        if pat_comment_line.match(l) or pat_comment_box.match(l):
            continue
        raise ParseError(lr, 'bad line in node description')

    for k in kinds:
        if k not in nodes:
            raise ParseError(lr, 'no desription for "{}"'.format(k))
    return nodes


def gen_choices(choices):
    """Generate a choice 'when A | B ... Z =>' using elements of CHOICES."""
    is_first = True
    for c in choices:
        if is_first:
            print '        ',
            print 'when',
        else:
            print
            print '        ',
            print '  |',
        print prefix_name + c,
        is_first = False
    print '=>'


def gen_get_format(formats, nodes, kinds):
    """Generate the Get_Format function."""
    print '   function Get_Format (Kind : ' + type_name + ') ' + \
          'return Format_Type is'
    print '   begin'
    print '      case Kind is'
    for f in formats:
        choices = [k for k in kinds if nodes[k].format == f]
        gen_choices(choices)
        print '            return Format_' + f + ';'
    print '      end case;'
    print '   end Get_Format;'


def gen_subprg_header(decl):
    if len(decl) < 76:
        print decl + ' is'
    else:
        print decl
        print '   is'
    print '   begin'


def gen_assert(func):
    print '      pragma Assert (' + func.pname + ' /= Null_' + node_type + ');'
    cond = '(Has_' + func.name + ' (Get_Kind (' + func.pname + ')),'
    msg = '"no field ' + func.name + '");'
    if len(cond) < 60:
        print '      pragma Assert ' + cond
        print '                     ' + msg
    else:
        print '      pragma Assert'
        print '         ' + cond
        print '          ' + msg


def get_field_type(fields, f):
    for fld in fields.values():
        if f in fld:
            return fld[f]
    return None


def gen_get_set(func, nodes, fields):
    """Generate Get_XXX/Set_XXX subprograms for FUNC."""
    rtype = func.rtype
    # If the function needs several fields, it must be user defined
    if func.conv == 'grp':
        print '   type %s_Conv is record' % rtype
        for f in func.fields:
            print '      %s: %s;' % (f, get_field_type(fields, f))
        print '   end record;'
        print '   pragma Pack (%s_Conv);' % rtype
        print "   pragma Assert (%s_Conv'Size = %s'Size);" % (rtype, rtype)
        print
    else:
        f = func.fields[0]
        g = 'Get_' + f + ' (' + func.pname + ')'

    s = func.rname
    if func.conv:
        if func.conv == 'uc':
            field_type = get_field_type(fields, f)
            g = field_type + '_To_' + rtype + ' (' + g + ')'
            s = rtype + '_To_' + field_type + ' (' + s + ')'
        elif func.conv == 'pos':
            g = rtype + "'Val (" + g + ')'
            s = rtype + "'Pos (" + s + ')'

    subprg = '   function Get_' + func.name + ' (' + func.pname \
             + ' : ' + func.ptype + ') return ' + rtype
    if func.conv == 'grp':
        print subprg
        print '   is'
        print '      function To_%s is new Ada.Unchecked_Conversion' % \
            func.rtype
        print '         (%s_Conv, %s);' % (rtype, rtype)
        print '      Conv : %s_Conv;' % rtype
        print '   begin'
    else:
        gen_subprg_header(subprg)
    gen_assert(func)
    if func.conv == 'grp':
        for f in func.fields:
            print '      Conv.%s := Get_%s (%s);' % (f, f, func.pname)
        g = 'To_%s (Conv)' % rtype
    print '      return ' + g + ';'
    print '   end Get_' + func.name + ';'
    print

    subprg = '   procedure Set_' + func.name + ' (' \
             + func.pname + ' : ' + func.ptype + '; ' \
             + func.rname + ' : ' + func.rtype + ')'
    if func.conv == 'grp':
        print subprg
        print '   is'
        print '      function To_%s_Conv is new Ada.Unchecked_Conversion' % \
            func.rtype
        print '         (%s, %s_Conv);' % (rtype, rtype)
        print '      Conv : %s_Conv;' % rtype
        print '   begin'
    else:
        gen_subprg_header(subprg)
    gen_assert(func)
    if func.conv == 'grp':
        print '      Conv := To_%s_Conv (%s);' % (rtype, func.rname)
        for f in func.fields:
            print '      Set_%s (%s, Conv.%s);' % (f, func.pname, f)
    else:
        print '      Set_' + f + ' (' + func.pname + ', ' + s + ');'
    print '   end Set_' + func.name + ';'
    print


def funcs_of_node(n):
    return sorted([fv.name for fv in n.fields.values() if fv])


def gen_has_func_spec(name, suff):
    spec = '   function Has_' + name + ' (K : ' + type_name + ')'
    ret = ' return Boolean' + suff
    if len(spec) < 60:
        print spec + ret
    else:
        print spec
        print '     ' + ret


def do_disp_formats():
    for fmt in fields:
        print "Fields of Format_"+fmt
        fld = fields[fmt]
        for k in fld:
            print '  ' + k + ' (' + fld[k] + ')'


