aboutsummaryrefslogtreecommitdiffstats
path: root/python/libghdl/thin/vhdl/sem_lib.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/libghdl/thin/vhdl/sem_lib.py')
0 files changed, 0 insertions, 0 deletions
' href='#n64'>64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
--  Operations synthesis.
--  Copyright (C) 2019 Tristan Gingold
--
--  This file is part of GHDL.
--
--  This program is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  This program is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with this program; if not, write to the Free Software
--  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
--  MA 02110-1301, USA.

with Types; use Types;
with Types_Utils; use Types_Utils;

with Grt.Types; use Grt.Types;

with Vhdl.Utils; use Vhdl.Utils;
with Vhdl.Ieee.Std_Logic_1164; use Vhdl.Ieee.Std_Logic_1164;

with Netlists; use Netlists;

with Synth.Errors; use Synth.Errors;
with Synth.Source; use Synth.Source;
with Synth.Expr; use Synth.Expr;
with Synth.Oper;
with Synth.Ieee.Std_Logic_1164; use Synth.Ieee.Std_Logic_1164;
with Synth.Ieee.Numeric_Std; use Synth.Ieee.Numeric_Std;
with Synth.Files_Operations;
with Synth.Values; use Synth.Values;

package body Synth.Static_Oper is
   --  As log2(3m) is directly referenced, the program must be linked with -lm
   --  (math library) on unix systems.
   pragma Linker_Options ("-lm");

   function Read_Std_Logic (M : Memory_Ptr; Off : Uns32) return Std_Ulogic is
   begin
      return Std_Ulogic'Val (Read_U8 (M + Size_Type (Off)));
   end Read_Std_Logic;

   procedure Write_Std_Logic (M : Memory_Ptr; Off : Uns32; Val : Std_Ulogic) is
   begin
      Write_U8 (M + Size_Type (Off), Std_Ulogic'Pos (Val));
   end Write_Std_Logic;

   procedure Warn_Compare_Null (Loc : Node) is
   begin
      Warning_Msg_Synth (+Loc, "null argument detected, returning false");
   end Warn_Compare_Null;

   procedure Warn_Compare_Meta (Loc : Node) is
   begin
      Warning_Msg_Synth (+Loc, "metavalue detected, returning false");
   end Warn_Compare_Meta;

   function Synth_Compare_Uns_Uns
     (Left, Right : Memtyp; Err : Order_Type; Loc : Node) return Order_Type
   is
      Lw : constant Uns32 := Left.Typ.W;
      Rw : constant Uns32 := Right.Typ.W;
      Len : constant Uns32 := Uns32'Min (Left.Typ.W, Right.Typ.W);
      L, R : Std_Ulogic;
   begin
      if Len = 0 then
         Warn_Compare_Null (Loc);
         return Err;
      end if;

      if Lw > Rw then
         for I in 0 .. Lw - Rw - 1 loop
            case To_X01 (Read_Std_Logic (Left.Mem, I)) is
               when '0' =>
                  null;
               when '1' =>
                  return Greater;
               when 'X' =>
                  Warn_Compare_Meta (Loc);
                  return Err;
            end case;
         end loop;
      elsif Lw < Rw then
         for I in 0 .. Rw - Lw - 1 loop
            case To_X01 (Read_Std_Logic (Right.Mem, I)) is
               when '0' =>
                  null;
               when '1' =>
                  return Less;
               when 'X' =>
                  Warn_Compare_Meta (Loc);
                  return Err;
            end case;
         end loop;
      end if;

      for I in 0 .. Len - 1 loop
         L := To_X01 (Read_Std_Logic (Left.Mem, Lw - Len + I));
         R := To_X01 (Read_Std_Logic (Right.Mem, Rw - Len + I));
         if L = 'X' or R = 'X' then
            Warn_Compare_Meta (Loc);
            return Err;
         elsif L = '1' and R = '0' then
            return Greater;
         elsif L = '0' and R = '1' then
            return Less;
         end if;
      end loop;
      return Equal;
   end Synth_Compare_Uns_Uns;

