aboutsummaryrefslogtreecommitdiffstats
path: root/doc/prolog.inc
blob: 7297d9939bff72c4b11de280ab5cca923e44b219 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
.. # Load pre-defined aliases and graphical characters like © from docutils
   # <file> is used to denote the special path
   # <Python>\Lib\site-packages\docutils\parsers\rst\include
.. include:: <isonum.txt>
.. include:: <mmlalias.txt>

.. # define a hard line break for HTML
.. |br| raw:: html

   <br />

.. |hr| raw:: html

   <hr />
59 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ../nextpnr-ice40 --hx8k --tmfuzz > tmfuzz_hx8k.txt
# ../nextpnr-ice40 --lp8k --tmfuzz > tmfuzz_lp8k.txt
# ../nextpnr-ice40 --up5k --tmfuzz > tmfuzz_up5k.txt

import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict

device = "hx8k"
# device = "lp8k"
# device = "up5k"

sel_src_type = "LUTFF_OUT"
sel_dst_type = "LUTFF_IN_LUT"

#%% Read fuzz data

src_dst_pairs = defaultdict(lambda: 0)

delay_data = list()
all_delay_data = list()

delay_map_sum = np.zeros((41, 41))
delay_map_sum2 = np.zeros((41, 41))
delay_map_count = np.zeros((41, 41))

same_tile_delays = list()
neighbour_tile_delays = list()

type_delta_data = dict()

with open("tmfuzz_%s.txt" % device, "r") as f:
    for line in f:
        line = line.split()

        if line[0] == "dst":
            dst_xy = (int(line[1]), int(line[2]))
            dst_type = line[3]
            dst_wire = line[4]

        src_xy = (int(line[1]), int(line[2]))
        src_type = line[3]
        src_wire = line[4]

        delay = int(line[5])
        estdelay = int(line[6])

        all_delay_data.append((delay, estdelay))

        src_dst_pairs[src_type, dst_type] += 1

        dx = dst_xy[0] - src_xy[0]
        dy = dst_xy[1] - src_xy[1]

        if src_type == sel_src_type and dst_type == sel_dst_type:
            if dx == 0 and dy == 0:
                same_tile_delays.append(delay)

            elif abs(dx) <= 1 and abs(dy) <= 1:
                neighbour_tile_delays.append(delay)

            else:
                delay_data.append((delay, estdelay, dx, dy, 0, 0, 0))

                relx = 20 + dst_xy[0] - src_xy[0]
                rely = 20 + dst_xy[1] - src_xy[1]

                if (0 <= relx <= 40) and (0 <= rely <= 40):
                    delay_map_sum[relx, rely] += delay
                    delay_map_sum2[relx, rely] += delay*delay
                    delay_map_count[relx, rely] += 1

        if dst_type == sel_dst_type:
            if src_type not in type_delta_data:
                type_delta_data[src_type] = list()

            type_delta_data[src_type].append((dx, dy, delay))

delay_data = np.array(delay_data)
all_delay_data = np.array(all_delay_data)
max_delay = np.max(delay_data[:, 0:2])

mean_same_tile_delays = np.mean(neighbour_tile_delays)
mean_neighbour_tile_delays = np.mean(neighbour_tile_delays)

print("Avg same tile delay: %.2f (%.2f std, N=%d)" % \
        (mean_same_tile_delays, np.std(same_tile_delays), len(same_tile_delays)))
print("Avg neighbour tile delay: %.2f (%.2f std, N=%d)" % \
        (mean_neighbour_tile_delays, np.std(neighbour_tile_delays), len(neighbour_tile_delays)))