def do_disp_kinds():
    print "Kinds are:"
    for k in kinds:
        print '  ' + prefix_name + k


def do_disp_funcs():
    print "Functions are:"
    for f in funcs:
        s = '{0} ({1}: {2}'.format(f.name, f.field, f.rtype)
        if f.acc:
            s += ' acc:' + f.acc
        if f.conv:
            s += ' conv:' + f.conv
        s += ')'
        print s


def do_disp_types():
    print "Types are:"
    s = set([])
    for f in funcs:
        s |= set([f.rtype])
    for t in sorted(s):
        print '  ' + t


def do_disp_nodes():
    for k in kinds:
        v = nodes[k]
        print prefix_name + k + ' (' + v.format + ')'
        flds = [fk for fk, fv in v.fields.items() if fv]
        for fk in sorted(flds):
            print '  ' + fk + ': ' + v.fields[fk].name


def do_get_format():
    gen_get_format(formats, nodes)


def do_body():
    lr = linereader(template_file)
    while True:
        l = lr.get().rstrip()
        print l
        if l == '   --  Subprograms':
            gen_get_format(formats, nodes, kinds)
            print
            for f in funcs:
                gen_get_set(f, nodes, fields)
        if l[0:3] == 'end':
            break


def get_types():
    s = set([])
    for f in funcs:
        s |= set([f.rtype])
    return [t for t in sorted(s)]


def get_attributes():
    s = set([])
    for f in funcs:
        if f.acc:
            s |= set([f.acc])
    res = [t for t in sorted(s)]
    res.insert(0, 'None')
    return res


def gen_enum(prefix, vals):
    last = None
    for v in vals:
        if last:
            print last + ','
        last = prefix + v
    print last


def do_meta_specs():
    lr = linereader(meta_base_file + '.ads.in')
    types = get_types()
    while True:
        l = lr.get().rstrip()
        if l == '      --  TYPES':
            gen_enum('      Type_', types)
        elif l == '      --  FIELDS':
            gen_enum('      Field_', [f.name for f in funcs])
        elif l == '      --  ATTRS':
            gen_enum('      Attr_', get_attributes())
        elif l == '   --  FUNCS':
            for t in types:
                print '   function Get_' + t
                print '      (N : ' + node_type + '; F : Fields_Enum) return '\
                      + t + ';'
                print '   procedure Set_' + t
                print '      (N : ' + node_type + '; F : Fields_Enum; V: ' \
                      + t + ');'
                print
            for f in funcs:
                gen_has_func_spec(f.name, ';')
        elif l[0:3] == 'end':
            print l
            break
        else:
            print l


def do_meta_body():
    lr = linereader(meta_base_file + '.adb.in')
    while True:
        l = lr.get().rstrip()
        if l == '      --  FIELDS_TYPE':
            last = None
            for f in funcs:
                if last:
                    print last + ','
                last = '      Field_' + f.name + ' => Type_' + f.rtype
            print last
        elif l == '         --  FIELD_IMAGE':
            for f in funcs:
                print '         when Field_' + f.name + ' =>'
                print '            return "' + f.name.lower() + '";'
        elif l == '         --  IIR_IMAGE':
            for k in kinds:
                print '         when ' + prefix_name + k + ' =>'
                print '            return "' + k.lower() + '";'
        elif l == '         --  FIELD_ATTRIBUTE':
            for f in funcs:
                print '         when Field_' + f.name + ' =>'
                if f.acc:
                    attr = f.acc
                else:
                    attr = 'None'
                print '            return Attr_' + attr + ';'
        elif l == '      --  FIELDS_ARRAY':
            last = None
            nodes_types = [node_type,
                           node_type + '_List', node_type + '_Flist']
            for k in kinds:
                v = nodes[k]
                if last:
                    print last + ','
                last = None
                print '      --  ' + prefix_name + k
                # Get list of physical fields for V, in some order.
                if flag_keep_order:
                    flds = v.order
                else:
                    # First non Iir and no Iir_List.
                    flds = sorted([fk for fk, fv in v.fields.items()
                                   if fv and fv.rtype not in nodes_types])
                    # Then Iir and Iir_List in order of appearance
                    flds += (fv for fv in v.order
                             if v.fields[fv].rtype in nodes_types)
                # Print the corresponding node field, but remove duplicate due
                # to 'grp'.
                fldsn = []
                for fk in flds:
                    if last:
                        print last + ','
                    # Remove duplicate
                    fn = v.fields[fk].name
                    if fn not in fldsn:
                        last = '      Field_' + fn
                        fldsn.append(fn)
                    else:
                        last = None
            if last:
                print last
        elif l == '      --  FIELDS_ARRAY_POS':
            pos = -1
            last = None
            for k in kinds:
                v = nodes[k]
                # Create a set to remove duplicate for 'grp'.
                flds = set([fv.name for fk, fv in v.fields.items() if fv])
                pos += len(flds)
                if last:
                    print last + ','
                last = '      ' + prefix_name + k + ' => {}'.format(pos)
            print last
        elif l == '   --  FUNCS_BODY':
            # Build list of types
            s = set([])
            for f in funcs:
                s |= set([f.rtype])
            types = [t for t in sorted(s)]
            for t in types:
                print '   function Get_' + t
                print '      (N : ' + node_type + '; F : Fields_Enum) return '\
                      + t + ' is'
                print '   begin'
                print '      pragma Assert (Fields_Type (F) = Type_' + t + ');'
                print '      case F is'
                for f in funcs:
                    if f.rtype == t:
                        print '         when Field_' + f.name + ' =>'
                        print '            return Get_' + f.name + ' (N);'
                print '         when others =>'
                print '            raise Internal_Error;'
                print '      end case;'
                print '   end Get_' + t + ';'
                print
                print '   procedure Set_' + t
                print '      (N : ' + node_type + '; F : Fields_Enum; V: ' \
                      + t + ') is'
                print '   begin'
                print '      pragma Assert (Fields_Type (F) = Type_' + t + ');'
                print '      case F is'
                for f in funcs:
                    if f.rtype == t:
                        print '         when Field_' + f.name + ' =>'
                        print '            Set_' + f.name + ' (N, V);'
                print '         when others =>'
                print '            raise Internal_Error;'
                print '      end case;'
                print '   end Set_' + t + ';'
                print
            for f in funcs:
                gen_has_func_spec(f.name, ' is')
                choices = [k for k in kinds if f.name in nodes[k].attrs]
                if len(choices) == 0:
                    print '      pragma Unreferenced (K);'
                print '   begin'
                if len(choices) == 0:
                    print '      return False;'
                elif len(choices) == 1:
                    print '      return K = ' + prefix_name + choices[0] + ';'
                else:
                    print '      case K is'
                    gen_choices(choices)
                    print '            return True;'
                    print '         when others =>'
                    print '            return False;'
                    print '      end case;'
                print '   end Has_' + f.name + ';'
                print
        elif l[0:3] == 'end':
            print l
            break
        else:
            print l


