aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorTristan Gingold <tgingold@free.fr>2017-04-02 18:17:30 +0200
committerTristan Gingold <tgingold@free.fr>2017-04-02 18:17:30 +0200
commit26d4381d0f167dbe14863b3261f9465a8c90412f (patch)
tree810c1b6d0ef1f38f7d6f5518e9e677b288ae8470 /src
parent92973eef31c7573137bcf9195952d8f5023647dc (diff)
downloadghdl-26d4381d0f167dbe14863b3261f9465a8c90412f.tar.gz
ghdl-26d4381d0f167dbe14863b3261f9465a8c90412f.tar.bz2
ghdl-26d4381d0f167dbe14863b3261f9465a8c90412f.zip
Add more testcases for bug069
Diffstat (limited to 'src')
-rw-r--r--src/grt/grt-fcvt.adb714
-rw-r--r--src/grt/grt-fcvt.ads38
-rw-r--r--src/grt/grt-vcd.adb92
3 files changed, 769 insertions, 75 deletions
diff --git a/src/grt/grt-fcvt.adb b/src/grt/grt-fcvt.adb
new file mode 100644
index 000000000..0328a04a3
--- /dev/null
+++ b/src/grt/grt-fcvt.adb
@@ -0,0 +1,714 @@
+-- GHDL Run Time (GRT) - Floating point conversions.
+-- Copyright (C) 2017 Tristan Gingold
+--
+-- GHDL is free software; you can redistribute it and/or modify it under
+-- the terms of the GNU General Public License as published by the Free
+-- Software Foundation; either version 2, or (at your option) any later
+-- version.
+--
+-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
+-- WARRANTY; without even the implied warranty of MERCHANTABILITY or
+-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+-- for more details.
+--
+-- You should have received a copy of the GNU General Public License
+-- along with GCC; see the file COPYING. If not, write to the Free
+-- Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+-- 02111-1307, USA.
+--
+-- As a special exception, if other files instantiate generics from this
+-- unit, or you link this unit with other files to produce an executable,
+-- this unit does not by itself cause the resulting executable to be
+-- covered by the GNU General Public License. This exception does not
+-- however invalidate any other reasons why the executable file might be
+-- covered by the GNU Public License.
+
+with Ada.Unchecked_Conversion;
+
+-- Implement 'dragon4' algorithm described in:
+-- Printing Floating-Point Numbers Quickly and Accurately
+-- Robert G. Burger and R. Kent Dybvig
+-- (http://www.cs.indiana.edu/~dyb/pubs/FP-Printing-PLDI96.pdf)
+--
+-- Notes:
+-- - Input radix is 2 (so b = 2)
+
+package body Grt.Fcvt is
+ function F64_To_U64 is new Ada.Unchecked_Conversion
+ (IEEE_Float_64, Unsigned_64);
+
+ type Unsigned_32_Array is array (Natural range <>) of Unsigned_32;
+
+ type Bignum is record
+ -- Number of digits. Must be 0 for number 0.
+ N : Natural;
+ -- Digits. The leading digit V(N + 1) must not be 0.
+ V : Unsigned_32_Array (1 .. 37);
+ end record;
+
+ type Fcvt_Context is record
+ -- Inputs
+ -- v = f * 2**e
+ F : Bignum;
+ E : Integer;
+ B : Natural;
+
+ -- Deduced from the input (for table1)
+ Is_Pow2 : Boolean;
+ Is_Emin : Boolean;
+
+ -- If true, Mp = Mm (often the case). In that case Mm is not set.
+ Equal_M : Boolean;
+
+ -- If true, the number is >= 1.0
+ -- Used by the fast estimator.
+ Ge_One : Boolean;
+
+ -- Internal variables
+ -- v = r / s
+ Log2_S0 : Natural;
+ K : Integer;
+ R : Bignum;
+ S : Bignum;
+ Mp : Bignum;
+ Mm : Bignum;
+ end record;
+
+ procedure Bignum_Normalize (Bn : in out Bignum) is
+ begin
+ while Bn.N > 0 loop
+ exit when Bn.V (Bn.N) /= 0;
+ Bn.N := Bn.N - 1;
+ end loop;
+ end Bignum_Normalize;
+
+ -- Check invariant within a bignum.