   function Synth_Compare_Uns_Nat
     (Left, Right : Memtyp; Err : Order_Type; Loc : Node) return Order_Type
   is
      Lw : constant Uns32 := Left.Typ.W;
      Rval : constant Uns64 := To_Uns64 (Read_Discrete (Right));
      L : Std_Ulogic;
      Cnt : Uns32;
   begin
      if Lw = 0 then
         Warn_Compare_Null (Loc);
         return Err;
      end if;

      if Lw > 64 then
         for I in 0 .. Lw - 64 - 1 loop
            case To_X01 (Read_Std_Logic (Left.Mem, I)) is
               when '0' =>
                  null;
               when '1' =>
                  return Greater;
               when 'X' =>
                  Warn_Compare_Meta (Loc);
                  return Err;
            end case;
         end loop;
         Cnt := 64;
      elsif Lw < 64 then
         if Shift_Right (Rval, Natural (Lw)) /= 0 then
            return Less;
         end if;
         Cnt := Lw;
      else
         Cnt := 64;
      end if;

      for I in reverse 0 .. Cnt - 1 loop
         L := To_X01 (Read_Std_Logic (Left.Mem, Lw - I - 1));
         if L = 'X' then
            Warn_Compare_Meta (Loc);
            return Err;
         end if;
         if (Shift_Right (Rval, Natural (I)) and 1) = 1 then
            if L = '0' then
               return Less;
            end if;
         else
            if L = '1' then
               return Greater;
            end if;
         end if;
      end loop;
      return Equal;
   end Synth_Compare_Uns_Nat;

   function Synth_Compare_Nat_Uns
     (Left, Right : Memtyp; Err : Order_Type; Loc : Node) return Order_Type
   is
      Rw : constant Uns32 := Right.Typ.W;
      Lval : constant Uns64 := To_Uns64 (Read_Discrete (Left));
      R : Std_Ulogic;
      Cnt : Uns32;
   begin
      if Rw = 0 then
         Warn_Compare_Null (Loc);
         return Err;
      end if;

      if Rw > 64 then
         for I in 0 .. Rw - 64 - 1 loop
            case To_X01 (Read_Std_Logic (Right.Mem, I)) is
               when '0' =>
                  null;
               when '1' =>
                  return Less;
               when 'X' =>
                  Warn_Compare_Meta (Loc);
                  return Err;
            end case;
         end loop;
         Cnt := 64;
      elsif Rw < 64 then
         if Shift_Right (Lval, Natural (Rw)) /= 0 then
            return Greater;
         end if;
         Cnt := Rw;
      else
         Cnt := 64;
      end if;

      for I in reverse 0 .. Cnt - 1 loop
         R := To_X01 (Read_Std_Logic (Right.Mem, Rw - I - 1));
         if R = 'X' then
            Warn_Compare_Meta (Loc);
            return Err;
         end if;
         if (Shift_Right (Lval, Natural (I)) and 1) = 1 then
            if R = '0' then
               return Greater;
            end if;
         else
            if R = '1' then
               return Less;
            end if;
         end if;
      end loop;
      return Equal;
   end Synth_Compare_Nat_Uns;

   function Create_Res_Bound (Prev : Type_Acc) return Type_Acc is
   begin
      if Prev.Vbound.Dir = Dir_Downto
        and then Prev.Vbound.Right = 0
      then
         --  Normalized range
         return Prev;
      end if;

      return Create_Vec_Type_By_Length (Prev.W, Prev.Vec_El);
   end Create_Res_Bound;

   function Synth_Vector_Dyadic (Left, Right : Memtyp;
                                 Op : Table_2d;
                                 Loc : Syn_Src) return Memtyp
   is
      Res : Memtyp;
   begin
      if Left.Typ.W /= Right.Typ.W then
         Error_Msg_Synth (+Loc, "length of operands mismatch");
         return Null_Memtyp;
      end if;