actions = {'disp-nodes': do_disp_nodes,
           'disp-kinds': do_disp_kinds,
           'disp-formats': do_disp_formats,
           'disp-funcs': do_disp_funcs,
           'disp-types': do_disp_types,
           'get_format': do_get_format,
           'body': do_body,
           'meta_specs': do_meta_specs,
           'meta_body': do_meta_body}


def main():
    parser = argparse.ArgumentParser(description='Meta-grammar processor')
    parser.add_argument('action', choices=actions.keys(),
                        default='disp-nodes')
    parser.add_argument('--field-file', dest='field_file',
                        default='nodes.ads',
                        help='specify file which defines fields')
    parser.add_argument('--kind-file', dest='kind_file',
                        default='iirs.ads',
                        help='specify file which defines nodes kind')
    parser.add_argument('--node-file', dest='node_file',
                        default='iirs.ads',
                        help='specify file which defines nodes and methods')
    parser.add_argument('--template-file', dest='template_file',
                        default='iirs.adb.in',
                        help='specify template body file')
    parser.add_argument('--meta-basename', dest='meta_basename',
                        default='nodes_meta',
                        help='specify base name of meta files')
    parser.add_argument('--kind-type', dest='kind_type',
                        default='Iir_Kind',
                        help='name of kind type')
    parser.add_argument('--kind-prefix', dest='kind_prefix',
                        default='Iir_Kind_',
                        help='prefix for kind literals')
    parser.add_argument('--kind-range-prefix', dest='kind_range_prefix',
                        default='Iir_Kinds_',
                        help='prefix for kind subtype (range)')
    parser.add_argument('--node-type', dest='node_type',
                        default='Iir',
                        help='name of the node type')
    parser.add_argument('--keep-order', dest='flag_keep_order',
                        action='store_true',
                        help='keep field order of nodes')
    parser.set_defaults(flag_keep_order=False)
    args = parser.parse_args()

    # At some point, it would be simpler to create a class...
    global formats, fields, nodes, kinds, kinds_ranges, funcs

    global type_name, prefix_name, template_file, node_type, meta_base_file
    global prefix_range_name, flag_keep_order, kind_file

    type_name = args.kind_type
    prefix_name = args.kind_prefix
    prefix_range_name = args.kind_range_prefix
    template_file = args.template_file
    node_type = args.node_type
    meta_base_file = args.meta_basename
    flag_keep_order = args.flag_keep_order

    field_file = args.field_file
    kind_file = args.kind_file
    node_file = args.node_file

    try:
        (formats, fields) = read_fields(field_file)
        (kinds, kinds_ranges) = read_kinds(kind_file)
        funcs = read_methods(node_file)
        nodes = read_nodes(node_file, kinds, kinds_ranges, fields, funcs)

    except ParseError as e:
        print >> sys.stderr, e
        print >> sys.stderr, \
            "in {0}:{1}:{2}".format(e.lr.filename, e.lr.lineno, e.lr.l)
        sys.exit(1)

    f = actions.get(args.action, None)
    if not f:
        print >> sys.stderr, "Action {0} is unknown".format(args.action)
        sys.exit(1)
    f()


if __name__ == '__main__':
    main()