+ function Bignum_Is_Valid (Bn : Bignum) return Boolean is
+ begin
+ return Bn.N <= Bn.V'Last
+ and then (Bn.N = 0 or else Bn.V (Bn.N) /= 0);
+ end Bignum_Is_Valid;
+
+ -- Create a bignum from a natural.
+ procedure Bignum_Int (Res : out Bignum; N : Natural)
+ is
+ begin
+ if N = 0 then
+ Res.N := 0;
+ else
+ Res.N := 1;
+ Res.V (1) := Unsigned_32 (N);
+ end if;
+ end Bignum_Int;
+
+ -- Add two bignums, assuming A > B.
+ function Bignum_Add2 (A, B : Bignum) return Bignum
+ is
+ pragma Assert (A.N >= B.N);
+ Res : Bignum;
+ Tmp : Unsigned_64;
+ begin
+ Tmp := 0;
+ for I in 1 .. A.N loop
+ Tmp := Tmp + Unsigned_64 (A.V (I));
+ if I <= B.N then
+ Tmp := Tmp + Unsigned_64 (B.V (I));
+ end if;
+ Res.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right (Tmp, 32);
+ end loop;
+ if Tmp /= 0 then
+ Res.V (A.N + 1) := Unsigned_32 (Tmp);
+ Res.N := A.N + 1;
+ else
+ Res.N := A.N;
+ end if;
+
+ return Res;
+ end Bignum_Add2;
+
+ -- Add two bignums.
+ function Bignum_Add (A, B : Bignum) return Bignum is
+ begin
+ if A.N >= B.N then
+ return Bignum_Add2 (A, B);
+ else
+ return Bignum_Add2 (A => B, B => A);
+ end if;
+ end Bignum_Add;
+
+ type Compare_Type is (Lt, Eq, Gt);
+
+ -- Compare two bignums.
+ function Bignum_Compare (L, R : Bignum) return Compare_Type is
+ begin
+ if L.N /= R.N then
+ if L.N > R.N then
+ return Gt;
+ else
+ return Lt;
+ end if;
+ end if;
+
+ -- Same number of digits.
+ for I in reverse 1 .. L.N loop
+ if L.V (I) /= R.V (I) then
+ if L.V (I) > R.V (I) then
+ return Gt;
+ else
+ return Lt;
+ end if;
+ end if;
+ end loop;
+
+ return Eq;
+ end Bignum_Compare;
+
+ -- Multiply two bignums.
+ function Bignum_Mul (L, R : Bignum) return Bignum
+ is
+ Res : Bignum;
+
+ Tmp : Unsigned_64;
+ begin
+ -- Upper bound.
+ Res.N := L.N + R.N;
+
+ for I in 1 .. Res.N loop
+ Res.V (I) := 0;
+ end loop;
+
+ for I in 1 .. R.N loop
+ Tmp := 0;
+ for J in 1 .. L.N loop
+ Tmp := Tmp + Unsigned_64 (R.V (I)) * Unsigned_64 (L.V (J))
+ + Unsigned_64 (Res.V (I + J - 1));
+ Res.V (I + J - 1) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right (Tmp, 32);
+ end loop;
+ if Tmp /= 0 then
+ Res.V (I + L.N + 1 - 1) := Unsigned_32 (Tmp);
+ end if;
+ end loop;
+
+ Bignum_Normalize (Res);
+ return Res;
+ end Bignum_Mul;
+
+ function Bignum_Mul_Int (L : Bignum; R : Natural) return Bignum
+ is
+ Res : Bignum;
+
+ Tmp : Unsigned_64;
+ begin
+ if R = 0 then
+ Res.N := 0;
+ return Res;
+ end if;
+
+ Tmp := 0;
+
+ for I in 1 .. L.N loop
+ Tmp := Tmp + Unsigned_64 (L.V (I)) * Unsigned_64 (R);
+ Res.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right (Tmp, 32);
+ end loop;
+
+ if Tmp = 0 then
+ Res.N := L.N;
+ else
+ Res.N := L.N + 1;
+ Res.V (Res.N) := Unsigned_32 (Tmp);
+ end if;
+
+ pragma Assert (Bignum_Is_Valid (Res));
+ return Res;
+ end Bignum_Mul_Int;
+
+ -- In place multiplication.
