1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>GHDL 0.33 documentation</title>
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '0.33',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<link rel="top" title="None" href="index.html#document-index" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9">
</head>
<body role="document">
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="welcome-to-ghdl-s-documentation">
<h1>Welcome to GHDL’s documentation!<a class="headerlink" href="#welcome-to-ghdl-s-documentation" title="Permalink to this headline">¶</a></h1>
<p>Contents:</p>
<div class="toctree-wrapper compound">
<span id="document-Introduction"></span><div class="section" id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<div class="section" id="content-of-this-manual">
<h3>Content of this manual<a class="headerlink" href="#content-of-this-manual" title="Permalink to this headline">¶</a></h3>
<p>This manual is the user and reference manual for GHDL. It does not
contain an introduction to VHDL. Thus, the reader should have at least
a basic knowledge of VHDL. A good knowledge of VHDL language reference
manual (usually called LRM) is a plus.</p>
</div>
<div class="section" id="what-is-vhdl">
<h3>What is <cite>VHDL</cite>?<a class="headerlink" href="#what-is-vhdl" title="Permalink to this headline">¶</a></h3>
<p><cite>VHDL</cite> is an acronym for Very High Speed Integrated Circuit Hardware
Description Language which is a programming language used to describe a
logic circuit by function, data flow behaviour, or structure.</p>
<p><cite>VHDL</cite> <em>is</em> a programming language: although <cite>VHDL</cite> was
not designed for writing general purpose programs, you can write any
algorithm with the <cite>VHDL</cite> language. If you are able to write
programs, you will find in <cite>VHDL</cite> features similar to those found
in procedural languages such as <cite>C</cite>, <cite>Python</cite>, or <cite>Ada</cite>.
<cite>VHDL</cite> derives most of its syntax and semantics from <cite>Ada</cite>.
Knowing <cite>Ada</cite> is an advantage for learning <cite>VHDL</cite> (it is an
advantage in general as well).</p>
<p>However, <cite>VHDL</cite> was not designed as a general purpose language but as an
<cite>HDL</cite> (hardware description language). As the name implies, <cite>VHDL</cite>
aims at modeling or documenting electronics systems. Due to the nature
of hardware components which are always running, <cite>VHDL</cite> is a highly
concurrent language, built upon an event-based timing model.</p>
<p>Like a program written in any other language, a <cite>VHDL</cite> program
can be executed. Since <cite>VHDL</cite> is used to model designs, the term
<em class="dfn">simulation</em> is often used instead of <cite>execution</cite>, with the
same meaning.</p>
<p>Like a program written in another hardware description language, a
<cite>VHDL</cite> program can be transformed with a <em class="dfn">synthesis tool</em>
into a netlist, that is, a detailed gate-level implementation.</p>
</div>
<div class="section" id="what-is-ghdl">
<h3>What is <cite>GHDL</cite>?<a class="headerlink" href="#what-is-ghdl" title="Permalink to this headline">¶</a></h3>
<p><cite>GHDL</cite> is a shorthand for G Hardware Design Language. Currently,
<cite>G</cite> has no meaning.</p>
<p><cite>GHDL</cite> is a <cite>VHDL</cite> compiler that can execute (nearly) any
<cite>VHDL</cite> program. <cite>GHDL</cite> is <em>not</em> a synthesis tool: you cannot
create a netlist with <cite>GHDL</cite>.</p>
<p>Unlike some other simulators, <cite>GHDL</cite> is a compiler: it directly
translates a <cite>VHDL</cite> file to machine code, using the <cite>GCC</cite> or <cite>LLVM</cite>
back-end and without using an intermediary language such as <cite>C</cite>
or <cite>C++</cite>. Therefore, the compiled code should be faster and
the analysis time should be shorter than with a compiler using an
intermediary language.</p>
<p>The Windows(TM) version of <cite>GHDL</cite> is not based on <cite>GCC</cite> but on
an internal code generator.</p>
<p>The current version of <cite>GHDL</cite> does not contain any graphical
viewer: you cannot see signal waves. You can still check with a test
bench. The current version can produce a <cite>VCD</cite> file which can be
viewed with a wave viewer, as well as <cite>ghw</cite> files to be viewed by
<cite>gtkwave</cite>.</p>
<p><cite>GHDL</cite> aims at implementing <cite>VHDL</cite> as defined by IEEE 1076.
It supports most of the 1987 standard and most features added by the
1993 standard.</p>
</div>
</div>
<span id="document-Starting_with_GHDL"></span><div class="section" id="starting-with-ghdl">
<h2>Starting with GHDL<a class="headerlink" href="#starting-with-ghdl" title="Permalink to this headline">¶</a></h2>
<p>In this chapter, you will learn how to use the GHDL compiler by
working on two examples.</p>
<div class="section" id="the-hello-world-program">
<h3>The hello world program<a class="headerlink" href="#the-hello-world-program" title="Permalink to this headline">¶</a></h3>
<p>To illustrate the large purpose of VHDL, here is a commented VHDL
“Hello world” program.</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="c1">-- Hello world program.</span>
<span class="k">use</span> <span class="nn">std.textio.all</span><span class="p">;</span> <span class="c1">-- Imports the standard textio package.</span>
<span class="c1">-- Defines a design entity, without any ports.</span>
<span class="k">entity</span> <span class="nc">hello_world</span> <span class="k">is</span>
<span class="k">end</span> <span class="nc">hello_world</span><span class="p">;</span>
<span class="k">architecture</span> <span class="nc">behaviour</span> <span class="k">of</span> <span class="nc">hello_world</span> <span class="k">is</span>
<span class="k">begin</span>
<span class="k">process</span>
<span class="k">variable</span> <span class="n">l</span> <span class="o">:</span> <span class="n">line</span><span class="p">;</span>
<span class="k">begin</span>
<span class="n">write</span> <span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="kt">String</span><span class="p">'(</span><span class="s">"Hello world!"</span><span class="p">));</span>
<span class="n">writeline</span> <span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">l</span><span class="p">);</span>
<span class="k">wait</span><span class="p">;</span>
<span class="k">end</span> <span class="k">process</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">behaviour</span><span class="p">;</span>
</pre></div>
</div>
<p>Suppose this program is contained in the file <code class="file docutils literal"><span class="pre">hello.vhdl</span></code>.
First, you have to compile the file; this is called <cite>analysis</cite> of a design
file in VHDL terms.</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -a hello.vhdl
</pre></div>
</div>
<p>This command creates or updates a file <code class="file docutils literal"><span class="pre">work-obj93.cf</span></code>, which
describes the library <cite>work</cite>. On GNU/Linux, this command generates a
file <code class="file docutils literal"><span class="pre">hello.o</span></code>, which is the object file corresponding to your
VHDL program. The object file is not created on Windows.</p>
<p>Then, you have to build an executable file.</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -e hello_world
</pre></div>
</div>
<p>The <code class="xref std std-option docutils literal"><span class="pre">-e</span></code> option means <em class="dfn">elaborate</em>. With this option, <cite>GHDL</cite>
creates code in order to elaborate a design, with the <code class="samp docutils literal"><span class="pre">hello</span></code>
entity at the top of the hierarchy.</p>
<p>On GNU/Linux, the result is an executable program called <code class="file docutils literal"><span class="pre">hello</span></code>
which can be run:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -r hello_world
</pre></div>
</div>
<p>or directly:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>./hello_world
</pre></div>
</div>
<p>On Windows, no file is created. The simulation is launched using this command:</p>
<div class="highlight-shell"><div class="highlight"><pre>> ghdl -r hello_world
</pre></div>
</div>
<p>The result of the simulation appears on the screen:</p>
<div class="highlight-python"><div class="highlight"><pre>Hello world!
</pre></div>
</div>
</div>
<div class="section" id="a-full-adder">
<h3>A full adder<a class="headerlink" href="#a-full-adder" title="Permalink to this headline">¶</a></h3>
<p>VHDL is generally used for hardware design. This example starts with
a full adder described in the <code class="file docutils literal"><span class="pre">adder.vhdl</span></code> file:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="k">entity</span> <span class="nc">adder</span> <span class="k">is</span>
<span class="c1">-- `i0`, `i1` and the carry-in `ci` are inputs of the adder.</span>
<span class="c1">-- `s` is the sum output, `co` is the carry-out.</span>
<span class="k">port</span> <span class="p">(</span><span class="n">i0</span><span class="p">,</span> <span class="n">i1</span> <span class="o">:</span> <span class="k">in</span> <span class="kt">bit</span><span class="p">;</span> <span class="n">ci</span> <span class="o">:</span> <span class="k">in</span> <span class="kt">bit</span><span class="p">;</span> <span class="n">s</span> <span class="o">:</span> <span class="k">out</span> <span class="kt">bit</span><span class="p">;</span> <span class="n">co</span> <span class="o">:</span> <span class="k">out</span> <span class="kt">bit</span><span class="p">);</span>
<span class="k">end</span> <span class="nc">adder</span><span class="p">;</span>
<span class="k">architecture</span> <span class="nc">rtl</span> <span class="k">of</span> <span class="nc">adder</span> <span class="k">is</span>
<span class="k">begin</span>
<span class="c1">-- This full-adder architecture contains two concurrent assignment.</span>
<span class="c1">-- Compute the sum.</span>
<span class="n">s</span> <span class="o"><=</span> <span class="n">i0</span> <span class="k">xor</span> <span class="n">i1</span> <span class="k">xor</span> <span class="n">ci</span><span class="p">;</span>
<span class="c1">-- Compute the carry.</span>
<span class="n">co</span> <span class="o"><=</span> <span class="p">(</span><span class="n">i0</span> <span class="k">and</span> <span class="n">i1</span><span class="p">)</span> <span class="k">or</span> <span class="p">(</span><span class="n">i0</span> <span class="k">and</span> <span class="n">ci</span><span class="p">)</span> <span class="k">or</span> <span class="p">(</span><span class="n">i1</span> <span class="k">and</span> <span class="n">ci</span><span class="p">);</span>
<span class="k">end</span> <span class="nc">rtl</span><span class="p">;</span>
</pre></div>
</div>
<p>You can analyze this design file:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -a adder.vhdl
</pre></div>
</div>
<p>You can try to execute the <cite>adder</cite> design, but this is useless,
since nothing externally visible will happen. In order to
check this full adder, a testbench has to be run. This testbench is
very simple, since the adder is also simple: it checks exhaustively all
inputs. Note that only the behaviour is tested, timing constraints are
not checked. The file <code class="file docutils literal"><span class="pre">adder_tb.vhdl</span></code> contains the testbench for
the adder:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="c1">-- A testbench has no ports.</span>
<span class="k">entity</span> <span class="nc">adder_tb</span> <span class="k">is</span>
<span class="k">end</span> <span class="nc">adder_tb</span><span class="p">;</span>
<span class="k">architecture</span> <span class="nc">behav</span> <span class="k">of</span> <span class="nc">adder_tb</span> <span class="k">is</span>
<span class="c1">-- Declaration of the component that will be instantiated.</span>
<span class="k">component</span> <span class="nc">adder</span>
<span class="k">port</span> <span class="p">(</span><span class="n">i0</span><span class="p">,</span> <span class="n">i1</span> <span class="o">:</span> <span class="k">in</span> <span class="kt">bit</span><span class="p">;</span> <span class="n">ci</span> <span class="o">:</span> <span class="k">in</span> <span class="kt">bit</span><span class="p">;</span> <span class="n">s</span> <span class="o">:</span> <span class="k">out</span> <span class="kt">bit</span><span class="p">;</span> <span class="n">co</span> <span class="o">:</span> <span class="k">out</span> <span class="kt">bit</span><span class="p">);</span>
<span class="k">end</span> <span class="k">component</span><span class="p">;</span>
<span class="c1">-- Specifies which entity is bound with the component.</span>
<span class="k">for</span> <span class="n">adder_0</span><span class="o">:</span> <span class="n">adder</span> <span class="k">use</span> <span class="k">entity</span> <span class="n">work</span><span class="p">.</span><span class="n">adder</span><span class="p">;</span>
<span class="k">signal</span> <span class="n">i0</span><span class="p">,</span> <span class="n">i1</span><span class="p">,</span> <span class="n">ci</span><span class="p">,</span> <span class="n">s</span><span class="p">,</span> <span class="n">co</span> <span class="o">:</span> <span class="kt">bit</span><span class="p">;</span>
<span class="k">begin</span>
<span class="c1">-- Component instantiation.</span>
<span class="n">adder_0</span><span class="o">:</span> <span class="n">adder</span> <span class="k">port</span> <span class="k">map</span> <span class="p">(</span><span class="n">i0</span> <span class="o">=></span> <span class="n">i0</span><span class="p">,</span> <span class="n">i1</span> <span class="o">=></span> <span class="n">i1</span><span class="p">,</span> <span class="n">ci</span> <span class="o">=></span> <span class="n">ci</span><span class="p">,</span>
<span class="n">s</span> <span class="o">=></span> <span class="n">s</span><span class="p">,</span> <span class="n">co</span> <span class="o">=></span> <span class="n">co</span><span class="p">);</span>
<span class="c1">-- This process does the real job.</span>
<span class="k">process</span>
<span class="k">type</span> <span class="n">pattern_type</span> <span class="k">is</span> <span class="k">record</span>
<span class="c1">-- The inputs of the adder.</span>
<span class="n">i0</span><span class="p">,</span> <span class="n">i1</span><span class="p">,</span> <span class="n">ci</span> <span class="o">:</span> <span class="kt">bit</span><span class="p">;</span>
<span class="c1">-- The expected outputs of the adder.</span>
<span class="n">s</span><span class="p">,</span> <span class="n">co</span> <span class="o">:</span> <span class="kt">bit</span><span class="p">;</span>
<span class="k">end</span> <span class="k">record</span><span class="p">;</span>
<span class="c1">-- The patterns to apply.</span>
<span class="k">type</span> <span class="n">pattern_array</span> <span class="k">is</span> <span class="k">array</span> <span class="p">(</span><span class="kt">natural</span> <span class="k">range</span> <span class="o"><></span><span class="p">)</span> <span class="k">of</span> <span class="n">pattern_type</span><span class="p">;</span>
<span class="k">constant</span> <span class="n">patterns</span> <span class="o">:</span> <span class="n">pattern_array</span> <span class="o">:=</span>
<span class="p">((</span><span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'0'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">),</span>
<span class="p">(</span><span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">,</span> <span class="sc">'1'</span><span class="p">));</span>
<span class="k">begin</span>
<span class="c1">-- Check each pattern.</span>
<span class="k">for</span> <span class="n">i</span> <span class="k">in</span> <span class="n">patterns</span><span class="na">'range</span> <span class="k">loop</span>
<span class="c1">-- Set the inputs.</span>
<span class="n">i0</span> <span class="o"><=</span> <span class="n">patterns</span><span class="p">(</span><span class="n">i</span><span class="p">).</span><span class="n">i0</span><span class="p">;</span>
<span class="n">i1</span> <span class="o"><=</span> <span class="n">patterns</span><span class="p">(</span><span class="n">i</span><span class="p">).</span><span class="n">i1</span><span class="p">;</span>
<span class="n">ci</span> <span class="o"><=</span> <span class="n">patterns</span><span class="p">(</span><span class="n">i</span><span class="p">).</span><span class="n">ci</span><span class="p">;</span>
<span class="c1">-- Wait for the results.</span>
<span class="k">wait</span> <span class="k">for</span> <span class="mi">1</span> <span class="n">ns</span><span class="p">;</span>
<span class="c1">-- Check the outputs.</span>
<span class="k">assert</span> <span class="n">s</span> <span class="o">=</span> <span class="n">patterns</span><span class="p">(</span><span class="n">i</span><span class="p">).</span><span class="n">s</span>
<span class="n">report</span> <span class="s">"bad sum value"</span> <span class="k">severity</span> <span class="n">error</span><span class="p">;</span>
<span class="k">assert</span> <span class="n">co</span> <span class="o">=</span> <span class="n">patterns</span><span class="p">(</span><span class="n">i</span><span class="p">).</span><span class="n">co</span>
<span class="n">report</span> <span class="s">"bad carray out value"</span> <span class="k">severity</span> <span class="n">error</span><span class="p">;</span>
<span class="k">end</span> <span class="k">loop</span><span class="p">;</span>
<span class="k">assert</span> <span class="n">false</span> <span class="n">report</span> <span class="s">"end of test"</span> <span class="k">severity</span> <span class="n">note</span><span class="p">;</span>
<span class="c1">-- Wait forever; this will finish the simulation.</span>
<span class="k">wait</span><span class="p">;</span>
<span class="k">end</span> <span class="k">process</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">behav</span><span class="p">;</span>
</pre></div>
</div>
<p>As usual, you should analyze the design:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -a adder_tb.vhdl
</pre></div>
</div>
<p>And build an executable for the testbench:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -e adder_tb
</pre></div>
</div>
<p>You do not need to specify which object files are required: GHDL knows them
and automatically adds them in the executable. Now, it is time to run the
testbench:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -r adder_tb
adder_tb.vhdl:52:7:<span class="o">(</span>assertion note<span class="o">)</span>: end of <span class="nb">test</span>
</pre></div>
</div>
<p>If your design is rather complex, you’d like to inspect signals. Signals
value can be dumped using the VCD file format. The resulting file can be
read with a wave viewer such as GTKWave. First, you should simulate your
design and dump a waveform file:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -r adder_tb --vcd<span class="o">=</span>adder.vcd
</pre></div>
</div>
<p>Then, you may now view the waves:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>gtkwave adder.vcd
</pre></div>
</div>
<p>See <a class="reference internal" href="index.html#simulation-options"><span>Simulation options</span></a>, for more details on the <a class="reference internal" href="index.html#cmdoption--vcd"><code class="xref std std-option docutils literal"><span class="pre">--vcd</span></code></a> option and
other runtime options.</p>
</div>
<div class="section" id="starting-with-a-design">
<h3>Starting with a design<a class="headerlink" href="#starting-with-a-design" title="Permalink to this headline">¶</a></h3>
<p>Unless you are only studying VHDL, you will work with bigger designs than
the ones of the previous examples.</p>
<p>Let’s see how to analyze and run a bigger design, such as the DLX model
suite written by Peter Ashenden which is distributed under the terms of the
GNU General Public License. A copy is kept on
<a class="reference external" href="http://ghdl.free.fr/dlx.tar.gz">http://ghdl.free.fr/dlx.tar.gz</a></p>
<p>First, untar the sources:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>tar zxvf dlx.tar.gz
</pre></div>
</div>
<p>In order not to pollute the sources with the library, it is a good idea
to create a <code class="file docutils literal"><span class="pre">work/</span></code> subdirectory for the <cite>WORK</cite> library. To
any GHDL commands, we will add the <code class="xref std std-option docutils literal"><span class="pre">--workdir=work</span></code> option, so
that all files generated by the compiler (except the executable) will be
placed in this directory.</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span><span class="nb">cd </span>dlx
<span class="nv">$ </span>mkdir work
</pre></div>
</div>
<p>We will run the <code class="samp docutils literal"><span class="pre">dlx_test_behaviour</span></code> design. We need to analyze
all the design units for the design hierarchy, in the correct order.