      Res := Create_Memory (Create_Res_Bound (Left.Typ));
      for I in 1 .. Uns32 (Vec_Length (Res.Typ)) loop
         declare
            Ls : constant Std_Ulogic := Read_Std_Logic (Left.Mem, I - 1);
            Rs : constant Std_Ulogic := Read_Std_Logic (Right.Mem, I - 1);
            V : constant Std_Ulogic := Op (Ls, Rs);
         begin
            Write_Std_Logic (Res.Mem, I - 1, V);
         end;
      end loop;

      return Res;
   end Synth_Vector_Dyadic;

   procedure To_Std_Logic_Vector (Val : Memtyp; Arr : out Std_Logic_Vector) is
   begin
      for I in 1 .. Uns32 (Vec_Length (Val.Typ)) loop
         Arr (Natural (I)) := Read_Std_Logic (Val.Mem, I - 1);
      end loop;
   end To_Std_Logic_Vector;

   function To_Memtyp (Vec : Std_Logic_Vector; El_Typ : Type_Acc) return Memtyp
   is
      pragma Assert (Vec'First = 1);
      Res_Typ : Type_Acc;
      Res : Memtyp;
   begin
      Res_Typ := Create_Vec_Type_By_Length (Uns32 (Vec'Last), El_Typ);
      Res := Create_Memory (Res_Typ);
      for I in 1 .. Vec'Last loop
         Write_Std_Logic (Res.Mem, Uns32 (I - 1), Vec (I));
      end loop;
      return Res;
   end To_Memtyp;

   function Synth_Add_Uns_Uns (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (R.Typ)));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Add_Uns_Uns (L_Arr, R_Arr);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Add_Uns_Uns;

   function Synth_Add_Sgn_Int (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Val : constant Int64 := Read_Discrete (R);
   begin
      To_Std_Logic_Vector (L, L_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Add_Sgn_Int (L_Arr, R_Val);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Add_Sgn_Int;

   function Synth_Add_Uns_Nat (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (L.Typ.W));
      R_Val : constant Uns64 := Uns64 (Read_Discrete (R));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Add_Uns_Nat (L_Arr, R_Val);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Add_Uns_Nat;

   function Synth_Sub_Uns_Uns (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (R.Typ)));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Sub_Uns_Uns (L_Arr, R_Arr);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Sub_Uns_Uns;

   function Synth_Sub_Uns_Nat (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Val : constant Uns64 := Uns64 (Read_Discrete (R));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Sub_Uns_Nat (L_Arr, R_Val);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Sub_Uns_Nat;

   function Synth_Mul_Uns_Uns (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (R.Typ)));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Mul_Uns_Uns (L_Arr, R_Arr);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Mul_Uns_Uns;

   function Synth_Mul_Nat_Uns (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      R_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (R.Typ)));
      L_Val : constant Uns64 := Uns64 (Read_Discrete (L));
   begin
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Mul_Nat_Uns (L_Val, R_Arr);
      begin
         return To_Memtyp (Res_Arr, R.Typ.Vec_El);
      end;
   end Synth_Mul_Nat_Uns;

   function Synth_Mul_Uns_Nat (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Val : constant Uns64 := Uns64 (Read_Discrete (R));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Mul_Uns_Nat (L_Arr, R_Val);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Mul_Uns_Nat;

   function Synth_Mul_Sgn_Sgn (L, R : Memtyp; Loc : Syn_Src) return Memtyp
   is
      pragma Unreferenced (Loc);
      L_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (L.Typ)));
      R_Arr : Std_Logic_Vector (1 .. Natural (Vec_Length (R.Typ)));
   begin
      To_Std_Logic_Vector (L, L_Arr);
      To_Std_Logic_Vector (R, R_Arr);
      declare
         Res_Arr : constant Std_Logic_Vector := Mul_Sgn_Sgn (L_Arr, R_Arr);
      begin
         return To_Memtyp (Res_Arr, L.Typ.Vec_El);
      end;
   end Synth_Mul_Sgn_Sgn;

   function Synth_Shift (Val : Memtyp;
                         Amt : Uns32;
                         Right : Boolean;
                         Arith : Boolean) return Memtyp
   is
      Len : constant Uns32 := Uns32 (Vec_Length (Val.Typ));
      Arr : Std_Logic_Vector (1 .. Natural (Len));
      Pad : Std_Ulogic;
   begin
      if Len = 0 or Amt >= Len then
         Arr := (others => '0');
      else
         To_Std_Logic_Vector (Val, Arr);
         if Arith then
            Pad := Arr (1);
         else
            Pad := '0';
         end if;