+ procedure Bignum_Mul_Int (L : in out Bignum; R : Positive)
+ is
+ Tmp : Unsigned_64;
+ begin
+ Tmp := 0;
+ for I in 1 .. L.N loop
+ Tmp := Tmp + Unsigned_64 (L.V (I)) * Unsigned_64 (R);
+ L.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right (Tmp, 32);
+ end loop;
+
+ if Tmp > 0 then
+ L.N := L.N + 1;
+ L.V (L.N) := Unsigned_32 (Tmp);
+ end if;
+
+ pragma Assert (Bignum_Is_Valid (L));
+ end Bignum_Mul_Int;
+
+ -- Compute 2**N
+ function Bignum_Pow2 (N : Natural) return Bignum
+ is
+ Res : Bignum;
+ begin
+ Res.N := 1 + (N / 32);
+ for I in 1 .. Res.N loop
+ Res.V (I) := 0;
+ end loop;
+ Res.V (Res.N) := Shift_Left (1, N mod 32);
+ return Res;
+ end Bignum_Pow2;
+
+ -- Compute L**N
+ function Bignum_Pow (L : Bignum; N : Natural) return Bignum
+ is
+ Res : Bignum;
+ N1 : Natural;
+ T : Bignum;
+ begin
+ Bignum_Int (Res, 1);
+
+ T := L;
+ N1 := N;
+ loop
+ if N1 mod 2 = 1 then
+ Res := Bignum_Mul (Res, T);
+ end if;
+ N1 := N1 / 2;
+ exit when N1 = 0;
+ T := Bignum_Mul (T, T);
+ end loop;
+
+ return Res;
+ end Bignum_Pow;
+
+ -- TODO: non-restoring division
+ procedure Bignum_Divstep (N : in out Bignum;
+ Div : Bignum;
+ D : out Boolean)
+ is
+ Tmp : Unsigned_64;
+ begin
+ if N.N < Div.N then
+ D := False;
+ return;
+ end if;
+
+ Tmp := 0;
+ for I in 1 .. Div.N loop
+ Tmp := Tmp + (Unsigned_64 (N.V (I)) - Unsigned_64 (Div.V (I)));
+ N.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right_Arithmetic (Tmp, 32);
+ end loop;
+ if N.N > Div.N then
+ Tmp := Tmp + Unsigned_64 (N.V (N.N));
+ N.V (N.N) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right_Arithmetic (Tmp, 32);
+ end if;
+ if Tmp = 0 then
+ Bignum_Normalize (N);
+ D := True;
+ else
+ -- Restore
+ Tmp := 0;
+ for I in 1 .. Div.N loop
+ Tmp := Tmp + (Unsigned_64 (N.V (I)) + Unsigned_64 (Div.V (I)));
+ N.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ Tmp := Shift_Right_Arithmetic (Tmp, 32);
+ end loop;
+ if N.N > Div.N then
+ Tmp := Tmp + Unsigned_64 (N.V (N.N));
+ N.V (N.N) := Unsigned_32 (Tmp and 16#ffff_ffff#);
+ end if;
+ D := False;
+ end if;
+ end Bignum_Divstep;
+
+ procedure Append (Str : in out String;
+ Len : in out Natural;
+ C : Character)
+ is
+ P : constant Positive := Str'First + Len;
+ begin
+ if P <= Str'Last then
+ Str (P) := C;
+ end if;
+ Len := Len + 1;
+ end Append;
+