GHDL provides an easy way to do this, by importing the sources:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -i --workdir<span class="o">=</span>work *.vhdl
</pre></div>
</div>
<p>and making a design:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -m --workdir<span class="o">=</span>work dlx_test_behaviour
</pre></div>
</div>
<p>Before this second stage, GHDL knows all the design units of the DLX,
but no one have been analyzed. The make command of GHDL analyzes and
elaborates a design. This creates many files in the <code class="file docutils literal"><span class="pre">work/</span></code>
directory, and the <code class="file docutils literal"><span class="pre">dlx_test_behaviour</span></code> executable in the current
directory.</p>
<p>The simulation needs to have a DLX program contained in the file
<code class="file docutils literal"><span class="pre">dlx.out</span></code>. This memory image will be be loaded in the DLX memory.
Just take one sample:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>cp test_loop.out dlx.out
</pre></div>
</div>
<p>And you can run the test suite:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -r dlx_test_behaviour
</pre></div>
</div>
<p>The test bench monitors the bus and displays each instruction executed.
It finishes with an assertion of severity level note:</p>
<div class="highlight-shell"><div class="highlight"><pre>dlx-behaviour.vhdl:395:11:<span class="o">(</span>assertion note<span class="o">)</span>: TRAP instruction
encountered, execution halted
</pre></div>
</div>
<p>Since the clock is still running, you have to manually stop the program
with the <code class="kbd docutils literal"><span class="pre">C-c</span></code> key sequence. This behavior prevents you from running the
test bench in batch mode. However, you may force the simulator to
stop when an assertion above or equal a certain severity level occurs:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl -r dlx_test_behaviour --assert-level<span class="o">=</span>note
</pre></div>
</div>
<p>With this option, the program stops just after the previous message:</p>
<div class="highlight-python"><div class="highlight"><pre>dlx-behaviour.vhdl:395:11:(assertion note): TRAP instruction
encountered, execution halted
error: assertion failed
</pre></div>
</div>
<p>If you want to make room on your hard drive, you can either:</p>
<ul>
<li><p class="first">clean the design library with the GHDL command:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl --clean --workdir<span class="o">=</span>work
</pre></div>
</div>
<p>This removes the executable and all the object files. If you want to
rebuild the design at this point, just do the make command as shown
above.</p>
</li>
<li><p class="first">remove the design library with the GHDL command:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>ghdl --remove --workdir<span class="o">=</span>work
</pre></div>
</div>
<p>This removes the executable, all the object files and the library file.
If you want to rebuild the design, you have to import the sources again,
and to make the design.</p>
</li>
<li><p class="first">remove the <code class="file docutils literal"><span class="pre">work/</span></code> directory:</p>
<div class="highlight-shell"><div class="highlight"><pre><span class="nv">$ </span>rm -rf work
</pre></div>
</div>
<p>Only the executable is kept. If you want to rebuild the design, create
the <code class="file docutils literal"><span class="pre">work/</span></code> directory, import the sources, and make the design.</p>
</li>
</ul>
<p>Sometimes, a design does not fully follow the VHDL standards. For example it
uses the badly engineered <code class="samp docutils literal"><span class="pre">std_logic_unsigned</span></code> package. GHDL supports
this VHDL dialect through some options:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="o">--</span><span class="n">ieee</span><span class="o">=</span><span class="n">synopsys</span> <span class="o">-</span><span class="n">fexplicit</span>
</pre></div>
</div>
<p>See <a class="reference internal" href="index.html#ieee-library-pitfalls"><span>IEEE library pitfalls</span></a>, for more details.</p>
</div>
</div>
<span id="document-Invoking_GHDL"></span><div class="section" id="invoking-ghdl">
<h2>Invoking GHDL<a class="headerlink" href="#invoking-ghdl" title="Permalink to this headline">¶</a></h2>
<p>The form of the <strong class="program">ghdl</strong> command is:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl command [options...]
</pre></div>
</div>
<p>The GHDL program has several commands. The first argument selects
the command. The options are used to slightly modify the action.</p>
<p>No option is allowed before the command. Except for the run command,
no option is allowed after a filename or a unit name.</p>
<div class="section" id="building-commands">
<h3>Building commands<a class="headerlink" href="#building-commands" title="Permalink to this headline">¶</a></h3>
<p>The mostly used commands of GHDL are those to analyze and elaborate a design.</p>
<div class="section" id="analysis-command">
<h4>Analysis command<a class="headerlink" href="#analysis-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-0"></span><p id="index-1">Analyze one or severals files:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -a [options...] file...
</pre></div>
</div>
<p>The analysis command compiles one or more files, and creates an
object file for each source file. The analysis command is selected with
<code class="xref std std-option docutils literal"><span class="pre">-a</span></code> switch. Any argument starting with a dash is an option, the
others are filenames. No options are allowed after a filename
argument. GHDL analyzes each filename in the given order, and stops the
analysis in case of error (the following files are not analyzed).</p>
<p>See <a class="reference internal" href="#ghdl-options"><span>GHDL options</span></a>, for details on the GHDL options. For example,
to produce debugging information such as line numbers, use:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -a -g my_design.vhdl
</pre></div>
</div>
</div>
<div class="section" id="elaboration-command">
<span id="id1"></span><h4>Elaboration command<a class="headerlink" href="#elaboration-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-2"></span><p id="index-3">Elaborate a design:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -e [options..] primary_unit [secondary_unit]
</pre></div>
</div>
<p>On GNU/Linux the elaboration command creates an executable
containing the code of the <cite>VHDL</cite> sources, the elaboration code
and simulation code to execute a design hierarchy. On Windows this
command elaborates the design but does not generate anything.</p>
<p>The elaboration command is selected with <code class="xref std std-option docutils literal"><span class="pre">-e</span></code> switch, and must be
followed by either:</p>
<ul class="simple">
<li>a name of a configuration unit</li>
<li>a name of an entity unit</li>
<li>a name of an entity unit followed by a name of an architecture unit</li>
</ul>
<p>Name of the units must be a simple name, without any dot. You can
select the name of the <cite>WORK</cite> library with the <code class="xref std std-option docutils literal"><span class="pre">--work=NAME</span></code>
option, as described in <a class="reference internal" href="#ghdl-options"><span>GHDL options</span></a>.</p>
<p>See <a class="reference internal" href="index.html#top-entity"><span>Top entity</span></a>, for the restrictions on the root design of a
hierarchy.</p>
<p>On GNU/Linux the filename of the executable is the name of the
primary unit, or for the later case, the concatenation of the name of
the primary unit, a dash, and the name of the secondary unit (or
architecture). On Windows there is no executable generated.</p>
<p>The <code class="xref std std-option docutils literal"><span class="pre">-o</span></code> followed by a filename can override the default
executable filename.</p>
<p>For the elaboration command, <cite>GHDL</cite> re-analyzes all the
configurations, entities, architectures and package declarations, and
creates the default configurations and the default binding indications
according to the LRM rules. It also generates the list of objects files
required for the executable. Then, it links all these files with the
runtime library.</p>
<p>The actual elaboration is performed at runtime.</p>
<p>On Windows this command can be skipped because it is also done by the
run command.</p>
</div>
<div class="section" id="run-command">
<span id="id2"></span><h4>Run command<a class="headerlink" href="#run-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-4"></span><p id="index-5">Run (or simulate) a design:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -r [options...] primary_unit [secondary_unit] [simulation_options...]
</pre></div>
</div>
<p>The options and arguments are the same as for the elaboration command, <a class="reference internal" href="#elaboration-command"><span>Elaboration command</span></a>.</p>
<p>On GNU/Linux this command simply determines the filename of the executable
and executes it. Options are ignored. You may also directly execute
the program.</p>
<p>This command exists for three reasons:</p>
<ul class="simple">
<li>You don’t have to create the executable program name.</li>
<li>It is coherent with the <code class="xref std std-option docutils literal"><span class="pre">-a</span></code> and <code class="xref std std-option docutils literal"><span class="pre">-e</span></code> commands.</li>
<li>It works with the Windows implementation, where the code is generated in
memory.</li>
</ul>
<p>On Windows this command elaborates and launches the simulation. As a consequence
you must use the same options used during analysis.</p>
<p>See <a class="reference internal" href="index.html#simulation-and-runtime"><span>Simulation and runtime</span></a>, for details on options.</p>
</div>
<div class="section" id="elaborate-and-run-command">
<h4>Elaborate and run command<a class="headerlink" href="#elaborate-and-run-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-6"></span><p id="index-7">Elaborate and then simulate a design unit:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --elab-run [elab_options...] primary_unit [secondary_unit] [run_options...]
</pre></div>
</div>
<p>This command acts like the elaboration command (see <a class="reference internal" href="#elaboration-command"><span>Elaboration command</span></a>)
followed by the run command (see <a class="reference internal" href="#run-command"><span>Run command</span></a>).</p>
</div>
<div class="section" id="bind-command">
<span id="id3"></span><h4>Bind command<a class="headerlink" href="#bind-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-8"></span><p id="index-9">Bind a design unit and prepare the link step:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --bind [options] primary_unit [secondary_unit]
</pre></div>
</div>
<p>This command is only available on GNU/Linux.</p>
<p>This performs only the first stage of the elaboration command; the list
of objects files is created but the executable is not built. This
command should be used only when the main entry point is not ghdl.</p>
</div>
<div class="section" id="link-command">
<span id="id4"></span><h4>Link command<a class="headerlink" href="#link-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-10"></span><p id="index-11">Link an already bound design unit:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --link [options] primary_unit [secondary_unit]
</pre></div>
</div>
<p>This performs only the second stage of the elaboration command: the
executable is created by linking the files of the object files list.