#%% Apply simple low-weight bluring to fill gaps

for i in range(0):
    neigh_sum = np.zeros((41, 41))
    neigh_sum2 = np.zeros((41, 41))
    neigh_count = np.zeros((41, 41))

    for x in range(41):
        for y in range(41):
            for p in range(-1, 2):
                for q in range(-1, 2):
                    if p == 0 and q == 0:
                        continue
                    if 0 <= (x+p) <= 40:
                        if 0 <= (y+q) <= 40:
                            neigh_sum[x, y] += delay_map_sum[x+p, y+q]
                            neigh_sum2[x, y] += delay_map_sum2[x+p, y+q]
                            neigh_count[x, y] += delay_map_count[x+p, y+q]

    delay_map_sum += 0.1 * neigh_sum
    delay_map_sum2 += 0.1 * neigh_sum2
    delay_map_count += 0.1 * neigh_count

delay_map = delay_map_sum / delay_map_count
delay_map_std = np.sqrt(delay_map_count*delay_map_sum2 - delay_map_sum**2) / delay_map_count

#%% Print src-dst-pair summary

print("Src-Dst-Type pair summary:")
for cnt, src, dst in sorted([(v, k[0], k[1]) for k, v in src_dst_pairs.items()]):
    print("%20s %20s %5d%s" % (src, dst, cnt, " *" if src == sel_src_type and dst == sel_dst_type else ""))
print()

#%% Plot estimate vs actual delay

plt.figure(figsize=(8, 3))
plt.title("Estimate vs Actual Delay")
plt.plot(all_delay_data[:, 0], all_delay_data[:, 1], ".")
plt.plot(delay_data[:, 0], delay_data[:, 1], ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Estimated Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()

#%% Plot delay heatmap and std dev heatmap

plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Actual Delay Map")
plt.imshow(delay_map)
plt.colorbar()
plt.subplot(122)
plt.title("Standard Deviation")
plt.imshow(delay_map_std)
plt.colorbar()
plt.show()

#%% Generate Model #0

def nonlinearPreprocessor0(dx, dy):
    dx, dy = abs(dx), abs(dy)
    values = [1.0]
    values.append(dx + dy)
    return np.array(values)

A = np.zeros((41*41, len(nonlinearPreprocessor0(0, 0))))
b = np.zeros(41*41)

index = 0
for x in range(41):
    for y in range(41):
        if delay_map_count[x, y] > 0:
            A[index, :] = nonlinearPreprocessor0(x-20, y-20)
            b[index] = delay_map[x, y]
        index += 1

model0_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #0 parameters:", model0_params)

model0_map = np.zeros((41, 41))
for x in range(41):
    for y in range(41):
        v = np.dot(model0_params, nonlinearPreprocessor0(x-20, y-20))
        model0_map[x, y] = v

plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #0 Delay Map")
plt.imshow(model0_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #0 Error Map")
plt.imshow(model0_map - delay_map)
plt.colorbar()
plt.show()

for i in range(delay_data.shape[0]):
    dx = delay_data[i, 2]
    dy = delay_data[i, 3]
    delay_data[i, 4] =  np.dot(model0_params, nonlinearPreprocessor0(dx, dy))

plt.figure(figsize=(8, 3))
plt.title("Model #0 vs Actual Delay")
plt.plot(delay_data[:, 0], delay_data[:, 4], ".")
plt.plot(delay_map.flat, model0_map.flat, ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #0 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()

print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model0_map)**2)))
print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 4])**2)))
print()

#%% Generate Model #1

def nonlinearPreprocessor1(dx, dy):
    dx, dy = abs(dx), abs(dy)
    values = [1.0]
    values.append(dx + dy)                    # 1-norm
    values.append((dx**2 + dy**2)**(1/2))     # 2-norm
    values.append((dx**3 + dy**3)**(1/3))     # 3-norm
    return np.array(values)

A = np.zeros((41*41, len(nonlinearPreprocessor1(0, 0))))
b = np.zeros(41*41)

index = 0
for x in range(41):
    for y in range(41):
        if delay_map_count[x, y] > 0:
            A[index, :] = nonlinearPreprocessor1(x-20, y-20)
            b[index] = delay_map[x, y]
        index += 1

model1_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #1 parameters:", model1_params)

model1_map = np.zeros((41, 41))
for x in range(41):
    for y in range(41):
        v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
        model1_map[x, y] = v

plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #1 Delay Map")
plt.imshow(model1_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #1 Error Map")
plt.imshow(model1_map - delay_map)
plt.colorbar()
plt.show()

for i in range(delay_data.shape[0]):
    dx = delay_data[i, 2]
    dy = delay_data[i, 3]
    delay_data[i, 5] = np.dot(model1_params, nonlinearPreprocessor1(dx, dy))

plt.figure(figsize=(8, 3))
plt.title("Model #1 vs Actual Delay")
plt.plot(delay_data[:, 0], delay_data[:, 5], ".")
plt.plot(delay_map.flat, model1_map.flat, ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #1 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()

print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model1_map)**2)))
print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 5])**2)))
print()