+ procedure Append_Digit (Str : in out String;
+ Len : in out Natural;
+ D : Natural) is
+ begin
+ if D < 10 then
+ Append (Str, Len, Character'Val (Character'Pos ('0') + D));
+ else
+ Append (Str, Len, Character'Val (Character'Pos ('a') + D - 10));
+ end if;
+ end Append_Digit;
+
+ -- Implement Table 1
+ procedure Dragon4_Prepare (Ctxt : in out Fcvt_Context) is
+ begin
+ if Ctxt.E >= 0 then
+ -- Case e >= 0
+ if not Ctxt.Is_Pow2 then
+ -- Case f /= b**(p-1):
+ -- r = f * b**e * 2
+ -- s = 2
+ -- m+ = b**e
+ -- m- = b**e
+ Ctxt.R := Bignum_Mul (Ctxt.F, Bignum_Pow2 (Ctxt.E + 1));
+ Bignum_Int (Ctxt.S, 2);
+ Ctxt.Log2_S0 := 1;
+ Ctxt.Mp := Bignum_Pow2 (Ctxt.E);
+ Ctxt.Equal_M := True;
+ else
+ -- Case f = b**(p-1)
+ -- r = f * b**(e+1) * 2
+ -- s = b * 2
+ -- m+ = b**(e+1)
+ -- m- = b**e
+ Ctxt.R := Bignum_Mul (Ctxt.F, Bignum_Pow2 (Ctxt.E + 1 + 1));
+ Bignum_Int (Ctxt.S, 2 * 2);
+ Ctxt.Log2_S0 := 2;
+ Ctxt.Mp := Bignum_Pow2 (Ctxt.E + 1);
+ Ctxt.Mm := Bignum_Pow2 (Ctxt.E);
+ Ctxt.Equal_M := False;
+ end if;
+ else
+ -- Case e < 0
+ if Ctxt.Is_Emin or not Ctxt.Is_Pow2 then
+ -- Case e = min exp or f /= b**(p-1)
+ -- r = f * 2
+ -- s = b**(-e) * 2 = b**(-e + 1)
+ -- m+ = 1
+ -- m- = 1
+ Ctxt.R := Bignum_Mul_Int (Ctxt.F, 2);
+ Ctxt.Log2_S0 := -Ctxt.E + 1;
+ Bignum_Int (Ctxt.Mp, 1);
+ Ctxt.Equal_M := True;
+ else
+ -- Case e > min exp and f = b**(p-1)
+ -- r = f * b * 2
+ -- s = b**(-e+1) * 2 = b**(-e+1+1)
+ -- m+ = b
+ -- m- = 1
+ Ctxt.R := Bignum_Mul_Int (Ctxt.F, 2 * 2);
+ Ctxt.Log2_S0 := -Ctxt.E + 1 + 1;
+ Bignum_Int (Ctxt.Mp, 2);
+ Bignum_Int (Ctxt.Mm, 1);
+ Ctxt.Equal_M := False;
+ end if;
+ Ctxt.S := Bignum_Pow2 (Ctxt.Log2_S0);
+ end if;
+ end Dragon4_Prepare;
+
+ -- 2. Find the smallest integer k such that (r + m+) / s <= B**k; ie:
+ -- k = ceil (logB ((r+m+)/s))
+ -- 3. If k >= 0, let r0 = r, s0 = s * B**k, m0+=m+ and m0-=m-
+ -- If k < 0, let r0 = r * B**-k, s0=s, m0+=m+ * B**-k, m0-=m- * B**-k
+ --
+ -- Note:
+ -- with high = (r+m+)/s:
+ -- k = ceil (logB (high))
+ procedure Dragon4_Scale (Ctxt : in out Fcvt_Context)
+ is
+ T1 : Bignum;
+ begin
+ if False and Ctxt.B = 10 then
+ -- TODO.
+ declare
+ E : Integer;
+ begin
+ if Ctxt.F.N = 2 and then Ctxt.F.V (2) >= 16#10_00_00# then
+ -- Normal binary64 number
+ E := 52 + Ctxt.E;
+ else
+ -- Denormal or non binary64.