This command is available only for completeness. The elaboration command is
equivalent to the bind command followed by the link command.</p>
</div>
<div class="section" id="list-link-command">
<span id="id5"></span><h4>List link command<a class="headerlink" href="#list-link-command" title="Permalink to this headline">¶</a></h4>
<p id="index-12">Display files which will be linked:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --list-link primary_unit [secondary_unit]
</pre></div>
</div>
<p>This command is only available on GNU/Linux.</p>
<p>This command may be used only after a bind command. GHDL displays all
the files which will be linked to create an executable. This command is
intended to add object files in a link of a foreign program.</p>
</div>
<div class="section" id="check-syntax-command">
<span id="id6"></span><h4>Check syntax command<a class="headerlink" href="#check-syntax-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-13"></span><p id="index-14">Analyze files but do not generate code:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -s [options] files
</pre></div>
</div>
<p>This command may be used to check the syntax of files. It does not update
the library.</p>
</div>
<div class="section" id="analyze-and-elaborate-command">
<span id="id7"></span><h4>Analyze and elaborate command<a class="headerlink" href="#analyze-and-elaborate-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-15"></span><p id="index-16">Analyze files and elaborate them at the same time.</p>
<p>On GNU/Linux:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -c [options] file... -e primary_unit [secondary_unit]
</pre></div>
</div>
<p>On Windows:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -c [options] file... -r primary_unit [secondary_unit]
</pre></div>
</div>
<p>This command combines analysis and elaboration: files are analyzed and
the unit is then elaborated. However, code is only generated during the
elaboration. On Windows the simulation is launched.</p>
<p>To be more precise, the files are first parsed, and then the elaboration
drives the analysis. Therefore, there is no analysis order, and you don’t
need to care about it.</p>
<p>All the units of the files are put into the <cite>work</cite> library. But, the
work library is neither read from disk nor saved. Therefore, you must give
all the files of the <cite>work</cite> library your design needs.</p>
<p>The advantages over the traditional approach (analyze and then elaborate) are:</p>
<ul class="simple">
<li>The compilation cycle is achieved in one command.</li>
<li>Since the files are only parsed once, the compilation cycle may be faster.</li>
<li>You don’t need to know an analysis order</li>
<li>This command produces smaller executable, since unused units and subprograms
do not generate code.</li>
</ul>
<p>However, you should know that currently most of the time is spent in code
generation and the analyze and elaborate command generate code for all units
needed, even units of <code class="samp docutils literal"><span class="pre">std</span></code> and <code class="samp docutils literal"><span class="pre">ieee</span></code> libraries. Therefore,
according to the design, the time for this command may be higher than the time
for the analyze command followed by the elaborate command.</p>
<p>This command is still experimental. In case of problems, you should go back
to the traditional way.</p>
</div>
</div>
<div class="section" id="ghdl-options">
<span id="id8"></span><h3>GHDL options<a class="headerlink" href="#ghdl-options" title="Permalink to this headline">¶</a></h3>
<span class="target" id="index-17"></span><span class="target" id="index-18"></span><span class="target" id="index-19"></span><p id="index-20">Besides the options described below, <cite>GHDL</cite> passes any debugging options
(those that begin with <code class="xref std std-option docutils literal"><span class="pre">-g</span></code>) and optimizations options (those that
begin with <code class="xref std std-option docutils literal"><span class="pre">-O</span></code> or <code class="xref std std-option docutils literal"><span class="pre">-f</span></code>) to <cite>GCC</cite>. Refer to the <cite>GCC</cite>
manual for details.</p>
<dl class="option">
<dt id="cmdoption--workdir">
<code class="descname">--workdir</code><code class="descclassname">=<DIR></code><a class="headerlink" href="#cmdoption--workdir" title="Permalink to this definition">¶</a></dt>
<dd><p>Specify the directory where the <code class="samp docutils literal"><span class="pre">WORK</span></code> library is located. When this
option is not present, the <code class="samp docutils literal"><span class="pre">WORK</span></code> library is in the current
directory. The object files created by the compiler are always placed
in the same directory as the <code class="samp docutils literal"><span class="pre">WORK</span></code> library.</p>
<p>Use option <a class="reference internal" href="#cmdoption-P"><code class="xref std std-option docutils literal"><span class="pre">-P</span></code></a> to specify where libraries other than <code class="samp docutils literal"><span class="pre">WORK</span></code>
are placed.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--std">
<code class="descname">--std</code><code class="descclassname">=<STD></code><a class="headerlink" href="#cmdoption--std" title="Permalink to this definition">¶</a></dt>
<dd><p>Specify the standard to use. By default, the standard is <code class="samp docutils literal"><span class="pre">93c</span></code>, which
means VHDL-93 accepting VHDL-87 syntax. For details on <code class="samp docutils literal"><span class="pre">STD</span></code> values see
<a class="reference internal" href="index.html#vhdl-standards"><span>VHDL standards</span></a>.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--ieee">
<code class="descname">--ieee</code><code class="descclassname">=<VER></code><a class="headerlink" href="#cmdoption--ieee" title="Permalink to this definition">¶</a></dt>
<dd><span class="target" id="index-21"></span><span class="target" id="index-22"></span><p id="index-23">Select the <code class="samp docutils literal"><span class="pre">IEEE</span></code> library to use. <code class="samp docutils literal"><span class="pre">VER</span></code> must be one of:</p>
<dl class="docutils">
<dt>none</dt>
<dd>Do not supply an <cite>IEEE</cite> library. Any library clause with the <code class="samp docutils literal"><span class="pre">IEEE</span></code>
identifier will fail, unless you have created by your own a library with
the <cite>IEEE</cite> name.</dd>
<dt>standard</dt>
<dd>Supply an <cite>IEEE</cite> library containing only packages defined by
<code class="samp docutils literal"><span class="pre">ieee</span></code> standards. Currently, there are the multivalue logic system
packages <code class="samp docutils literal"><span class="pre">std_logic_1164</span></code> defined by IEEE 1164, the synthesis
packages , <code class="samp docutils literal"><span class="pre">numeric_bit</span></code> and <code class="samp docutils literal"><span class="pre">numeric_std</span></code> defined by IEEE
1076.3, and the <code class="samp docutils literal"><span class="pre">vital</span></code> packages <code class="samp docutils literal"><span class="pre">vital_timing</span></code> and
<code class="samp docutils literal"><span class="pre">vital_primitives</span></code>, defined by IEEE 1076.4. The version of these
packages is defined by the VHDL standard used. See <a class="reference internal" href="index.html#vital-packages"><span>VITAL packages</span></a>,
for more details.</dd>
<dt>synopsys</dt>
<dd><p class="first">Supply the former packages and the following additional packages:
<code class="samp docutils literal"><span class="pre">std_logic_arith</span></code>, <code class="samp docutils literal"><span class="pre">std_logic_signed</span></code>,
<code class="samp docutils literal"><span class="pre">std_logic_unsigned</span></code>, <code class="samp docutils literal"><span class="pre">std_logic_textio</span></code>.</p>
<p class="last">These packages were created by some companies, and are popular. However
they are not standard packages, and have been placed in the <cite>IEEE</cite>
library without the permission from the <code class="samp docutils literal"><span class="pre">ieee</span></code>.</p>
</dd>
<dt>mentor</dt>
<dd>Supply the standard packages and the following additional package:
<code class="samp docutils literal"><span class="pre">std_logic_arith</span></code>. The package is a slight variation of a definitely
not standard but widely mis-used package.</dd>
</dl>
<p>To avoid errors, you must use the same <cite>IEEE</cite> library for all units of
your design, and during elaboration.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-P">
<code class="descname">-P</code><code class="descclassname"><DIRECTORY></code><a class="headerlink" href="#cmdoption-P" title="Permalink to this definition">¶</a></dt>
<dd><p>Add <cite>DIRECTORY</cite> to the end of the list of directories to be searched for
library files.</p>
<p>The <cite>WORK</cite> library is always searched in the path specified by the
<code class="xref std std-option docutils literal"><span class="pre">--workdir=</span></code> option, or in the current directory if the latter
option is not specified.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-fexplicit">
<code class="descname">-fexplicit</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption-fexplicit" title="Permalink to this definition">¶</a></dt>
<dd><p>When two operators are overloaded, give preference to the explicit declaration.
This may be used to avoid the most common pitfall of the <code class="samp docutils literal"><span class="pre">std_logic_arith</span></code>
package. See <a class="reference internal" href="#ieee-library-pitfalls"><span>IEEE library pitfalls</span></a>, for an example.</p>
<p>This option is not set by default. I don’t think this option is a
good feature, because it breaks the encapsulation rule. When set, an
operator can be silently overridden in another package. You’d better to fix
your design and use the <code class="samp docutils literal"><span class="pre">numeric_std</span></code> package.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-frelaxed-rules">
<code class="descname">-frelaxed-rules</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption-frelaxed-rules" title="Permalink to this definition">¶</a></dt>
<dd><p>Within an object declaration, allow to reference the name (which
references the hidden declaration). This ignores the error in the
following code:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="k">package</span> <span class="n">pkg1</span> <span class="k">is</span>
<span class="k">type</span> <span class="n">state</span> <span class="k">is</span> <span class="p">(</span><span class="n">state1</span><span class="p">,</span> <span class="n">state2</span><span class="p">,</span> <span class="n">state3</span><span class="p">);</span>
<span class="k">end</span> <span class="nc">pkg1</span><span class="p">;</span>
<span class="k">use</span> <span class="nn">work.pkg1.all</span><span class="p">;</span>
<span class="k">package</span> <span class="n">pkg2</span> <span class="k">is</span>
<span class="k">constant</span> <span class="n">state1</span> <span class="o">:</span> <span class="n">state</span> <span class="o">:=</span> <span class="n">state1</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">pkg2</span><span class="p">;</span>
</pre></div>
</div>
<p>Some code (such as Xilinx packages) have such constructs, which
are valid.</p>
<p>(The scope of the <code class="samp docutils literal"><span class="pre">state1</span></code> constant start at the <cite>constant</cite>
word. Because the constant <code class="samp docutils literal"><span class="pre">state1</span></code> and the enumeration literal
<code class="samp docutils literal"><span class="pre">state1</span></code> are homograph, the enumeration literal is hidden in the
immediate scope of the constant).</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-fpsl">
<code class="descname">-fpsl</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption-fpsl" title="Permalink to this definition">¶</a></dt>
<dd><p>Enable parsing of PSL assertions within comments. See <a class="reference internal" href="index.html#psl-implementation"><span>PSL implementation</span></a>,
for more details.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--no-vital-checks">
<code class="descname">--no-vital-checks</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--no-vital-checks" title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dl class="option">
<dt id="cmdoption--vital-checks">
<code class="descname">--vital-checks</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--vital-checks" title="Permalink to this definition">¶</a></dt>
<dd><p>Disable or enable checks of restriction on VITAL units. Checks are enabled
by default.</p>
<p>Checks are performed only when a design unit is decorated by a VITAL attribute.
The VITAL attributes are <code class="samp docutils literal"><span class="pre">VITAL_Level0</span></code> and <code class="samp docutils literal"><span class="pre">VITAL_Level1</span></code>, both
declared in the <code class="samp docutils literal"><span class="pre">ieee.VITAL_Timing</span></code> package.</p>
<p>Currently, VITAL checks are only partially implemented. See
<a class="reference internal" href="index.html#vhdl-restrictions-for-vital"><span>VHDL restrictions for VITAL</span></a>, for more details.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--syn-binding">
<code class="descname">--syn-binding</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--syn-binding" title="Permalink to this definition">¶</a></dt>
<dd><p>Use synthesizer rules for component binding. During elaboration, if a
component is not bound to an entity using VHDL LRM rules, try to find
in any known library an entity whose name is the same as the component
name.</p>
<p>This rule is known as synthesizer rule.</p>
<p>There are two key points: normal VHDL LRM rules are tried first and
entities are searched only in known library. A known library is a
library which has been named in your design.</p>
<p>This option is only useful during elaboration.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--PREFIX">
<code class="descname">--PREFIX</code><code class="descclassname">=<PATH></code><a class="headerlink" href="#cmdoption--PREFIX" title="Permalink to this definition">¶</a></dt>
<dd><p>Use <code class="file docutils literal"><span class="pre">PATH</span></code> as the prefix path to find commands and pre-installed (std and
ieee) libraries.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--GHDL1">
<code class="descname">--GHDL1</code><code class="descclassname">=<COMMAND></code><a class="headerlink" href="#cmdoption--GHDL1" title="Permalink to this definition">¶</a></dt>
<dd><p>Use <code class="samp docutils literal"><span class="pre">COMMAND</span></code> as the command name for the compiler. If <code class="samp docutils literal"><span class="pre">COMMAND</span></code> is
not a path, then it is search in the list of program directories.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-v">
<code class="descname">-v</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption-v" title="Permalink to this definition">¶</a></dt>
<dd><p>Be verbose. For example, for analysis, elaboration and make commands, GHDL
displays the commands executed.</p>
</dd></dl>
</div>
<div class="section" id="passing-options-to-other-programs">
<h3>Passing options to other programs<a class="headerlink" href="#passing-options-to-other-programs" title="Permalink to this headline">¶</a></h3>
<p>These options are only available on GNU/Linux.</p>
<p>For many commands, <cite>GHDL</cite> acts as a driver: it invokes programs to perform
the command. You can pass arbitrary options to these programs.</p>
<p>Both the compiler and the linker are in fact GCC programs. See the
GCC manual for details on GCC options.</p>
<dl class="option">
<dt id="cmdoption-Wc">
<code class="descname">-Wc</code><code class="descclassname">,<OPTION></code><a class="headerlink" href="#cmdoption-Wc" title="Permalink to this definition">¶</a></dt>
<dd><p>Pass <cite>OPTION</cite> as an option to the compiler.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-Wa">
<code class="descname">-Wa</code><code class="descclassname">,<OPTION></code><a class="headerlink" href="#cmdoption-Wa" title="Permalink to this definition">¶</a></dt>
<dd><p>Pass <cite>OPTION</cite> as an option to the assembler.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption-Wl">
<code class="descname">-Wl</code><code class="descclassname">,<OPTION></code><a class="headerlink" href="#cmdoption-Wl" title="Permalink to this definition">¶</a></dt>
<dd><p>Pass <cite>OPTION</cite> as an option to the linker.</p>
</dd></dl>
</div>
<div class="section" id="ghdl-warnings">
<h3>GHDL warnings<a class="headerlink" href="#ghdl-warnings" title="Permalink to this headline">¶</a></h3>
<p>Some constructions are not erroneous but dubious. Warnings are diagnostic
messages that report such constructions. Some warnings are reported only
during analysis, others during elaboration.</p>
<p>You could disable a warning by using the <code class="samp docutils literal"><span class="pre">--warn-no-XXX</span></code>
instead of <code class="samp docutils literal"><span class="pre">--warn-XXX</span></code>.</p>
<dl class="option">
<dt id="cmdoption--warn-reserved">
<code class="descname">--warn-reserved</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-reserved" title="Permalink to this definition">¶</a></dt>
<dd><p>Emit a warning if an identifier is a reserved word in a later VHDL standard.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-default-binding">
<code class="descname">--warn-default-binding</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-default-binding" title="Permalink to this definition">¶</a></dt>
<dd><p>During analyze, warns if a component instantiation has neither
configuration specification nor default binding. This may be useful if you
want to detect during analyze possibly unbound component if you don’t use
configuration. <a class="reference internal" href="index.html#vhdl-standards"><span>VHDL standards</span></a>, for more details about default binding
rules.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-binding">
<code class="descname">--warn-binding</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-binding" title="Permalink to this definition">¶</a></dt>
<dd><p>During elaboration, warns if a component instantiation is not bound
(and not explicitly left unbound). Also warns if a port of an entity
is not bound in a configuration specification or in a component
configuration. This warning is enabled by default, since default
binding rules are somewhat complex and an unbound component is most
often unexpected.</p>
<p>However, warnings are even emitted if a component instantiation is
inside a generate statement. As a consequence, if you use the conditional
generate statement to select a component according to the implementation,
you will certainly get warnings.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-library">
<code class="descname">--warn-library</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-library" title="Permalink to this definition">¶</a></dt>
<dd><p>Warns if a design unit replaces another design unit with the same name.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-vital-generic">
<code class="descname">--warn-vital-generic</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-vital-generic" title="Permalink to this definition">¶</a></dt>
<dd><p>Warns if a generic name of a vital entity is not a vital generic name. This
is set by default.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-delayed-checks">
<code class="descname">--warn-delayed-checks</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-delayed-checks" title="Permalink to this definition">¶</a></dt>
<dd><p>Warns for checks that cannot be done during analysis time and are
postponed to elaboration time. This is because not all procedure
bodies are available during analysis (either because a package body
has not yet been analysed or because <cite>GHDL</cite> doesn’t read not required
package bodies).</p>
<p>These are checks for no wait statement in a procedure called in a
sensitized process and checks for pure rules of a function.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-body">
<code class="descname">--warn-body</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-body" title="Permalink to this definition">¶</a></dt>
<dd><p>Emit a warning if a package body which is not required is analyzed. If a
package does not declare a subprogram or a deferred constant, the package
does not require a body.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-specs">
<code class="descname">--warn-specs</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-specs" title="Permalink to this definition">¶</a></dt>
<dd><p>Emit a warning if an all or others specification does not apply.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-unused">
<code class="descname">--warn-unused</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-unused" title="Permalink to this definition">¶</a></dt>
<dd><p>Emit a warning when a subprogram is never used.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--warn-error">
<code class="descname">--warn-error</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--warn-error" title="Permalink to this definition">¶</a></dt>
<dd><p>When this option is set, warnings are considered as errors.</p>
</dd></dl>
</div>
<div class="section" id="rebuilding-commands">
<h3>Rebuilding commands<a class="headerlink" href="#rebuilding-commands" title="Permalink to this headline">¶</a></h3>
<p>Analyzing and elaborating a design consisting in several files can be tricky,
due to dependencies. GHDL has a few commands to rebuild a design.</p>
<div class="section" id="import-command">
<h4>Import command<a class="headerlink" href="#import-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-24"></span><p id="index-25">Add files in the work design library:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -i [options] file...