         if Right then
            for I in reverse Amt + 1 .. Len loop
               Arr (Natural (I)) := Arr (Natural (I - Amt));
            end loop;
            for I in 1 .. Amt loop
               Arr (Natural (I)) := Pad;
            end loop;
         else
            for I in 1 .. Len - Amt loop
               Arr (Natural (I)) := Arr (Natural (I + Amt));
            end loop;
            for I in Len - Amt + 1 .. Len loop
               Arr (Natural (I)) := Pad;
            end loop;
         end if;
      end if;
      return To_Memtyp (Arr, Val.Typ.Vec_El);
   end Synth_Shift;

   function Get_Static_Ulogic (Op : Memtyp) return Std_Ulogic is
   begin
      pragma Assert (Op.Typ.Kind = Type_Logic);
      return Std_Ulogic'Val (Read_U8 (Op.Mem));
   end Get_Static_Ulogic;

   function Synth_Static_Dyadic_Predefined (Syn_Inst : Synth_Instance_Acc;
                                            Imp : Node;
                                            Left : Memtyp;
                                            Right : Memtyp;
                                            Expr : Node) return Memtyp
   is
      Def : constant Iir_Predefined_Functions :=
        Get_Implicit_Definition (Imp);
      Res_Typ : constant Type_Acc :=
        Get_Subtype_Object (Syn_Inst, Get_Type (Expr));
   begin
      case Def is
         when Iir_Predefined_Error =>
            return Null_Memtyp;

         when Iir_Predefined_Boolean_Xor =>
            return Create_Memory_U8
              (Boolean'Pos (Boolean'Val (Read_Discrete (Left))
                              xor Boolean'Val (Read_Discrete (Right))),
               Res_Typ);

         when Iir_Predefined_Enum_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) = Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Enum_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) /= Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Plus
           | Iir_Predefined_Physical_Plus =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) + Read_Discrete (Right), Res_Typ);
         when Iir_Predefined_Integer_Minus
           | Iir_Predefined_Physical_Minus =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) - Read_Discrete (Right), Res_Typ);
         when Iir_Predefined_Integer_Mul
           | Iir_Predefined_Physical_Integer_Mul
           | Iir_Predefined_Integer_Physical_Mul =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) * Read_Discrete (Right), Res_Typ);
         when Iir_Predefined_Integer_Div
           | Iir_Predefined_Physical_Physical_Div
           | Iir_Predefined_Physical_Integer_Div =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) / Read_Discrete (Right), Res_Typ);
         when Iir_Predefined_Integer_Mod =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) mod Read_Discrete (Right), Res_Typ);
         when Iir_Predefined_Integer_Rem =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) rem Read_Discrete (Right), Res_Typ);
         when Iir_Predefined_Integer_Exp =>
            return Create_Memory_Discrete
              (Read_Discrete (Left) ** Natural (Read_Discrete (Right)),
               Res_Typ);
         when Iir_Predefined_Physical_Minimum
           | Iir_Predefined_Integer_Minimum =>
            return Create_Memory_Discrete
              (Int64'Min (Read_Discrete (Left), Read_Discrete (Right)),
               Res_Typ);
         when Iir_Predefined_Physical_Maximum
           | Iir_Predefined_Integer_Maximum =>
            return Create_Memory_Discrete
              (Int64'Max (Read_Discrete (Left), Read_Discrete (Right)),
               Res_Typ);
         when Iir_Predefined_Integer_Less_Equal
           | Iir_Predefined_Physical_Less_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) <= Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Less
           | Iir_Predefined_Physical_Less =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) < Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Greater_Equal
           | Iir_Predefined_Physical_Greater_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) >= Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Greater
           | Iir_Predefined_Physical_Greater =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) > Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Equality
           | Iir_Predefined_Physical_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) = Read_Discrete (Right)),
               Boolean_Type);
         when Iir_Predefined_Integer_Inequality
           | Iir_Predefined_Physical_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Discrete (Left) /= Read_Discrete (Right)),
               Boolean_Type);

         when Iir_Predefined_Physical_Real_Mul =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) * Read_Fp64 (Right)),
               Res_Typ);
         when Iir_Predefined_Real_Physical_Mul =>
            return Create_Memory_Discrete
              (Int64 (Read_Fp64 (Left) * Fp64 (Read_Discrete (Right))),
               Res_Typ);
         when Iir_Predefined_Physical_Real_Div =>
            return Create_Memory_Discrete
              (Int64 (Fp64 (Read_Discrete (Left)) / Read_Fp64 (Right)),
               Res_Typ);