+ E := Ctxt.E;
+ end if;
+
+ -- Estimate k.
+ Ctxt.K := Integer (Float (E) * 0.30103);
+
+ -- Need to compute B**k
+ Bignum_Int (T1, Ctxt.B);
+
+ if Ctxt.K >= 0 then
+ T1 := Bignum_Pow (T1, Ctxt.K);
+ Ctxt.S := Bignum_Mul (Ctxt.S, T1);
+ else
+ T1 := Bignum_Pow (T1, -Ctxt.K);
+ Ctxt.R := Bignum_Mul (Ctxt.R, T1);
+ Ctxt.Mp := Bignum_Mul (Ctxt.Mp, T1);
+ if not Ctxt.Equal_M then
+ Ctxt.Mm := Bignum_Mul (Ctxt.Mm, T1);
+ end if;
+ end if;
+ end;
+ else
+ Ctxt.K := 0;
+ end if;
+
+ T1 := Bignum_Add (Ctxt.R, Ctxt.Mp);
+
+ -- Adjust s0 so that r + m+ <= s0 * B**k
+ while Bignum_Compare (T1, Ctxt.S) >= Eq loop
+ Ctxt.K := Ctxt.K + 1;
+ Bignum_Mul_Int (Ctxt.S, Ctxt.B);
+ end loop;
+
+ if Ctxt.K > 0 then
+ return;
+ end if;
+
+ loop
+ Bignum_Mul_Int (T1, Ctxt.B);
+ exit when not (Bignum_Compare (T1, Ctxt.S) <= Eq);
+ Ctxt.K := Ctxt.K - 1;
+ Bignum_Mul_Int (Ctxt.R, Ctxt.B);
+ Bignum_Mul_Int (Ctxt.Mp, Ctxt.B);
+ if not Ctxt.Equal_M then
+ Bignum_Mul_Int (Ctxt.Mm, Ctxt.B);
+ end if;
+ T1 := Bignum_Add (Ctxt.R, Ctxt.Mp);
+ end loop;
+
+ -- Note: high = (v + v+) / 2
+ -- = (2*v + b**e) / 2
+ -- = ((2*f + 1) * b**e) / 2
+ -- Proof:
+ --
+ -- Case e >= 0
+ -- Case f /= b**(p-1):
+ -- high = ((2*f + 1) * b**e) / 2
+ -- Case f = b**(p-1)
+ -- high = ((2*f + 1) * b**(e+1)) / (b * 2)
+ -- = ((2*f + 1) * b**e) / 2
+ -- Case e < 0
+ -- Case e = min exp or f /= b**(p-1)
+ -- high = (2*f + 1) / (2*b**(-e))
+ -- Case e > min exp and f = b**(p-1)
+ -- high = (2*f*b + b) / (2*b**(-e+1))
+ -- = (2*f + 1) / (2*b**(-e))
+ -- In all cases:
+ -- high = ((2*f + 1) * b**e) / 2
+
+ -- if Ctxt.B = 10 then
+ -- log10(2) ~= 0.30103
+ -- k = ceil(log10((2*f+1) / 2) + log10(b**e))
+ -- = ceil(log10((2*f+1)/2) + e*log10(2))
+ -- If the input number was normalized, then:
+ -- 2**53 <= (2*f + 1)/2 <= 2**54
+ -- 15.95 <= log10((2*f+1)/2) <= 16.255
+
+ -- so k = ceil (log10(r+m+) - log2(s)*log10(2))
+ end Dragon4_Scale;
+
+ procedure Dragon4_Generate (Str : in out String;
+ Len : in out Natural;
+ Ctxt : in out Fcvt_Context)
+ is
+ S8 : constant Bignum := Bignum_Mul_Int (Ctxt.S, 8);
+ S4 : constant Bignum := Bignum_Mul_Int (Ctxt.S, 4);
+ S2 : constant Bignum := Bignum_Mul_Int (Ctxt.S, 2);
+ S1 : Bignum renames Ctxt.S;
+ D : Natural;
+ Step : Boolean;
+ Cond1, Cond2 : Boolean;
+ begin
+ loop
+ Bignum_Mul_Int (Ctxt.R, Ctxt.B);
+
+ Bignum_Divstep (Ctxt.R, S8, Step);
+ D := Boolean'Pos (Step) * 8;
+ Bignum_Divstep (Ctxt.R, S4, Step);
+ D := D + Boolean'Pos (Step) * 4;
+ Bignum_Divstep (Ctxt.R, S2, Step);
+ D := D + Boolean'Pos (Step) * 2;
+ Bignum_Divstep (Ctxt.R, S1, Step);
+ D := D + Boolean'Pos (Step);
+
+ Bignum_Mul_Int (Ctxt.Mp, Ctxt.B);
+ if not Ctxt.Equal_M then
+ Bignum_Mul_Int (Ctxt.Mm, Ctxt.B);
+ end if;
+
+ -- Stop conditions.