</pre></div>
</div>
<p>All the files specified in the command line are scanned, parsed and added in
the libraries but as not yet analyzed. No object files are created.</p>
<p>The purpose of this command is to localize design units in the design files.
The make command will then be able to recursively build a hierarchy from
an entity name or a configuration name.</p>
<p>Since the files are parsed, there must be correct files. However, since they
are not analyzed, many errors are tolerated by this command.</p>
<p>Note that all the files are added to the work library. If you have many
libraries, you must use the command for each library.</p>
<p>See <a class="reference internal" href="#make-command"><span>Make command</span></a>, to actually build the design.</p>
</div>
<div class="section" id="make-command">
<span id="id9"></span><h4>Make command<a class="headerlink" href="#make-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-26"></span><p id="index-27">Analyze automatically outdated files and elaborate a design:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -m [options] primary [secondary]
</pre></div>
</div>
<p>The primary unit denoted by the <code class="samp docutils literal"><span class="pre">primary</span></code> argument must already be
known by the system, either because you have already analyzed it (even
if you have modified it) or because you have imported it. GHDL analyzes
all outdated files. A file may be outdated because it has been modified
(e.g. you just have edited it), or because a design unit contained in
the file depends on a unit which is outdated. This rule is of course
recursive.</p>
<p>With the <code class="xref std std-option docutils literal"><span class="pre">-f</span></code> (force) option, GHDL analyzes all the units of the
work library needed to create the design hierarchy. Not outdated units
are recompiled. This is useful if you want to compile a design hierarchy
with new compilation flags (for example, to add the <em>-g</em>
debugging option).</p>
<p>The make command will only re-analyze design units in the work library.
GHDL fails if it has to analyze an outdated unit from another library.</p>
<p>The purpose of this command is to be able to compile a design without prior
knowledge of file order. In the VHDL model, some units must be analyzed
before others (e.g. an entity before its architecture). It might be a
nightmare to analyze a full design of several files, if you don’t have
the ordered list of file. This command computes an analysis order.</p>
<p>The make command fails when a unit was not previously parsed. For
example, if you split a file containing several design units into
several files, you must either import these new files or analyze them so
that GHDL knows in which file these units are.</p>
<p>The make command imports files which have been modified. Then, a design
hierarchy is internally built as if no units are outdated. Then, all outdated
design units, using the dependencies of the design hierarchy, are analyzed.
If necessary, the design hierarchy is elaborated.</p>
<p>This is not perfect, since the default architecture (the most recently
analyzed one) may change while outdated design files are analyzed. In
such a case, re-run the make command of GHDL.</p>
</div>
<div class="section" id="generate-makefile-command">
<h4>Generate Makefile command<a class="headerlink" href="#generate-makefile-command" title="Permalink to this headline">¶</a></h4>
<p id="index-28">Generate a Makefile to build a design unit:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --gen-makefile [options] primary [secondary]
</pre></div>
</div>
<p>This command works like the make command (see <a class="reference internal" href="#make-command"><span>Make command</span></a>), but only a
makefile is generated on the standard output.</p>
</div>
</div>
<div class="section" id="library-commands">
<h3>Library commands<a class="headerlink" href="#library-commands" title="Permalink to this headline">¶</a></h3>
<p>GHDL has a few commands which act on a library.</p>
<div class="section" id="directory-command">
<h4>Directory command<a class="headerlink" href="#directory-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-29"></span><p id="index-30">Display the name of the units contained in a design library:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">-</span><span class="n">d</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span>
</pre></div>
</div>
<p>The directory command, selected with the <cite>-d</cite> command line argument
displays the content of the work design library. All options are
allowed, but only a few are meaningful: <code class="xref std std-option docutils literal"><span class="pre">--work=NAME</span></code>,
<code class="xref std std-option docutils literal"><span class="pre">--workdir=PATH</span></code> and <code class="xref std std-option docutils literal"><span class="pre">--std=VER</span></code>.</p>
</div>
<div class="section" id="clean-command">
<h4>Clean command<a class="headerlink" href="#clean-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-31"></span><p id="index-32">Remove object and executable files but keep the library:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">--</span><span class="n">clean</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span>
</pre></div>
</div>
<p>GHDL tries to remove any object, executable or temporary file it could
have created. Source files are not removed.</p>
<p>There is no short command line form for this option to prevent accidental
clean up.</p>
</div>
<div class="section" id="remove-command">
<span id="id10"></span><h4>Remove command<a class="headerlink" href="#remove-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-33"></span><p id="index-34">Do like the clean command but remove the library too:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">--</span><span class="n">remove</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span>
</pre></div>
</div>
<p>There is no short command line form for this option to prevent accidental
clean up. Note that after removing a design library, the files are not
known anymore by GHDL.</p>
</div>
<div class="section" id="copy-command">
<span id="id11"></span><h4>Copy command<a class="headerlink" href="#copy-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-35"></span><p id="index-36">Make a local copy of an existing library:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">--</span><span class="n">copy</span> <span class="o">--</span><span class="n">work</span><span class="o">=</span><span class="n">name</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span>
</pre></div>
</div>
<p>Make a local copy of an existing library. This is very useful if you want to
add unit to the <code class="samp docutils literal"><span class="pre">ieee</span></code> library:</p>
<div class="highlight-shell"><div class="highlight"><pre>ghdl --copy --work<span class="o">=</span>ieee --ieee<span class="o">=</span>synopsys
ghdl -a --work<span class="o">=</span>ieee numeric_unsigned.vhd
</pre></div>
</div>
</div>
<div class="section" id="create-a-library">
<span id="id12"></span><h4>Create a Library<a class="headerlink" href="#create-a-library" title="Permalink to this headline">¶</a></h4>
<p id="index-37">A new library is created by compiling entities (packages etc.) into it:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -a --work=my_custom_lib my_file.vhd
</pre></div>
</div>
<p>A library’s source code is usually stored and compiled into its own directory,
that you specify with the <a class="reference internal" href="#cmdoption--workdir"><code class="xref std std-option docutils literal"><span class="pre">--workdir</span></code></a> option:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -a --work=my_custom_lib --workdir=my_custom_libdir my_custom_lib_srcdir/my_file.vhd
</pre></div>
</div>
<p>See also the <code class="xref std std-option docutils literal"><span class="pre">-PPATH</span></code> command line option.</p>
</div>
</div>
<div class="section" id="cross-reference-command">
<span id="id13"></span><h3>Cross-reference command<a class="headerlink" href="#cross-reference-command" title="Permalink to this headline">¶</a></h3>
<p>To easily navigate through your sources, you may generate cross-references:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --xref-html [options] file...
</pre></div>
</div>
<p>This command generates an html file for each <code class="samp docutils literal"><span class="pre">file</span></code> given in the command
line, with syntax highlighting and full cross-reference: every identifier is
a link to its declaration. Besides, an index of the files is created too.</p>
<p>The set of <code class="samp docutils literal"><span class="pre">file</span></code> are analyzed, and then, if the analysis is
successful, html files are generated in the directory specified by the
<code class="xref std std-option docutils literal"><span class="pre">-o</span> <span class="pre">dir</span></code> option, or <code class="file docutils literal"><span class="pre">html/</span></code> directory by default.</p>
<p>If the option <code class="xref std std-option docutils literal"><span class="pre">--format=html2</span></code> is specified, then the generated html
files follow the HTML 2.0 standard, and colours are specified with
<cite><FONT></cite> tags. However, colours are hard-coded.</p>
<p>If the option <code class="xref std std-option docutils literal"><span class="pre">--format=css</span></code> is specified, then the generated html files
follow the HTML 4.0 standard, and use the CSS-1 file <code class="file docutils literal"><span class="pre">ghdl.css</span></code> to
specify colours. This file is generated only if it does not already exist (it
is never overwritten) and can be customized by the user to change colours or
appearance. Refer to a generated file and its comments for more information.</p>
</div>
<div class="section" id="file-commands">
<h3>File commands<a class="headerlink" href="#file-commands" title="Permalink to this headline">¶</a></h3>
<p>The following commands act on one or several files. They do not analyze
files, therefore, they work even if a file has semantic errors.</p>
<div class="section" id="pretty-print-command">
<h4>Pretty print command<a class="headerlink" href="#pretty-print-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-38"></span><span class="target" id="index-39"></span><p id="index-40">Generate HTML on standard output from VHDL:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --pp-html [options] file...
</pre></div>
</div>
<p>The files are just scanned and an html file, with syntax highlighting is
generated on standard output.</p>
<p>Since the files are not even parsed, erroneous files or incomplete designs
can be pretty printed.</p>
<p>The style of the html file can be modified with the <code class="xref std std-option docutils literal"><span class="pre">--format=</span></code> option.
By default or when the <code class="xref std std-option docutils literal"><span class="pre">--format=html2</span></code> option is specified, the output
is an HTML 2.0 file, with colours set through <cite><FONT></cite> tags. When the
<code class="xref std std-option docutils literal"><span class="pre">--format=css</span></code> option is specified, the output is an HTML 4.0 file,
with colours set through a CSS file, whose name is <code class="file docutils literal"><span class="pre">ghdl.css</span></code>.
See <a class="reference internal" href="#cross-reference-command"><span>Cross-reference command</span></a>, for more details about this CSS file.</p>
</div>
<div class="section" id="find-command">
<h4>Find command<a class="headerlink" href="#find-command" title="Permalink to this headline">¶</a></h4>
<p id="index-41">Display the name of the design units in files:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -f file...
</pre></div>
</div>
<p>The files are scanned, parsed and the names of design units are displayed.
Design units marked with two stars are candidate to be at the apex of a
design hierarchy.</p>
</div>
<div class="section" id="chop-command">
<h4>Chop command<a class="headerlink" href="#chop-command" title="Permalink to this headline">¶</a></h4>
<p id="index-42">Chop (or split) files at design unit:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --chop files
</pre></div>
</div>
<p><cite>GHDL</cite> reads files, and writes a file in the current directory for
every design unit.</p>
<p>The filename of a design unit is build according to the unit. For an
entity declaration, a package declaration or a configuration the file
name is <code class="file docutils literal"><span class="pre">NAME.vhdl</span></code>, where <cite>NAME</cite> is the name of the design
unit. For a package body, the filename is <code class="file docutils literal"><span class="pre">NAME-body.vhdl</span></code>.