         when Iir_Predefined_Floating_Less =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) < Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Less_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) <= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) = Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) /= Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) > Read_Fp64 (Right)),
               Boolean_Type);
         when Iir_Predefined_Floating_Greater_Equal =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Fp64 (Left) >= Read_Fp64 (Right)),
               Boolean_Type);

         when Iir_Predefined_Floating_Plus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) + Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Minus =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) - Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Mul =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) * Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Div =>
            return Create_Memory_Fp64 (Read_Fp64 (Left) / Read_Fp64 (Right),
                                       Res_Typ);
         when Iir_Predefined_Floating_Exp =>
            return Create_Memory_Fp64
              (Read_Fp64 (Left) ** Natural (Read_Discrete (Right)), Res_Typ);

         when Iir_Predefined_Array_Array_Concat =>
            declare
               Ret_Typ : constant Type_Acc :=
                 Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));
               L_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Left.Typ, 1));
               R_Len : constant Iir_Index32 :=
                 Iir_Index32 (Get_Bound_Length (Right.Typ, 1));
               Bnd : Bound_Type;
               Res_Typ : Type_Acc;
               Res : Memtyp;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0),
                  L_Len + R_Len);
               Res_Typ := Create_Onedimensional_Array_Subtype
                 (Ret_Typ, Bnd);
               Res := Create_Memory (Res_Typ);
               if Left.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               end if;
               if Right.Typ.Sz > 0 then
                  Copy_Memory (Res.Mem + Left.Typ.Sz, Right.Mem, Right.Typ.Sz);
               end if;
               return Res;
            end;
         when Iir_Predefined_Element_Array_Concat =>
            declare
               Ret_Typ : constant Type_Acc :=
                 Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));
               Rlen : constant Iir_Index32 :=
                 Get_Array_Flat_Length (Right.Typ);
               Bnd : Bound_Type;
               Res_Typ : Type_Acc;
               Res : Memtyp;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0), 1 + Rlen);
               Res_Typ := Create_Onedimensional_Array_Subtype
                 (Ret_Typ, Bnd);
               Res := Create_Memory (Res_Typ);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;
         when Iir_Predefined_Array_Element_Concat =>
            declare
               Ret_Typ : constant Type_Acc :=
                 Get_Subtype_Object (Syn_Inst, Get_Return_Type (Imp));
               Llen : constant Iir_Index32 := Get_Array_Flat_Length (Left.Typ);
               Bnd : Bound_Type;
               Res_Typ : Type_Acc;
               Res : Memtyp;
            begin
               Bnd := Oper.Create_Bounds_From_Length
                 (Syn_Inst, Get_Index_Type (Get_Type (Expr), 0), Llen + 1);
               Res_Typ := Create_Onedimensional_Array_Subtype
                 (Ret_Typ, Bnd);
               Res := Create_Memory (Res_Typ);
               Copy_Memory (Res.Mem, Left.Mem, Left.Typ.Sz);
               Copy_Memory (Res.Mem + Left.Typ.Sz,
                            Right.Mem, Right.Typ.Sz);
               return Res;
            end;

         when Iir_Predefined_Array_Equality
           | Iir_Predefined_Record_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Is_Equal (Left, Right)), Boolean_Type);
         when Iir_Predefined_Array_Inequality
            | Iir_Predefined_Record_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (not Is_Equal (Left, Right)), Boolean_Type);

         when Iir_Predefined_Access_Equality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Access (Left) = Read_Access (Right)),
               Boolean_Type);
         when Iir_Predefined_Access_Inequality =>
            return Create_Memory_U8
              (Boolean'Pos (Read_Access (Left) /= Read_Access (Right)),
               Boolean_Type);

         when Iir_Predefined_Ieee_1164_Vector_And
           | Iir_Predefined_Ieee_Numeric_Std_And_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_And_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, And_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Or
           | Iir_Predefined_Ieee_Numeric_Std_Or_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Or_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, Or_Table, Expr);

         when Iir_Predefined_Ieee_1164_Vector_Xor
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Xor_Sgn_Sgn =>
            return Synth_Vector_Dyadic (Left, Right, Xor_Table, Expr);