+ -- Note: there is a typo for condition (2) in the original paper.
+ if not Ctxt.Equal_M then
+ Cond1 := Bignum_Compare (Ctxt.R, Ctxt.Mm) = Lt;
+ else
+ Cond1 := Bignum_Compare (Ctxt.R, Ctxt.Mp) = Lt;
+ end if;
+ Cond2 := Bignum_Compare (Bignum_Add (Ctxt.R, Ctxt.Mp), Ctxt.S) = Gt;
+ exit when Cond1 or Cond2;
+
+ Append_Digit (Str, Len, D);
+ end loop;
+
+ if Cond1 and not Cond2 then
+ null;
+ elsif not Cond1 and Cond2 then
+ D := D + 1;
+ else
+ if Bignum_Compare (Bignum_Mul_Int (Ctxt.R, 2), Ctxt.S) = Gt then
+ D := D + 1;
+ end if;
+ end if;
+ Append_Digit (Str, Len, D);
+ end Dragon4_Generate;
+
+ procedure Dragon4 (Str : in out String;
+ Len : in out Natural;
+ Ctxt : in out Fcvt_Context)
+ is
+ begin
+ Dragon4_Prepare (Ctxt);
+ Dragon4_Scale (Ctxt);
+ Dragon4_Generate (Str, Len, Ctxt);
+ end Dragon4;
+
+ procedure Output_Nan_Inf (Str : out String;
+ Len : out Natural;
+ Is_Inf : Boolean;
+ S : Boolean) is
+ begin
+ Len := 0;
+
+ if Is_Inf then
+ -- Infinite
+ if S then
+ Append (Str, Len, '-');
+ else
+ Append (Str, Len, '+');
+ end if;
+ Append (Str, Len, 'i');
+ Append (Str, Len, 'n');
+ Append (Str, Len, 'f');
+ else
+ Append (Str, Len, 'n');
+ Append (Str, Len, 'a');
+ Append (Str, Len, 'n');
+ end if;
+ end Output_Nan_Inf;
+
+ procedure To_String (Str : out String;
+ Len : out Natural;
+ V : IEEE_Float_64;
+ Radix : Positive := 10)
+ is
+ pragma Assert (Str'First = 1);
+
+ -- Decompose V (assuming same endianness).
+ V_Bits : constant Unsigned_64 := F64_To_U64 (V);
+ S : constant Boolean := Shift_Right (V_Bits, 63) = 1;
+ M : constant Unsigned_64 := V_Bits and 16#f_ff_ff_ff_ff_ff_ff#;
+ E : constant Integer := Integer (Shift_Right (V_Bits, 52) and 16#7_ff#);
+
+ Ctxt : Fcvt_Context;
+ First : Natural;
+ begin
+ -- Handle NaN & Inf
+ if E = 2047 then
+ Output_Nan_Inf (Str, Len, M = 0, S);
+ return;
+ end if;
+
+ -- Normal or denormal float.