Finally, for an architecture <cite>ARCH</cite> of an entity <cite>ENTITY</cite>, the
filename is <code class="file docutils literal"><span class="pre">ENTITY-ARCH.vhdl</span></code>.</p>
<p>Since the input files are parsed, this command aborts in case of syntax
error. The command aborts too if a file to be written already exists.</p>
<p>Comments between design units are stored into the most adequate files.</p>
<p>This command may be useful to split big files, if your computer has not
enough memory to compile such files. The size of the executable is
reduced too.</p>
</div>
<div class="section" id="lines-command">
<h4>Lines command<a class="headerlink" href="#lines-command" title="Permalink to this headline">¶</a></h4>
<p id="index-43">Display on the standard output lines of files preceded by line number:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --lines files
</pre></div>
</div>
</div>
</div>
<div class="section" id="misc-commands">
<h3>Misc commands<a class="headerlink" href="#misc-commands" title="Permalink to this headline">¶</a></h3>
<p>There are a few GHDL commands which are seldom useful.</p>
<div class="section" id="help-command">
<span id="id14"></span><h4>Help command<a class="headerlink" href="#help-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-44"></span><p id="index-45">Display (on the standard output) a short description of the all the commands
available. If the help switch is followed by a command switch, then options
for this later command are displayed:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl --help
ghdl -h
ghdl -h command
</pre></div>
</div>
</div>
<div class="section" id="disp-config-command">
<span id="id15"></span><h4>Disp config command<a class="headerlink" href="#disp-config-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-46"></span><p id="index-47">Display the program paths and options used by GHDL:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">--</span><span class="n">disp</span><span class="o">-</span><span class="n">config</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span>
</pre></div>
</div>
<p>This may be useful to track installation errors.</p>
</div>
<div class="section" id="disp-standard-command">
<h4>Disp standard command<a class="headerlink" href="#disp-standard-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-48"></span><p id="index-49">Display the <code class="samp docutils literal"><span class="pre">std.standard</span></code> package:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">--</span><span class="n">disp</span><span class="o">-</span><span class="n">standard</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span>
</pre></div>
</div>
</div>
<div class="section" id="version-command">
<h4>Version command<a class="headerlink" href="#version-command" title="Permalink to this headline">¶</a></h4>
<span class="target" id="index-50"></span><p id="index-51">Display the <cite>GHDL</cite> version and exit:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">ghdl</span> <span class="o">--</span><span class="n">version</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="installation-directory">
<h3>Installation Directory<a class="headerlink" href="#installation-directory" title="Permalink to this headline">¶</a></h3>
<p>During analysis and elaboration <cite>GHDL</cite> may read the <cite>std</cite>
and <cite>ieee</cite> files. The location of these files is based on the prefix,
which is (in priority order):</p>
<ul class="simple">
<li>the <code class="xref std std-option docutils literal"><span class="pre">--PREFIX=</span></code> command line option</li>
<li>the <span class="target" id="index-52"></span><code class="xref std std-envvar docutils literal"><span class="pre">GHDL_PREFIX</span></code> environment variable</li>
<li>a built-in default path. It is a hard-coded path on GNU/Linux and the
value of the <code class="samp docutils literal"><span class="pre">HKLMSoftwareGhdlInstall_Dir</span></code> registry entry on Windows.</li>
</ul>
<p>You should use the <code class="xref std std-option docutils literal"><span class="pre">--disp-config</span></code> command (<a class="reference internal" href="#disp-config-command"><span>Disp config command</span></a> for details) to disp and debug installation problems.</p>
</div>
<div class="section" id="ieee-library-pitfalls">
<span id="id16"></span><h3>IEEE library pitfalls<a class="headerlink" href="#ieee-library-pitfalls" title="Permalink to this headline">¶</a></h3>
<p>When you use options <code class="xref std std-option docutils literal"><span class="pre">--ieee=synopsys</span></code> or <code class="xref std std-option docutils literal"><span class="pre">--ieee=mentor</span></code>,
the <cite>IEEE</cite> library contains non standard packages such as
<code class="samp docutils literal"><span class="pre">std_logic_arith</span></code>.</p>
<p>These packages are not standard because there are not described by an IEEE
standard, even if they have been put in the <cite>IEEE</cite> library. Furthermore,
they are not really de-facto standard, because there are slight differences
between the packages of Mentor and those of Synopsys.</p>
<p>Furthermore, since they are not well-thought, their use has pitfalls. For
example, this description has error during compilation:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="k">library</span> <span class="nn">ieee</span><span class="p">;</span>
<span class="k">use</span> <span class="nn">ieee.std_logic_1164.all</span><span class="p">;</span>
<span class="c1">-- A counter from 0 to 10.</span>
<span class="k">entity</span> <span class="nc">counter</span> <span class="k">is</span>
<span class="k">port</span> <span class="p">(</span><span class="n">val</span> <span class="o">:</span> <span class="k">out</span> <span class="kt">std_logic_vector</span> <span class="p">(</span><span class="mi">3</span> <span class="k">downto</span> <span class="mi">0</span><span class="p">);</span>
<span class="n">ck</span> <span class="o">:</span> <span class="kt">std_logic</span><span class="p">;</span>
<span class="n">rst</span> <span class="o">:</span> <span class="kt">std_logic</span><span class="p">);</span>
<span class="k">end</span> <span class="nc">counter</span><span class="p">;</span>
<span class="k">library</span> <span class="nn">ieee</span><span class="p">;</span>
<span class="k">use</span> <span class="nn">ieee.std_logic_unsigned.all</span><span class="p">;</span>
<span class="k">architecture</span> <span class="nc">bad</span> <span class="k">of</span> <span class="nc">counter</span>
<span class="k">is</span>
<span class="k">signal</span> <span class="n">v</span> <span class="o">:</span> <span class="kt">std_logic_vector</span> <span class="p">(</span><span class="mi">3</span> <span class="k">downto</span> <span class="mi">0</span><span class="p">);</span>
<span class="k">begin</span>
<span class="k">process</span> <span class="p">(</span><span class="n">ck</span><span class="p">,</span> <span class="n">rst</span><span class="p">)</span>
<span class="k">begin</span>
<span class="k">if</span> <span class="n">rst</span> <span class="o">=</span> <span class="sc">'1'</span> <span class="k">then</span>
<span class="n">v</span> <span class="o"><=</span> <span class="mh">x"0"</span><span class="p">;</span>
<span class="k">elsif</span> <span class="n">rising_edge</span> <span class="p">(</span><span class="n">ck</span><span class="p">)</span> <span class="k">then</span>
<span class="k">if</span> <span class="n">v</span> <span class="o">=</span> <span class="s">"1010"</span> <span class="k">then</span> <span class="c1">-- Error</span>
<span class="n">v</span> <span class="o"><=</span> <span class="mh">x"0"</span><span class="p">;</span>
<span class="k">else</span>
<span class="n">v</span> <span class="o"><=</span> <span class="n">v</span> <span class="o">+</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">end</span> <span class="k">if</span><span class="p">;</span>
<span class="k">end</span> <span class="k">if</span><span class="p">;</span>
<span class="k">end</span> <span class="k">process</span><span class="p">;</span>
<span class="n">val</span> <span class="o"><=</span> <span class="n">v</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">bad</span><span class="p">;</span>
</pre></div>
</div>
<p>When you analyze this design, GHDL does not accept it (too long lines
have been split for readability):</p>
<div class="highlight-shell"><div class="highlight"><pre>ghdl -a --ieee<span class="o">=</span>synopsys bad_counter.vhdl
bad_counter.vhdl:13:14: operator <span class="s2">"="</span> is overloaded
bad_counter.vhdl:13:14: possible interpretations are:
../../libraries/ieee/std_logic_1164.v93:69:5: implicit <span class="k">function</span> <span class="s2">"="</span>
<span class="o">[</span>std_logic_vector, std_logic_vector <span class="k">return</span> boolean<span class="o">]</span>
../../libraries/synopsys/std_logic_unsigned.vhdl:64:5: <span class="k">function</span> <span class="s2">"="</span>
<span class="o">[</span>std_logic_vector, std_logic_vector <span class="k">return</span> boolean<span class="o">]</span>
../translate/ghdldrv/ghdl: compilation error
</pre></div>
</div>
<p>Indeed, the <cite>“=”</cite> operator is defined in both packages, and both
are visible at the place it is used. The first declaration is an
implicit one, which occurs when the <cite>std_logic_vector</cite> type is
declared and is an element to element comparison, the second one is an
explicit declared function, with the semantic of an unsigned comparison.</p>
<p>With some analyser, the explicit declaration has priority over the implicit
declaration, and this design can be analyzed without error. However, this
is not the rule given by the VHDL LRM, and since GHDL follows these rules,
it emits an error.</p>
<p>You can force GHDL to use this rule with the <em>-fexplicit</em> option.
<a class="reference internal" href="#ghdl-options"><span>GHDL options</span></a>, for more details.</p>
<p>However it is easy to fix this error, by using a selected name:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="k">library</span> <span class="nn">ieee</span><span class="p">;</span>
<span class="k">use</span> <span class="nn">ieee.std_logic_unsigned.all</span><span class="p">;</span>
<span class="k">architecture</span> <span class="nc">fixed_bad</span> <span class="k">of</span> <span class="nc">counter</span>
<span class="k">is</span>
<span class="k">signal</span> <span class="n">v</span> <span class="o">:</span> <span class="kt">std_logic_vector</span> <span class="p">(</span><span class="mi">3</span> <span class="k">downto</span> <span class="mi">0</span><span class="p">);</span>
<span class="k">begin</span>
<span class="k">process</span> <span class="p">(</span><span class="n">ck</span><span class="p">,</span> <span class="n">rst</span><span class="p">)</span>
<span class="k">begin</span>
<span class="k">if</span> <span class="n">rst</span> <span class="o">=</span> <span class="sc">'1'</span> <span class="k">then</span>
<span class="n">v</span> <span class="o"><=</span> <span class="mh">x"0"</span><span class="p">;</span>
<span class="k">elsif</span> <span class="n">rising_edge</span> <span class="p">(</span><span class="n">ck</span><span class="p">)</span> <span class="k">then</span>
<span class="k">if</span> <span class="n">ieee</span><span class="p">.</span><span class="n">std_logic_unsigned</span><span class="p">.</span><span class="s">"=" (v, "1010"</span><span class="p">)</span> <span class="k">then</span>
<span class="n">v</span> <span class="o"><=</span> <span class="mh">x"0"</span><span class="p">;</span>
<span class="k">else</span>
<span class="n">v</span> <span class="o"><=</span> <span class="n">v</span> <span class="o">+</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">end</span> <span class="k">if</span><span class="p">;</span>
<span class="k">end</span> <span class="k">if</span><span class="p">;</span>
<span class="k">end</span> <span class="k">process</span><span class="p">;</span>
<span class="n">val</span> <span class="o"><=</span> <span class="n">v</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">fixed_bad</span><span class="p">;</span>
</pre></div>
</div>
<p>It is better to only use the standard packages defined by IEEE, which
provides the same functionalities:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="k">library</span> <span class="nn">ieee</span><span class="p">;</span>
<span class="k">use</span> <span class="nn">ieee.numeric_std.all</span><span class="p">;</span>
<span class="k">architecture</span> <span class="nc">good</span> <span class="k">of</span> <span class="nc">counter</span>
<span class="k">is</span>
<span class="k">signal</span> <span class="n">v</span> <span class="o">:</span> <span class="n">unsigned</span> <span class="p">(</span><span class="mi">3</span> <span class="k">downto</span> <span class="mi">0</span><span class="p">);</span>
<span class="k">begin</span>
<span class="k">process</span> <span class="p">(</span><span class="n">ck</span><span class="p">,</span> <span class="n">rst</span><span class="p">)</span>
<span class="k">begin</span>
<span class="k">if</span> <span class="n">rst</span> <span class="o">=</span> <span class="sc">'1'</span> <span class="k">then</span>
<span class="n">v</span> <span class="o"><=</span> <span class="mh">x"0"</span><span class="p">;</span>
<span class="k">elsif</span> <span class="n">rising_edge</span> <span class="p">(</span><span class="n">ck</span><span class="p">)</span> <span class="k">then</span>
<span class="k">if</span> <span class="n">v</span> <span class="o">=</span> <span class="s">"1010"</span> <span class="k">then</span>
<span class="n">v</span> <span class="o"><=</span> <span class="mh">x"0"</span><span class="p">;</span>
<span class="k">else</span>
<span class="n">v</span> <span class="o"><=</span> <span class="n">v</span> <span class="o">+</span> <span class="mi">1</span><span class="p">;</span>
<span class="k">end</span> <span class="k">if</span><span class="p">;</span>
<span class="k">end</span> <span class="k">if</span><span class="p">;</span>
<span class="k">end</span> <span class="k">process</span><span class="p">;</span>
<span class="n">val</span> <span class="o"><=</span> <span class="kt">std_logic_vector</span> <span class="p">(</span><span class="n">v</span><span class="p">);</span>
<span class="k">end</span> <span class="nc">good</span><span class="p">;</span>
</pre></div>
</div>
</div>
<div class="section" id="ieee-math-packages">
<h3>IEEE math packages<a class="headerlink" href="#ieee-math-packages" title="Permalink to this headline">¶</a></h3>
<span class="target" id="index-53"></span><p id="index-54">The <code class="samp docutils literal"><span class="pre">ieee</span></code> math packages (<code class="samp docutils literal"><span class="pre">math_real</span></code> and
<code class="samp docutils literal"><span class="pre">math_complex</span></code>) provided with <cite>GHDL</cite> are fully compliant with
the <cite>IEEE</cite> standard.</p>
</div>
</div>
<span id="document-Simulation_and_runtime"></span><div class="section" id="simulation-and-runtime">
<span id="id1"></span><h2>Simulation and runtime<a class="headerlink" href="#simulation-and-runtime" title="Permalink to this headline">¶</a></h2>
<div class="section" id="simulation-options">
<span id="id2"></span><h3>Simulation options<a class="headerlink" href="#simulation-options" title="Permalink to this headline">¶</a></h3>
<p>In most system environments, it is possible to pass options while
invoking a program. Contrary to most programming languages, there is no
standard method in VHDL to obtain the arguments or to set the exit
status.</p>
<p>In GHDL, it is impossible to pass parameters to your design. A later version
could do it through the generics interfaces of the top entity.</p>
<p>However, the GHDL runtime behaviour can be modified with some options; for
example, it is possible to stop simulation after a certain time.</p>
<p>The exit status of the simulation is <code class="samp docutils literal"><span class="pre">EXIT_SUCCESS</span></code> (0) if the
simulation completes, or <code class="samp docutils literal"><span class="pre">EXIT_FAILURE</span></code> (1) in case of error
(assertion failure, overflow or any constraint error).</p>
<p>Here is the list of the most useful options. Some debugging options are
also available, but not described here. The <a class="reference internal" href="#cmdoption--help"><code class="xref std std-option docutils literal"><span class="pre">--help</span></code></a> options lists
all options available, including the debugging one.</p>
<dl class="option">
<dt id="cmdoption--assert-level">
<code class="descname">--assert-level</code><code class="descclassname">=<LEVEL></code><a class="headerlink" href="#cmdoption--assert-level" title="Permalink to this definition">¶</a></dt>
<dd><p>Select the assertion level at which an assertion violation stops the
simulation. <cite>LEVEL</cite> is the name from the <cite>severity_level</cite>
enumerated type defined in the <cite>standard</cite> package or the
<code class="samp docutils literal"><span class="pre">none</span></code> name.</p>
<p>By default, only assertion violation of severity level <code class="samp docutils literal"><span class="pre">failure</span></code>
stops the simulation.</p>
<p>For example, if <cite>LEVEL</cite> was <code class="samp docutils literal"><span class="pre">warning</span></code>, any assertion violation
with severity level <code class="samp docutils literal"><span class="pre">warning</span></code>, <code class="samp docutils literal"><span class="pre">error</span></code> or <code class="samp docutils literal"><span class="pre">failure</span></code> would
stop simulation, but the assertion violation at the <code class="samp docutils literal"><span class="pre">note</span></code> severity
level would only display a message.</p>
<p>Option <code class="xref std std-option docutils literal"><span class="pre">--assert-level=none</span></code> prevents any assertion violation to stop
simulation.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--ieee-asserts">
<code class="descname">--ieee-asserts</code><code class="descclassname">=<POLICY></code><a class="headerlink" href="#cmdoption--ieee-asserts" title="Permalink to this definition">¶</a></dt>
<dd><p>Select how the assertions from <code class="samp docutils literal"><span class="pre">ieee</span></code> units are
handled. <cite>POLICY</cite> can be <code class="samp docutils literal"><span class="pre">enable</span></code> (the default),
<code class="samp docutils literal"><span class="pre">disable</span></code> which disables all assertion from <code class="samp docutils literal"><span class="pre">ieee</span></code> packages
and <code class="samp docutils literal"><span class="pre">disable-at-0</span></code> which disables only at start of simulation.</p>
<p>This option can be useful to avoid assertion message from
<code class="samp docutils literal"><span class="pre">ieee.numeric_std</span></code> (and other <code class="samp docutils literal"><span class="pre">ieee</span></code> packages).</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--stop-time">
<code class="descname">--stop-time</code><code class="descclassname">=<TIME></code><a class="headerlink" href="#cmdoption--stop-time" title="Permalink to this definition">¶</a></dt>
<dd><p>Stop the simulation after <code class="samp docutils literal"><span class="pre">TIME</span></code>. <code class="samp docutils literal"><span class="pre">TIME</span></code> is expressed as a time
value, <em>without</em> any space. The time is the simulation time, not
the real clock time.</p>
<p>For example:</p>
<div class="highlight-python"><div class="highlight"><pre>$ ./my_design --stop-time=10ns
$ ./my_design --stop-time=ps
</pre></div>
</div>
</dd></dl>
<dl class="option">
<dt id="cmdoption--stop-delta">
<code class="descname">--stop-delta</code><code class="descclassname">=<N></code><a class="headerlink" href="#cmdoption--stop-delta" title="Permalink to this definition">¶</a></dt>
<dd><p>Stop the simulation after <cite>N</cite> delta cycles in the same current time.</p>
<span class="target" id="index-0"></span></dd></dl>
<dl class="option">
<dt id="cmdoption--disp-time">
<code class="descname">--disp-time</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--disp-time" title="Permalink to this definition">¶</a></dt>
<dd><p>Display the time and delta cycle number as simulation advances.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--disp-tree">
<code class="descname">--disp-tree</code><code class="descclassname">[=<KIND>]</code><a class="headerlink" href="#cmdoption--disp-tree" title="Permalink to this definition">¶</a></dt>
<dd><p id="index-1">Display the design hierarchy as a tree of instantiated design entities.