         when Iir_Predefined_Ieee_1164_Scalar_Or =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Or_Table (Get_Static_Ulogic (Left),
                                         Get_Static_Ulogic (Right))),
               Res_Typ);

         when Iir_Predefined_Ieee_1164_Scalar_And =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (And_Table (Get_Static_Ulogic (Left),
                                          Get_Static_Ulogic (Right))),
               Res_Typ);

         when Iir_Predefined_Ieee_1164_Scalar_Xor =>
            return Create_Memory_U8
              (Std_Ulogic'Pos (Xor_Table (Get_Static_Ulogic (Left),
                                          Get_Static_Ulogic (Right))),
               Res_Typ);

         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Uns (Left, Right, Greater, Expr) = Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Eq_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Nat (Left, Right, Greater, Expr) = Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Uns (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Nat_Uns (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Gt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Nat (Left, Right, Less, Expr) = Greater;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Uns (Left, Right, Greater, Expr) <= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Le_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Nat (Left, Right, Greater, Expr) <= Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Uns =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Uns (Left, Right, Greater, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Uns_Nat =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Uns_Nat (Left, Right, Greater, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;
         when Iir_Predefined_Ieee_Numeric_Std_Lt_Nat_Uns =>
            declare
               Res : Boolean;
            begin
               Res :=
                 Synth_Compare_Nat_Uns (Left, Right, Greater, Expr) < Equal;
               return Create_Memory_U8 (Boolean'Pos (Res), Res_Typ);
            end;

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Uns
           | Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Log
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Log
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Slv
           | Iir_Predefined_Ieee_Std_Logic_Arith_Add_Uns_Uns_Slv =>
            return Synth_Add_Uns_Uns (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Sgn_Int =>
            return Synth_Add_Sgn_Int (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Add_Uns_Nat
           | Iir_Predefined_Ieee_Std_Logic_Unsigned_Add_Slv_Int =>
            return Synth_Add_Uns_Nat (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Uns =>
            return Synth_Sub_Uns_Uns (Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Sub_Uns_Nat =>
            return Synth_Sub_Uns_Nat (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Uns =>
            return Synth_Mul_Uns_Uns (Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Nat_Uns =>
            return Synth_Mul_Nat_Uns (Left, Right, Expr);
         when Iir_Predefined_Ieee_Numeric_Std_Mul_Uns_Nat =>
            return Synth_Mul_Uns_Nat (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Mul_Sgn_Sgn =>
            return Synth_Mul_Sgn_Sgn (Left, Right, Expr);

         when Iir_Predefined_Ieee_Numeric_Std_Srl_Uns_Int =>
            declare
               Amt : Int64;
            begin
               Amt := Read_Discrete (Right);
               if Amt >= 0 then
                  return Synth_Shift (Left, Uns32 (Amt), True, False);
               else
                  return Synth_Shift (Left, Uns32 (-Amt), False, False);
               end if;
            end;

         when others =>
            Error_Msg_Synth
              (+Expr, "synth_static_dyadic_predefined: unhandled "
                 & Iir_Predefined_Functions'Image (Def));
            return Null_Memtyp;
      end case;
   end Synth_Static_Dyadic_Predefined;

   function Synth_Vector_Monadic (Vec : Memtyp; Op : Table_1d) return Memtyp
   is
      Len : constant Iir_Index32 := Vec_Length (Vec.Typ);
      Res : Memtyp;
   begin
      Res := Create_Memory (Create_Res_Bound (Vec.Typ));
      for I in 1 .. Uns32 (Len) loop
         declare
            V : constant Std_Ulogic := Read_Std_Logic (Vec.Mem, I - 1);
         begin
            Write_Std_Logic (Res.Mem, I - 1, Op (V));
         end;
      end loop;
      return Res;
   end Synth_Vector_Monadic;

   function Synth_Vector_Reduce
     (Init : Std_Ulogic; Vec : Memtyp; Op : Table_2d) return Memtyp
   is
      El_Typ : constant Type_Acc := Vec.Typ.Vec_El;
      Res : Std_Ulogic;
   begin
      Res := Init;
      for I in 1 .. Uns32 (Vec_Length (Vec.Typ)) loop