+ Len := 0;
+
+ Ctxt.B := Radix;
+ Ctxt.F.N := 2;
+ Ctxt.F.V (1) := Unsigned_32 (M and 16#ffff_ffff#);
+ Ctxt.F.V (2) := Unsigned_32 (Shift_Right (M, 32) and 16#ffff_ffff#);
+ if E = 0 then
+ -- Denormal.
+ Ctxt.E := -1022 - 52;
+
+ -- Bignum digits may be 0.
+ Bignum_Normalize (Ctxt.F);
+
+ -- Display sign.
+ if S then
+ Append (Str, Len, '-');
+ end if;
+
+ Ctxt.Is_Emin := True;
+ Ctxt.Is_Pow2 := False; -- Not needed.
+ Ctxt.Ge_One := False;
+ else
+ -- Normal.
+ Ctxt.E := E - 1023 - 52;
+
+ -- Implicit leading 1.
+ Ctxt.F.V (2) := Ctxt.F.V (2) or 16#10_00_00#;
+
+ -- Display sign.
+ if S then
+ Append (Str, Len, '-');
+ end if;
+
+ Ctxt.Is_Emin := False;
+ Ctxt.Is_Pow2 := M = 0;
+ Ctxt.Ge_One := E = 1023;
+ end if;
+
+ pragma Assert (Bignum_Is_Valid (Ctxt.F));
+
+ First := Len;
+
+ if Ctxt.F.N = 0 then
+ -- Zero is special
+ Append (Str, Len, '0');
+ Ctxt.K := 1;
+ else
+ Dragon4 (Str, Len, Ctxt);
+ end if;
+
+ -- Formatting.
+ -- Insert the dot.
+ declare
+ C, Prev_C : Character;
+ begin
+ if Len > First + 1 then
+ C := '.';
+ for I in First + 2 .. Len loop
+ Prev_C := Str (I);
+ Str (I) := C;
+ C := Prev_C;
+ end loop;
+ Len := Len + 1;
+ Str (Len) := C;
+ end if;
+ Ctxt.K := Ctxt.K - 1;
+ end;
+
+ Append (Str, Len, 'e');
+ declare
+ K : Integer;
+ T : Integer;
+ Den : Natural;
+ begin
+ K := Ctxt.K;
+ if K < 0 then
+ Append (Str, Len, '-');
+ K := -K;
+ end if;
+ if K >= 100 then
+ Den := 100;
+ elsif K >= 10 then
+ Den := 10;
+ else
+ Den := 1;
+ end if;
+ loop
+ T := K / Den;
+ Append_Digit (Str, Len, T);
+ K := K - T * Den;
+ exit when Den = 1;
+ Den := Den / 10;
+ end loop;
+ end;
+ end To_String;
+end Grt.Fcvt;
diff --git a/src/grt/grt-fcvt.ads b/src/grt/grt-fcvt.ads
new file mode 100644
index 000000000..82ed94363
--- /dev/null
+++ b/src/grt/grt-fcvt.ads
@@ -0,0 +1,38 @@
+-- GHDL Run Time (GRT) - Floating point conversions.
+-- Copyright (C) 2017 Tristan Gingold
+--
+-- GHDL is free software; you can redistribute it and/or modify it under
+-- the terms of the GNU General Public License as published by the Free
+-- Software Foundation; either version 2, or (at your option) any later
+-- version.
+--
+-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
+-- WARRANTY; without even the implied warranty of MERCHANTABILITY or
+-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+-- for more details.
+--
+-- You should have received a copy of the GNU General Public License
+-- along with GCC; see the file COPYING. If not, write to the Free
+-- Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+-- 02111-1307, USA.
+--
+-- As a special exception, if other files instantiate generics from this
+-- unit, or you link this unit with other files to produce an executable,
+-- this unit does not by itself cause the resulting executable to be
+-- covered by the GNU General Public License. This exception does not
+-- however invalidate any other reasons why the executable file might be
+-- covered by the GNU Public License.
+
+with Interfaces; use Interfaces;
+
+package Grt.Fcvt is
+ -- Convert V to RADIX number stored (in ASCII) in STR/LEN [using at most
+ -- NDIGITS digits.]