This may be useful to understand the structure of a complex
design. <cite>KIND</cite> is optional, but if set must be one of:</p>
<ul class="simple">
<li>none
Do not display hierarchy. Same as if the option was not present.</li>
<li>inst
Display entities, architectures, instances, blocks and generates statements.</li>
<li>proc
Like <code class="samp docutils literal"><span class="pre">inst</span></code> but also display processes.</li>
<li>port
Like <code class="samp docutils literal"><span class="pre">proc</span></code> but display ports and signals too.
If <cite>KIND</cite> is not specified, the hierarchy is displayed with the
<code class="samp docutils literal"><span class="pre">port</span></code> mode.</li>
</ul>
</dd></dl>
<dl class="option">
<dt id="cmdoption--no-run">
<code class="descname">--no-run</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--no-run" title="Permalink to this definition">¶</a></dt>
<dd><p>Do not simulate, only elaborate. This may be used with
<a class="reference internal" href="#cmdoption--disp-tree"><code class="xref std std-option docutils literal"><span class="pre">--disp-tree</span></code></a> to display the tree without simulating the whole
design.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--vcd">
<code class="descname">--vcd</code><code class="descclassname">=<FILENAME></code><a class="headerlink" href="#cmdoption--vcd" title="Permalink to this definition">¶</a></dt>
<dd></dd></dl>
<dl class="option">
<dt id="cmdoption--vcdgz">
<code class="descname">--vcdgz</code><code class="descclassname">=<FILENAME></code><a class="headerlink" href="#cmdoption--vcdgz" title="Permalink to this definition">¶</a></dt>
<dd><span class="target" id="index-2"></span><span class="target" id="index-3"></span><p id="index-4">Option <a class="reference internal" href="#cmdoption--vcd"><code class="xref std std-option docutils literal"><span class="pre">--vcd</span></code></a> dumps into the VCD file <cite>FILENAME</cite> the signal
values before each non-delta cycle. If <cite>FILENAME</cite> is <code class="samp docutils literal"><span class="pre">-</span></code>,
then the standard output is used, otherwise a file is created or
overwritten.</p>
<p>The <a class="reference internal" href="#cmdoption--vcdgz"><code class="xref std std-option docutils literal"><span class="pre">--vcdgz</span></code></a> option is the same as the <em>–vcd</em> option,
but the output is compressed using the <cite>zlib</cite> (<cite>gzip</cite>
compression). However, you can’t use the <code class="samp docutils literal"><span class="pre">-</span></code> filename.
Furthermore, only one VCD file can be written.</p>
<p><em class="dfn">VCD</em> (value change dump) is a file format defined
by the <cite>verilog</cite> standard and used by virtually any wave viewer.</p>
<p>Since it comes from <cite>verilog</cite>, only a few VHDL types can be dumped. GHDL
dumps only signals whose base type is of the following:</p>
<ul class="simple">
<li>types defined in the <code class="samp docutils literal"><span class="pre">std.standard</span></code> package:</li>
<li><code class="samp docutils literal"><span class="pre">bit</span></code></li>
<li><code class="samp docutils literal"><span class="pre">bit_vector</span></code></li>
<li>types defined in the <code class="samp docutils literal"><span class="pre">ieee.std_logic_1164</span></code> package:</li>
<li><code class="samp docutils literal"><span class="pre">std_ulogic</span></code></li>
<li><code class="samp docutils literal"><span class="pre">std_logic</span></code> (because it is a subtype of <code class="samp docutils literal"><span class="pre">std_ulogic</span></code>)</li>
<li><code class="samp docutils literal"><span class="pre">std_ulogic_vector</span></code></li>
<li><code class="samp docutils literal"><span class="pre">std_logic_vector</span></code></li>
<li>any integer type</li>
</ul>
<p>I have successfully used <cite>gtkwave</cite> to view VCD files.</p>
<p>Currently, there is no way to select signals to be dumped: all signals are
dumped, which can generate big files.</p>
<p>It is very unfortunate there is no standard or well-known wave file
format supporting VHDL types. If you are aware of such a free format,
please mail me (<a class="reference internal" href="index.html#reporting-bugs"><span>Reporting bugs</span></a>).</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--fst">
<code class="descname">--fst</code><code class="descclassname">=<FILENAME></code><a class="headerlink" href="#cmdoption--fst" title="Permalink to this definition">¶</a></dt>
<dd><p>Write the waveforms into a <cite>fst</cite>, that can be displayed by
<cite>gtkwave</cite>. The <cite>fst</cite> files are much smaller than VCD or
<cite>GHW</cite> files, but it handles only the same signals as the VCD format.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--wave">
<code class="descname">--wave</code><code class="descclassname">=<FILENAME></code><a class="headerlink" href="#cmdoption--wave" title="Permalink to this definition">¶</a></dt>
<dd><p>Write the waveforms into a <cite>ghw</cite> (GHdl Waveform) file. Currently, all
the signals are dumped into the waveform file, you cannot select a hierarchy
of signals to be dumped.</p>
<p>The format of this file was defined by myself and is not yet completely fixed.
It may change slightly. The <code class="samp docutils literal"><span class="pre">gtkwave</span></code> tool can read the GHW files.</p>
<p>Contrary to VCD files, any VHDL type can be dumped into a GHW file.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--sdf">
<code class="descname">--sdf</code><code class="descclassname">=<PATH>=<FILENAME></code><a class="headerlink" href="#cmdoption--sdf" title="Permalink to this definition">¶</a></dt>
<dd><p>Do VITAL annotation on <cite>PATH</cite> with SDF file <code class="file docutils literal"><span class="pre">FILENAME</span></code>.</p>
<p><cite>PATH</cite> is a path of instances, separated with <code class="samp docutils literal"><span class="pre">.</span></code> or <code class="samp docutils literal"><span class="pre">/</span></code>.
Any separator can be used. Instances are component instantiation labels,
generate labels or block labels. Currently, you cannot use an indexed name.</p>
<p>Specifying a delay:</p>
<div class="highlight-python"><div class="highlight"><pre>--sdf=min=<PATH>=<FILENAME>
--sdf=typ=<PATH>=<FILENAME>
--sdf=max=<PATH>=<FILENAME>
</pre></div>
</div>
<p>If the option contains a type of delay, that is <code class="samp docutils literal"><span class="pre">min=</span></code>,
<code class="samp docutils literal"><span class="pre">typ=</span></code> or <code class="samp docutils literal"><span class="pre">max=</span></code>, the annotator use respectively minimum,
typical or maximum values. If the option does not contain a type of delay,
the annotator use the typical delay.</p>
<p>See <a class="reference internal" href="index.html#backannotation"><span>Backannotation</span></a>, for more details.</p>
</dd></dl>
<dl class="option">
<dt id="cmdoption--help">
<code class="descname">--help</code><code class="descclassname"></code><a class="headerlink" href="#cmdoption--help" title="Permalink to this definition">¶</a></dt>
<dd><p>Display a short description of the options accepted by the runtime library.</p>
</dd></dl>
</div>
<div class="section" id="debugging-vhdl-programs">
<h3>Debugging VHDL programs<a class="headerlink" href="#debugging-vhdl-programs" title="Permalink to this headline">¶</a></h3>
<span class="target" id="index-5"></span><p id="index-6">Debugging VHDL programs using <cite>GDB</cite> is possible only on GNU/Linux systems.</p>
<p><cite>GDB</cite> is a general purpose debugger for programs compiled by <cite>GCC</cite>.
Currently, there is no VHDL support for <cite>GDB</cite>. It may be difficult
to inspect variables or signals in <cite>GDB</cite>, however, <cite>GDB</cite> is
still able to display the stack frame in case of error or to set a breakpoint
at a specified line.</p>
<p><cite>GDB</cite> can be useful to precisely catch a runtime error, such as indexing
an array beyond its bounds. All error check subprograms call the
<cite>__ghdl_fatal</cite> procedure. Therefore, to catch runtime error, set
a breakpoint like this:</p>
<blockquote>
<div>(gdb) break __ghdl_fatal</div></blockquote>
<p>When the breakpoint is hit, use the <cite>where</cite> or <cite>bt</cite> command to
display the stack frames.</p>
</div>
</div>
<span id="document-GHDL_implementation_of_VHDL"></span><div class="section" id="ghdl-implementation-of-vhdl">
<h2>GHDL implementation of VHDL<a class="headerlink" href="#ghdl-implementation-of-vhdl" title="Permalink to this headline">¶</a></h2>
<p>This chapter describes several implementation defined aspect of VHDL in GHDL.</p>
<div class="section" id="vhdl-standards">
<span id="id1"></span><h3>VHDL standards<a class="headerlink" href="#vhdl-standards" title="Permalink to this headline">¶</a></h3>
<span class="target" id="index-0"></span><span class="target" id="index-1"></span><span class="target" id="index-2"></span><span class="target" id="index-3"></span><span class="target" id="index-4"></span><span class="target" id="index-5"></span><span class="target" id="index-6"></span><span class="target" id="index-7"></span><span class="target" id="index-8"></span><p id="index-9">This is very unfortunate, but there are many versions of the VHDL
language, and they aren’t backward compatible.</p>
<p>The VHDL language was first standardized in 1987 by IEEE as IEEE 1076-1987, and
is commonly referred as VHDL-87. This is certainly the most important version,
since most of the VHDL tools are still based on this standard.</p>
<p>Various problems of this first standard have been analyzed by experts groups
to give reasonable ways of interpreting the unclear portions of the standard.</p>
<p>VHDL was revised in 1993 by IEEE as IEEE 1076-1993. This revision is still
well-known.</p>
<p>Unfortunately, VHDL-93 is not fully compatible with VHDL-87, i.e. some perfectly
valid VHDL-87 programs are invalid VHDL-93 programs. Here are some of the
reasons:</p>
<ul class="simple">
<li>the syntax of file declaration has changed (this is the most visible source
of incompatibility),</li>
<li>new keywords were introduced (group, impure, inertial, literal,
postponed, pure, reject, rol, ror, shared, sla, sll, sra, srl,
unaffected, xnor),</li>
<li>some dynamic behaviours have changed (the concatenation is one of them),</li>
<li>rules have been added.</li>
</ul>
<p>Shared variables were replaced by protected types in the 2000 revision of
the VHDL standard. This modification is also known as 1076a. Note that this
standard is not fully backward compatible with VHDL-93, since the type of a
shared variable must now be a protected type (there was no such restriction
before).</p>
<p>Minors corrections were added by the 2002 revision of the VHDL standard. This
revision is not fully backward compatible with VHDL-00 since, for example,
the value of the <cite>‘instance_name</cite> attribute has slightly changed.</p>
<p>You can select the VHDL standard expected by GHDL with the
<code class="samp docutils literal"><span class="pre">--std=VER</span></code> option, where <code class="samp docutils literal"><span class="pre">VER</span></code> is one of the left column of the
table below:</p>
<dl class="docutils">
<dt>87</dt>
<dd>Select VHDL-87 standard as defined by IEEE 1076-1987. LRM bugs corrected by
later revisions are taken into account.</dd>
<dt>93</dt>
<dd>Select VHDL-93; VHDL-87 file declarations are not accepted.</dd>
<dt>93c</dt>
<dd><p class="first">Select VHDL-93 standard with relaxed rules:</p>
<ul class="last simple">
<li>VHDL-87 file declarations are accepted;</li>
<li>default binding indication rules of VHDL-02 are used. Default binding rules
are often used, but they are particularly obscure before VHDL-02.</li>
</ul>
</dd>
<dt>00</dt>
<dd>Select VHDL-2000 standard, which adds protected types.</dd>
<dt>02</dt>
<dd>Select VHDL-2002 standard</dd>
<dt>08</dt>
<dd>Select VHDL-2008 standard (partially implemented).</dd>
</dl>
<p>You cannot mix VHDL-87 and VHDL-93 units. A design hierarchy must have been
completely analyzed using either the 87 or the 93 version of the VHDL standard.</p>
</div>
<div class="section" id="psl-implementation">
<span id="id2"></span><h3>PSL implementation<a class="headerlink" href="#psl-implementation" title="Permalink to this headline">¶</a></h3>
<p>GHDL understands embedded PSL annotations in VHDL files, but not in
separate files.</p>
<p>As PSL annotations are embedded within comments, you must analyze and elaborate
your design with option <em>-fpsl</em> to enable PSL annotations.</p>
<p>A PSL assertion statement must appear within a comment that starts
with the <cite>psl</cite> keyword. The keyword must be followed (on the
same line) by a PSL keyword such as <cite>assert</cite> or <cite>default</cite>.
To continue a PSL statement on the next line, just start a new comment.</p>
<p>A PSL statement is considered as a process. So it is not allowed within
a process.</p>
<p>All PSL assertions must be clocked (GHDL doesn’t support unclocked assertion).
Furthermore only one clock per assertion is allowed.</p>
<p>You can either use a default clock like this:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="c1">-- psl default clock is rising_edge (CLK);</span>
<span class="c1">-- psl assert always</span>
<span class="c1">-- a -> eventually! b;</span>
</pre></div>
</div>
<p>or use a clocked expression (note the use of parenthesis):</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="c1">-- psl assert (always a -> next[3](b)) @rising_edge (clk);</span>
</pre></div>
</div>
<p>Of course only the simple subset of PSL is allowed.</p>
<p>Currently the built-in functions are not implemented.</p>
</div>
<div class="section" id="source-representation">
<h3>Source representation<a class="headerlink" href="#source-representation" title="Permalink to this headline">¶</a></h3>
<p>According to the VHDL standard, design units (i.e. entities,
architectures, packages, package bodies and configurations) may be
independently analyzed.</p>
<p>Several design units may be grouped into a design file.</p>
<p>In GHDL, a system file represents a design file. That is, a file compiled by
GHDL may contain one or more design units.</p>
<p>It is common to have several design units in a design file.</p>
<p>GHDL does not impose any restriction on the name of a design file
(except that the filename may not contain any control character or
spaces).</p>
<p>GHDL do not keep a binary representation of the design units analyzed like
other VHDL analyzers. The sources of the design units are re-read when
needed (for example, an entity is re-read when one of its architecture is
analyzed). Therefore, if you delete or modify a source file of a unit
analyzed, GHDL will refuse to use it.</p>
</div>
<div class="section" id="library-database">
<span id="id3"></span><h3>Library database<a class="headerlink" href="#library-database" title="Permalink to this headline">¶</a></h3>
<p>Each design unit analyzed is placed into a design library. By default,
the name of this design library is <code class="samp docutils literal"><span class="pre">work</span></code>; however, this can be
changed with the <code class="xref std std-option docutils literal"><span class="pre">--work=NAME</span></code> option of GHDL.</p>
<p>To keep the list of design units in a design library, GHDL creates
library files. The name of these files is <code class="file docutils literal"><span class="pre">NAME-objVER.cf</span></code>, where
<cite>NAME</cite> is the name of the library, and <cite>VER</cite> the VHDL version (87
or 93) used to analyze the design units.</p>
<p>You don’t have to know how to read a library file. You can display it
using the <em>-d</em> of <cite>ghdl</cite>. The file contains the name of the
design units, as well as the location and the dependencies.</p>
<p>The format may change with the next version of GHDL.</p>
</div>
<div class="section" id="top-entity">
<span id="id4"></span><h3>Top entity<a class="headerlink" href="#top-entity" title="Permalink to this headline">¶</a></h3>
<p>There are some restrictions on the entity being at the apex of a design
hierarchy:</p>
<ul class="simple">
<li>The generic must have a default value, and the value of a generic is its
default value;</li>
<li>The ports type must be constrained.</li>
</ul>
</div>
<div class="section" id="using-vendor-libraries">
<h3>Using vendor libraries<a class="headerlink" href="#using-vendor-libraries" title="Permalink to this headline">¶</a></h3>
<p>Many vendors libraries have been analyzed with GHDL. There are
usually no problems. Be sure to use the <code class="xref std std-option docutils literal"><span class="pre">--work=</span></code> option.