#%% Generate Model #2

def nonlinearPreprocessor2(v):
    return np.array([1, v, np.sqrt(v)])

A = np.zeros((41*41, len(nonlinearPreprocessor2(0))))
b = np.zeros(41*41)

index = 0
for x in range(41):
    for y in range(41):
        if delay_map_count[x, y] > 0:
            A[index, :] = nonlinearPreprocessor2(model1_map[x, y])
            b[index] = delay_map[x, y]
        index += 1

model2_params, _, _, _ = np.linalg.lstsq(A, b)
print("Model #2 parameters:", model2_params)

model2_map = np.zeros((41, 41))
for x in range(41):
    for y in range(41):
        v = np.dot(model1_params, nonlinearPreprocessor1(x-20, y-20))
        v = np.dot(model2_params, nonlinearPreprocessor2(v))
        model2_map[x, y] = v

plt.figure(figsize=(9, 3))
plt.subplot(121)
plt.title("Model #2 Delay Map")
plt.imshow(model2_map)
plt.colorbar()
plt.subplot(122)
plt.title("Model #2 Error Map")
plt.imshow(model2_map - delay_map)
plt.colorbar()
plt.show()

for i in range(delay_data.shape[0]):
    dx = delay_data[i, 2]
    dy = delay_data[i, 3]
    delay_data[i, 6] = np.dot(model2_params, nonlinearPreprocessor2(delay_data[i, 5]))

plt.figure(figsize=(8, 3))
plt.title("Model #2 vs Actual Delay")
plt.plot(delay_data[:, 0], delay_data[:, 6], ".")
plt.plot(delay_map.flat, model2_map.flat, ".")
plt.plot([0, max_delay], [0, max_delay], "k")
plt.ylabel("Model #2 Delay")
plt.xlabel("Actual Delay")
plt.grid()
plt.show()

print("In-sample RMS error: %f" % np.sqrt(np.nanmean((delay_map - model2_map)**2)))
print("Out-of-sample RMS error: %f" % np.sqrt(np.nanmean((delay_data[:, 0] - delay_data[:, 6])**2)))
print()

#%% Generate deltas for different source net types

type_deltas = dict()

print("Delay deltas for different src types:")
for src_type in sorted(type_delta_data.keys()):
    deltas = list()

    for dx, dy, delay in type_delta_data[src_type]:
        dx = abs(dx)
        dy = abs(dy)

        if dx > 1 or dy > 1:
            est = model0_params[0] + model0_params[1] * (dx + dy)
        else:
            est = mean_neighbour_tile_delays
        deltas.append(delay - est)

    print("%15s: %8.2f (std %6.2f)" % (\
            src_type, np.mean(deltas), np.std(deltas)))

    type_deltas[src_type] = np.mean(deltas)

#%% Print C defs of model parameters

print("--snip--")
print("%d, %d, %d," % (mean_neighbour_tile_delays, 128 * model0_params[0], 128 * model0_params[1]))
print("%d, %d, %d, %d," % (128 * model1_params[0], 128 * model1_params[1], 128 * model1_params[2], 128 * model1_params[3]))
print("%d, %d, %d," % (128 * model2_params[0], 128 * model2_params[1], 128 * model2_params[2]))
print("%d, %d, %d, %d" % (type_deltas["LOCAL"], type_deltas["LUTFF_IN"], \
                          (type_deltas["SP4_H"] + type_deltas["SP4_V"]) / 2,
                          (type_deltas["SP12_H"] + type_deltas["SP12_V"]) / 2))
print("--snap--")