However, some problems have been encountered.</p>
<p>GHDL follows the VHDL LRM (the manual which defines VHDL) more
strictly than other VHDL tools. You could try to relax the
restrictions by using the <code class="xref std std-option docutils literal"><span class="pre">--std=93c</span></code>, <a class="reference internal" href="index.html#cmdoption-fexplicit"><code class="xref std std-option docutils literal"><span class="pre">-fexplicit</span></code></a>,
<a class="reference internal" href="index.html#cmdoption-frelaxed-rules"><code class="xref std std-option docutils literal"><span class="pre">-frelaxed-rules</span></code></a> and <code class="xref std std-option docutils literal"><span class="pre">--warn-no-vital-generic</span></code>.</p>
</div>
<div class="section" id="interfacing-to-other-languages">
<h3>Interfacing to other languages<a class="headerlink" href="#interfacing-to-other-languages" title="Permalink to this headline">¶</a></h3>
<span class="target" id="index-10"></span><span class="target" id="index-11"></span><span class="target" id="index-12"></span><span class="target" id="index-13"></span><p id="index-14">Interfacing with foreign languages is possible only on GNU/Linux systems.</p>
<p>You can define a subprogram in a foreign language (such as <cite>C</cite> or
<cite>Ada</cite>) and import it in a VHDL design.</p>
<div class="section" id="foreign-declarations">
<h4>Foreign declarations<a class="headerlink" href="#foreign-declarations" title="Permalink to this headline">¶</a></h4>
<p>Only subprograms (functions or procedures) can be imported, using the foreign
attribute. In this example, the <cite>sin</cite> function is imported:</p>
<div class="highlight-VHDL"><div class="highlight"><pre><span class="k">package</span> <span class="n">math</span> <span class="k">is</span>
<span class="k">function</span> <span class="n">sin</span> <span class="p">(</span><span class="n">v</span> <span class="o">:</span> <span class="n">real</span><span class="p">)</span> <span class="k">return</span> <span class="n">real</span><span class="p">;</span>
<span class="k">attribute</span> <span class="n">foreign</span> <span class="k">of</span> <span class="n">sin</span> <span class="o">:</span> <span class="k">function</span> <span class="k">is</span> <span class="s">"VHPIDIRECT sin"</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">math</span><span class="p">;</span>
<span class="k">package</span> <span class="k">body</span> <span class="n">math</span> <span class="k">is</span>
<span class="k">function</span> <span class="n">sin</span> <span class="p">(</span><span class="n">v</span> <span class="o">:</span> <span class="n">real</span><span class="p">)</span> <span class="k">return</span> <span class="n">real</span> <span class="k">is</span>
<span class="k">begin</span>
<span class="k">assert</span> <span class="n">false</span> <span class="k">severity</span> <span class="n">failure</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">sin</span><span class="p">;</span>
<span class="k">end</span> <span class="nc">math</span><span class="p">;</span>
</pre></div>
</div>
<p>A subprogram is made foreign if the <cite>foreign</cite> attribute decorates
it. This attribute is declared in the 1993 revision of the
<code class="samp docutils literal"><span class="pre">std.standard</span></code> package. Therefore, you cannot use this feature in
VHDL 1987.</p>
<p>The decoration is achieved through an attribute specification. The
attribute specification must be in the same declarative part as the
subprogram and must be after it. This is a general rule for specifications.
The value of the specification must be a locally static string.</p>
<p>Even when a subprogram is foreign, its body must be present. However, since
it won’t be called, you can made it empty or simply but an assertion.</p>
<p>The value of the attribute must start with <code class="samp docutils literal"><span class="pre">VHPIDIRECT</span></code> (an
upper-case keyword followed by one or more blanks). The linkage name of the
subprogram follows.</p>
</div>
<div class="section" id="restrictions-on-foreign-declarations">
<span id="id5"></span><h4>Restrictions on foreign declarations<a class="headerlink" href="#restrictions-on-foreign-declarations" title="Permalink to this headline">¶</a></h4>
<p>Any subprogram can be imported. GHDL puts no restrictions on foreign
subprograms. However, the representation of a type or of an interface in a
foreign language may be obscure. Most of non-composite types are easily imported:</p>
<dl class="docutils">
<dt><em>integer types</em></dt>
<dd>They are represented on a 32 bits word. This generally corresponds to
<cite>int</cite> for <cite>C</cite> or <cite>Integer</cite> for <cite>Ada</cite>.</dd>
<dt><em>physical types</em></dt>
<dd>They are represented on a 64 bits word. This generally corresponds to the
<cite>long long</cite> for <cite>C</cite> or <cite>Long_Long_Integer</cite> for <cite>Ada</cite>.</dd>
<dt><em>floating point types</em></dt>
<dd>They are represented on a 64 bits floating point word. This generally
corresponds to <cite>double</cite> for <cite>C</cite> or <cite>Long_Float</cite> for <cite>Ada</cite>.</dd>
<dt><em>enumeration types</em></dt>
<dd>They are represented on 8 bits or 32 bits word, if the number of literals is
greater than 256. There is no corresponding C types, since arguments are
not promoted.</dd>
</dl>
<p>Non-composite types are passed by value. For the <cite>in</cite> mode, this
corresponds to the <cite>C</cite> or <cite>Ada</cite> mechanism. The <cite>out</cite> and
<cite>inout</cite> interfaces of non-composite types are gathered in a record
and this record is passed by reference as the first argument to the
subprogram. As a consequence, you shouldn’t use <cite>in</cite> and
<cite>inout</cite> modes in foreign subprograms, since they are not portable.</p>
<p>Records are represented like a <cite>C</cite> structure and are passed by reference
to subprograms.</p>
<p>Arrays with static bounds are represented like a <cite>C</cite> array, whose
length is the number of elements, and are passed by reference to subprograms.</p>
<p>Unconstrained array are represented by a fat pointer. Do not use unconstrained
arrays in foreign subprograms.</p>
<p>Accesses to an unconstrained array is a fat pointer. Other accesses correspond to an address and are passed to a subprogram like other non-composite types.</p>
<p>Files are represented by a 32 bits word, which corresponds to an index
in a table.</p>
</div>
<div class="section" id="linking-with-foreign-object-files">
<span id="id6"></span><h4>Linking with foreign object files<a class="headerlink" href="#linking-with-foreign-object-files" title="Permalink to this headline">¶</a></h4>
<p>You may add additional files or options during the link using the
<em>-Wl,</em> of <cite>GHDL</cite>, as described in <a class="reference internal" href="index.html#elaboration-command"><span>Elaboration command</span></a>.
For example:</p>
<div class="highlight-python"><div class="highlight"><pre>ghdl -e -Wl,-lm math_tb
</pre></div>
</div>
<p>will create the <code class="file docutils literal"><span class="pre">math_tb</span></code> executable with the <code class="file docutils literal"><span class="pre">lm</span></code> (mathematical)
library.</p>
<p>Note the <code class="file docutils literal"><span class="pre">c</span></code> library is always linked with an executable.</p>
</div>
<div class="section" id="starting-a-simulation-from-a-foreign-program">
<span id="id7"></span><h4>Starting a simulation from a foreign program<a class="headerlink" href="#starting-a-simulation-from-a-foreign-program" title="Permalink to this headline">¶</a></h4>
<p>You may run your design from an external program. You just have to call
the <code class="samp docutils literal"><span class="pre">ghdl_main</span></code> function which can be defined:</p>
<p>in C:</p>
<div class="highlight-C"><div class="highlight"><pre><span class="k">extern</span> <span class="kt">int</span> <span class="nf">ghdl_main</span> <span class="p">(</span><span class="kt">int</span> <span class="n">argc</span><span class="p">,</span> <span class="kt">char</span> <span class="o">**</span><span class="n">argv</span><span class="p">);</span>
</pre></div>
</div>
<p>in Ada:</p>
<div class="highlight-Ada"><div class="highlight"><pre><span class="kn">with</span> <span class="nn">System</span><span class="p">;</span>
<span class="p">...</span>
<span class="kd">function</span> <span class="nf">Ghdl_Main</span> <span class="p">(</span><span class="nv">Argc</span> <span class="p">: </span><span class="nv">Integer</span><span class="p">;</span> <span class="nv">Argv</span> <span class="p">: </span><span class="nv">System</span><span class="p">.</span><span class="nv">Address</span><span class="p">)</span>
<span class="kr">return</span> <span class="kt">Integer</span><span class="p">;</span>
<span class="kr">pragma</span> <span class="cp">import</span> <span class="p">(</span><span class="n">C</span><span class="p">,</span> <span class="n">Ghdl_Main</span><span class="p">,</span> <span class="s">"ghdl_main"</span><span class="p">);</span>
</pre></div>
</div>
<p>This function must be called once, and returns 0 at the end of the simulation.
In case of failure, this function does not return. This has to be fixed.</p>
</div>
<div class="section" id="linking-with-ada">
<span id="id8"></span><h4>Linking with Ada<a class="headerlink" href="#linking-with-ada" title="Permalink to this headline">¶</a></h4>
<p>As explained previously in <a class="reference internal" href="#starting-a-simulation-from-a-foreign-program"><span>Starting a simulation from a foreign program</span></a>,
you can start a simulation from an <cite>Ada</cite> program. However the build
process is not trivial: you have to elaborate your <cite>Ada</cite> program and your
<cite>VHDL</cite> design.</p>
<p>First, you have to analyze all your design files. In this example, we
suppose there is only one design file, <code class="file docutils literal"><span class="pre">design.vhdl</span></code>.</p>
<div class="highlight-python"><div class="highlight"><pre>$ ghdl -a design.vhdl
</pre></div>
</div>
<p>Then, bind your design. In this example, we suppose the entity at the
design apex is <code class="samp docutils literal"><span class="pre">design</span></code>.</p>
<div class="highlight-python"><div class="highlight"><pre>$ ghdl --bind design
</pre></div>
</div>
<p>Finally, compile, bind your <cite>Ada</cite> program at link it with your <cite>VHDL</cite>
design:</p>
<div class="highlight-python"><div class="highlight"><pre>$ gnatmake my_prog -largs `ghdl --list-link design`
</pre></div>
</div>
</div>
<div class="section" id="using-grt-from-ada">
<h4>Using GRT from Ada<a class="headerlink" href="#using-grt-from-ada" title="Permalink to this headline">¶</a></h4>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">This topic is only for advanced users knowing how to use <cite>Ada</cite>
and <cite>GNAT</cite>. This is provided only for reference, I have tested
this once before releasing <cite>GHDL</cite> 0.19 but this is not checked at
each release.</p>
</div>
<p>The simulator kernel of <cite>GHDL</cite> named <em class="dfn">GRT</em> is written in
<cite>Ada95</cite> and contains a very light and slightly adapted version
of <cite>VHPI</cite>. Since it is an <cite>Ada</cite> implementation it is
called <em class="dfn">AVHPI</em>. Although being tough, you may interface to <cite>AVHPI</cite>.</p>
<p>For using <cite>AVHPI</cite>, you need the sources of <cite>GHDL</cite> and to recompile
them (at least the <cite>GRT</cite> library). This library is usually compiled with
a <cite>No_Run_Time</cite> pragma, so that the user does not need to install the
<cite>GNAT</cite> runtime library. However, you certainly want to use the usual
runtime library and want to avoid this pragma. For this, reset the
<cite>GRT_PRAGMA_FLAG</cite> variable.</p>
<div class="highlight-python"><div class="highlight"><pre>$ make GRT_PRAGMA_FLAG= grt-all
</pre></div>
</div>
<p>Since <cite>GRT</cite> is a self-contained library, you don’t want
<cite>gnatlink</cite> to fetch individual object files (furthermore this
doesn’t always work due to tricks used in <cite>GRT</cite>). For this,
remove all the object files and make the <code class="file docutils literal"><span class="pre">.ali</span></code> files read-only.</p>
<div class="highlight-python"><div class="highlight"><pre>$ rm *.o
$ chmod -w *.ali
</pre></div>
</div>
<p>You may then install the sources files and the <code class="file docutils literal"><span class="pre">.ali</span></code> files. I have never
tested this step.</p>
<p>You are now ready to use it.</p>
<p>For example, here is an example, <code class="file docutils literal"><span class="pre">test_grt.adb</span></code> which displays the top
level design name.</p>
<div class="highlight-Ada"><div class="highlight"><pre><span class="kn">with</span> <span class="nn">System</span><span class="p">;</span> <span class="kn">use</span> <span class="nn">System</span><span class="p">;</span>
<span class="kn">with</span> <span class="nn">Grt.Avhpi</span><span class="p">;</span> <span class="kn">use</span> <span class="nn">Grt.Avhpi</span><span class="p">;</span>
<span class="kn">with</span> <span class="nn">Ada.Text_IO</span><span class="p">;</span> <span class="kn">use</span> <span class="nn">Ada.Text_IO</span><span class="p">;</span>
<span class="kn">with</span> <span class="nn">Ghdl_Main</span><span class="p">;</span>
<span class="kd">procedure</span> <span class="nf">Test_Grt</span> <span class="kr">is</span>
<span class="c1">-- VHPI handle.</span>
<span class="n">H</span> <span class="p">:</span> <span class="n">VhpiHandleT</span><span class="p">;</span>
<span class="n">Status</span> <span class="p">:</span> <span class="kt">Integer</span><span class="p">;</span>
<span class="c1">-- Name.</span>
<span class="n">Name</span> <span class="p">:</span> <span class="kt">String</span> <span class="p">(</span><span class="mi">1</span> <span class="p">..</span> <span class="mi">64</span><span class="p">);</span>
<span class="n">Name_Len</span> <span class="p">:</span> <span class="kt">Integer</span><span class="p">;</span>
<span class="kr">begin</span>
<span class="c1">-- Elaborate and run the design.</span>
<span class="n">Status</span> <span class="p">:=</span> <span class="n">Ghdl_Main</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">Null_Address</span><span class="p">);</span>
<span class="c1">-- Display the status of the simulation.</span>
<span class="n">Put_Line</span> <span class="p">(</span><span class="s">"Status is "</span> <span class="o">&</span> <span class="kt">Integer</span><span class="p">'</span><span class="na">Image</span> <span class="p">(</span><span class="n">Status</span><span class="p">));</span>
<span class="c1">-- Get the root instance.</span>
<span class="n">Get_Root_Inst</span><span class="p">(</span><span class="n">H</span><span class="p">);</span>
<span class="c1">-- Disp its name using vhpi API.</span>
<span class="n">Vhpi_Get_Str</span> <span class="p">(</span><span class="n">VhpiNameP</span><span class="p">,</span> <span class="n">H</span><span class="p">,</span> <span class="n">Name</span><span class="p">,</span> <span class="n">Name_Len</span><span class="p">);</span>
<span class="n">Put_Line</span> <span class="p">(</span><span class="s">"Root instance name: "</span> <span class="o">&</span> <span class="n">Name</span> <span class="p">(</span><span class="mi">1</span> <span class="p">..</span> <span class="n">Name_Len</span><span class="p">));</span>
<span class="kr">end</span> <span class="nf">Test_Grt</span><span class="p">;</span>
</pre></div>
</div>
<p>First, analyze and bind your design:</p>
<div class="highlight-python"><div class="highlight"><pre>$ ghdl -a counter.vhdl
$ ghdl --bind counter
</pre></div>
</div>
<p>Then build the whole:</p>
<div class="highlight-python"><div class="highlight"><pre>$ gnatmake test_grt -aL`grt_ali_path` -aI`grt_src_path` -largs
`ghdl --list-link counter`
</pre></div>
</div>
<p>Finally, run your design:</p>
<div class="highlight-python"><div class="highlight"><pre>$ ./test_grt
Status is 0
Root instance name: counter
</pre></div>
</div>
</div>
</div>
</div>
<span id="document-GHDL_implementation_of_VITAL"></span><div class="section" id="ghdl-implementation-of-vital">
<h2>GHDL implementation of VITAL<a class="headerlink" href="#ghdl-implementation-of-vital" title="Permalink to this headline">¶</a></h2>
<span class="target" id="index-0"></span><span class="target" id="index-1"></span><p id="index-2">This chapter describes how VITAL is implemented in GHDL. Support of VITAL is
really in a preliminary stage. Do not expect too much of it as now.</p>
<div class="section" id="vital-packages">
<span id="id1"></span><h3>VITAL packages<a class="headerlink" href="#vital-packages" title="Permalink to this headline">¶</a></h3>
<p>The VITAL standard or IEEE 1076.4 was first published in 1995, and revised in
2000.</p>
<p>The version of the VITAL packages depends on the VHDL standard. VITAL
1995 packages are used with the VHDL 1987 standard, while VITAL 2000
packages are used with other standards. This choice is based on the
requirements of VITAL: VITAL 1995 requires the models follow the VHDL
1987 standard, while VITAL 2000 requires the models follow VHDL 1993.</p>
<p>The VITAL 2000 packages were slightly modified so that they conform to
the VHDL 1993 standard (a few functions are made pure and a few one
impure).</p>
</div>
<div class="section" id="vhdl-restrictions-for-vital">
<span id="id2"></span><h3>VHDL restrictions for VITAL<a class="headerlink" href="#vhdl-restrictions-for-vital" title="Permalink to this headline">¶</a></h3>
<p>The VITAL standard (partially) implemented is the IEEE 1076.4 standard
published in 1995.</p>
<p>This standard defines restriction of the VHDL language usage on VITAL
model. A <em class="dfn">VITAL model</em> is a design unit (entity or architecture)
decorated by the <cite>VITAL_Level0</cite> or <cite>VITAL_Level1</cite> attribute.
These attributes are defined in the <cite>ieee.VITAL_Timing</cite> package.</p>
<p>Currently, only VITAL level 0 checks are implemented. VITAL level 1 models
can be analyzed, but GHDL doesn’t check they comply with the VITAL standard.</p>
<p>Moreover, GHDL doesn’t check (yet) that timing generics are not read inside
a VITAL level 0 model prior the VITAL annotation.</p>
<p>The analysis of a non-conformant VITAL model fails. You can disable the
checks of VITAL restrictions with the <em>–no-vital-checks</em>. Even when
restrictions are not checked, SDF annotation can be performed.</p>
</div>
<div class="section" id="backannotation">
<span id="id3"></span><h3>Backannotation<a class="headerlink" href="#backannotation" title="Permalink to this headline">¶</a></h3>
<p id="index-3"><em class="dfn">Backannotation</em> is the process of setting VITAL generics with timing
information provided by an external files.</p>
<p>The external files must be SDF (Standard Delay Format) files. GHDL
supports a tiny subset of SDF version 2.1, other version number can be
used, provided no features added by the next version are used.</p>
<p>Hierarchical instance names are not supported. However you can use a list of
instances. If there is no instance, the top entity will be annotated and
the celltype must be the name of the top entity. If there is at least one
instance, the last instance name must be a component instantiation label, and
the celltype must be the name of the component declaration instantiated.</p>
<p>Instances being annotated are not required to be VITAL compliant. However
generics being annotated must follow rules of VITAL (e.g., type must be a
suitable vital delay type).</p>
<p>Currently, only timing constraints applying on a timing generic of type
<cite>VitalDelayType01</cite> has been implemented. This SDF annotator is
just a proof of concept. Features will be added with the following GHDL
release.</p>
</div>
<div class="section" id="negative-constraint-calculation">
<h3>Negative constraint calculation<a class="headerlink" href="#negative-constraint-calculation" title="Permalink to this headline">¶</a></h3>
<p>Negative constraint delay adjustment are necessary to handle negative
constraint such as a negative setup time. This step is defined in the VITAL
standard and should occur after backannotation.</p>
<p>GHDL does not do negative constraint calculation. It fails to handle models
with negative constraint. I hope to be able to add this phase soon.</p>
</div>
</div>
<span id="document-Flaws_and_bugs_report"></span><div class="section" id="flaws-and-bugs-report">
<h2>Flaws and bugs report<a class="headerlink" href="#flaws-and-bugs-report" title="Permalink to this headline">¶</a></h2>
<p>Despite all the testing and already reported issues, you can find bugs
or propose enhancements.</p>
<blockquote>
<div></div></blockquote>
<div class="section" id="reporting-bugs">
<span id="id1"></span><h3>Reporting bugs<a class="headerlink" href="#reporting-bugs" title="Permalink to this headline">¶</a></h3>
<p>In order to improve GHDL, we welcome bugs report and suggestions for
any aspect of GHDL. Please create an issue on
<a class="reference external" href="https://github.com/tgingold/ghdl/issues">https://github.com/tgingold/ghdl/issues</a></p>
<p>If the compiler crashes, this is a bug. Reliable tools never crash.</p>
<p>If your compiled VHDL executable crashes, this may be a bug at
runtime or the code produced may be wrong. However, since VHDL
has a notion of pointers, an erroneous VHDL program (using invalid
pointers for example) may crash.</p>
<p>If the compiler emits an error message for a perfectly valid input or
does not emit an error message for an invalid input, this may be a bug.
Please send the input file and what you expected. If you know the LRM
well enough, please specify the paragraph which has not been well
implemented. If you don’t know the LRM, maybe your bug report will be
rejected simply because there is no bug. In the latter case, it may be
difficult to discuss the issue; and comparisons with other VHDL tools
is not a very strong argument.</p>
<p>If a compiler message is not clear enough for you, please tell me. The
error messages can be improved, but I have not enough experience with
them.</p>
<p>If you have found a mistake in the manual, please send a comment. If
you have not understood some parts of this manual, please tell me.
English is not my mother tongue, so this manual may not be well-written.
Again, rewriting part of it is a good way to improve it.</p>
<p>If you send a <cite>VHDL</cite> file producing a bug, it is a good idea to try
to make it as short as possible. It is also a good idea to make it
looking like a test: write a comment which explains whether the file
should compile, and if yes, whether or not it should run successfully.
In the latter case, an assert statement should finish the test; the
severity level note indicates success, while a severity level failure
indicates failure.</p>
<p>For bug reports, please include enough information for the maintainers to
reproduce the problem. This includes:</p>
<ul class="simple">
<li>the version of <cite>GHDL</cite> (you can get it with <code class="samp docutils literal"><span class="pre">ghdl</span> <span class="pre">--version</span></code>).</li>
<li>the operating system</li>
<li>whether you have built <cite>GHDL</cite> from sources or used the binary
distribution.</li>
<li>the content of the input files</li>
<li>a description of the problem and samples of any erroneous input</li>
<li>anything else that you think would be helpful.</li>
</ul>
</div>
<div class="section" id="future-improvements">
<h3>Future improvements<a class="headerlink" href="#future-improvements" title="Permalink to this headline">¶</a></h3>
<p>I have several axes for <cite>GHDL</cite> improvements:</p>
<ul class="simple">
<li>Documentation.</li>
<li>Better diagnostics messages (warning and error).</li>
<li>Full support of VHDL-2008.</li>
<li>Optimization (simulation speed).</li>
<li>Graphical tools (to see waves and to debug)</li>
<li>Style checks</li>
<li>VITAL acceleration</li>
</ul>
</div>
</div>
<span id="document-Copyrights"></span><div class="section" id="copyrights">
<h2>Copyrights<a class="headerlink" href="#copyrights" title="Permalink to this headline">¶</a></h2>
<p>The GHDL front-end, the <code class="samp docutils literal"><span class="pre">std.textio</span></code> package and the runtime
library (<code class="samp docutils literal"><span class="pre">grt</span></code>) are copyrighted Tristan Gingold, come with <strong>absolutely
no warranty</strong>, and are distributed under the conditions of the General
Public License.</p>
<p>The <code class="samp docutils literal"><span class="pre">ieee.numeric_bit</span></code> and <code class="samp docutils literal"><span class="pre">ieee.numeric_std</span></code> packages are
copyrighted by the IEEE. The source files may be distributed without
change, except as permitted by the standard.</p>
<p>This source file may not be
sold or distributed for profit. See the source file and the IEEE 1076.3
standard for more information.</p>
<p>The <code class="samp docutils literal"><span class="pre">ieee.std_logic_1164</span></code>, <code class="samp docutils literal"><span class="pre">ieee.Math_Real</span></code> and
<code class="samp docutils literal"><span class="pre">ieee.Math_Complex</span></code> packages are copyrighted by the IEEE. See
source files for more information.</p>
<p>The <code class="samp docutils literal"><span class="pre">ieee.VITAL_Primitives</span></code>, <code class="samp docutils literal"><span class="pre">ieee.VITAL_Timing</span></code> and
<code class="samp docutils literal"><span class="pre">ieee.VITAL_Memory</span></code> packages are copyrighted by IEEE. See source
file and the IEEE 1076.4 standards for more information.</p>
<p>The packages <code class="samp docutils literal"><span class="pre">std_logic_arith</span></code>,
<code class="samp docutils literal"><span class="pre">std_logic_signed</span></code>, <code class="samp docutils literal"><span class="pre">std_logic_unsigned</span></code> and
<code class="samp docutils literal"><span class="pre">std_logic_textio</span></code> contained in the <code class="samp docutils literal"><span class="pre">synopsys</span></code> directory are
copyrighted by Synopsys, Inc. The source files may be used and
distributed without restriction provided that the copyright statements
are not removed from the files and that any derivative work contains the
copyright notice. See the source files for more information.</p>
<p>The package <code class="samp docutils literal"><span class="pre">std_logic_arith</span></code> contained in the <code class="samp docutils literal"><span class="pre">mentor</span></code>
directory is copyrighted by Mentor Graphics. The source files may be
distributed in whole without restriction provided that the copyright
statement is not removed from the file and that any derivative work
contains this copyright notice. See the source files for more information.</p>
<p>As a consequence of the runtime copyright, you may not be allowed to
distribute an executable produced by <cite>GHDL</cite> without the VHDL
sources. To my mind, this is not a real restriction, since there is no
points in distributing VHDL executable. Please, send a comment
(<a class="reference internal" href="index.html#reporting-bugs"><span>Reporting bugs</span></a>) if you don’t like this policy.</p>
</div>
</div>
</div>
<div class="section" id="indices-and-tables">
<h1>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this headline">¶</a></h1>
<ul class="simple">
<li><a class="reference internal" href="genindex.html"><span>Index</span></a></li>
<li><a class="reference internal" href="search.html"><span>Search Page</span></a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html#document-index">Table Of Contents</a></h3>
<ul>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-Introduction">Introduction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#content-of-this-manual">Content of this manual</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#what-is-vhdl">What is <cite>VHDL</cite>?</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#what-is-ghdl">What is <cite>GHDL</cite>?</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-Starting_with_GHDL">Starting with GHDL</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#the-hello-world-program">The hello world program</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#a-full-adder">A full adder</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#starting-with-a-design">Starting with a design</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-Invoking_GHDL">Invoking GHDL</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#building-commands">Building commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#ghdl-options">GHDL options</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#passing-options-to-other-programs">Passing options to other programs</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#ghdl-warnings">GHDL warnings</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#rebuilding-commands">Rebuilding commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#library-commands">Library commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#cross-reference-command">Cross-reference command</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#file-commands">File commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#misc-commands">Misc commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#installation-directory">Installation Directory</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#ieee-library-pitfalls">IEEE library pitfalls</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#ieee-math-packages">IEEE math packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-Simulation_and_runtime">Simulation and runtime</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#simulation-options">Simulation options</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#debugging-vhdl-programs">Debugging VHDL programs</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-GHDL_implementation_of_VHDL">GHDL implementation of VHDL</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#vhdl-standards">VHDL standards</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#psl-implementation">PSL implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#source-representation">Source representation</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#library-database">Library database</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#top-entity">Top entity</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#using-vendor-libraries">Using vendor libraries</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#interfacing-to-other-languages">Interfacing to other languages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-GHDL_implementation_of_VITAL">GHDL implementation of VITAL</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#vital-packages">VITAL packages</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#vhdl-restrictions-for-vital">VHDL restrictions for VITAL</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#backannotation">Backannotation</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#negative-constraint-calculation">Negative constraint calculation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-Flaws_and_bugs_report">Flaws and bugs report</a><ul>
<li class="toctree-l2"><a class="reference internal" href="index.html#reporting-bugs">Reporting bugs</a></li>
<li class="toctree-l2"><a class="reference internal" href="index.html#future-improvements">Future improvements</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="index.html#document-Copyrights">Copyrights</a></li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="index.html#document-index">Documentation overview</a><ul>
</ul></li>
</ul>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
©2015, Tristan Gingold.
|
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.3.1</a>
& <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.6</a>
</div>
</body>
</html>
|