+ -- LEN is the number of characters needed (so it may be greater than
+ -- STR'Length).
+ -- Requires STR'First = 1.
+ procedure To_String (Str : out String;
+ Len : out Natural;
+ V : IEEE_Float_64;
+ Radix : Positive := 10);
+end Grt.Fcvt;
diff --git a/src/grt/grt-vcd.adb b/src/grt/grt-vcd.adb
index 7a0abde52..e6495c5aa 100644
--- a/src/grt/grt-vcd.adb
+++ b/src/grt/grt-vcd.adb
@@ -52,6 +52,7 @@ with Grt.Rtis_Types; use Grt.Rtis_Types;
with Grt.Vstrings;
with Grt.Wave_Opt; use Grt.Wave_Opt;
with Grt.Wave_Opt.Design; use Grt.Wave_Opt.Design;
+with Grt.Fcvt;
pragma Elaborate_All (Grt.Table);
package body Grt.Vcd is
@@ -664,85 +665,26 @@ package body Grt.Vcd is
end loop;
end Vcd_Put_Integer32;
- -- Using the floor attribute of Ghdl_F64 will result on a link error while
- -- trying to simulate a design. So it was needed to create a floor function
- function Digit_Floor (V : Ghdl_F64) return Ghdl_I32
- is
- Var : Ghdl_I32;
- begin
- -- V is always positive here and only of interest when it is a digit
- if V > 10.0 then
- return -1;
- else
- Var := Ghdl_I32(V-0.5); --Ghdl_I32 rounds to the nearest integer
- -- The rounding made by Ghdl_I32 is asymetric :
- -- 0.5 will be rounded to 1, but -0.5 to -1 instead of 0
- if Var > 0 then
- return Var;
- else
- return 0;
- end if;
- end if;
- end Digit_Floor;
-
procedure Vcd_Put_Float64 (V : Ghdl_F64)
is
- Val_tmp, Fact : Ghdl_F64;
- Digit, Exp, Delta_Exp, N_Exp : Ghdl_I32;
- --
+ Str : String (1 .. 32);
+ Len : Natural;
begin
- Exp := 0;
- if V /= V then
- Vcd_Put("NaN");
- return;
- end if;
- if V < 0.0 then
- Vcd_Putc ('-');
- Val_tmp := -V;
- elsif V = 0.0 then
- Vcd_Put("0.0");
- return;
- else
- Val_tmp := V;
- end if;
- if Val_tmp > Ghdl_F64'Last then
- Vcd_Put("Inf");
- return;
- elsif Val_tmp < 1.0 then
- Fact := 10.0;
- Delta_Exp := -1;
- else
- Fact := 0.1;
- Delta_Exp := 1;
- end if;
+ -- IEEE1364 18.2 Format of the four state VCD file
+ -- A real number if dumped using a %.16g printf() format. This
+ -- preserves the precision of that number by outputting all 53 bits in
+ -- the mantissa of a 64-bit IEEE std 754-1985 double-precision number.
+ -- Application programs can read a real number using a %g format to
+ -- scanf().
- -- Seek the first digit
- loop
- Digit := Digit_Floor(Val_tmp);
- if Digit > 0 then
- exit;
- end if;
- Exp := Exp + Delta_Exp;
- Val_tmp := Val_tmp * Fact;
- end loop;
- Vcd_Putc(Character'Val(Digit + 48));
- Vcd_Putc('.');
- for i in 0..4 loop -- 5 digits displayed after the point
- Val_tmp := abs(Val_tmp - Ghdl_F64(Digit))*10.0;
- Digit := Digit_Floor(Val_tmp);
- Vcd_Putc(Character'Val(Digit + 48));
- end loop;
- Vcd_Putc('E');
- if Exp < 0 then
- Vcd_Putc('-');
- Exp := -Exp;
- end if;
- N_Exp := 100;
- while N_Exp > 0 loop
- Vcd_Putc(Character'Val(Exp/N_Exp + 48));
- Exp := Exp mod N_Exp;
- N_Exp := N_Exp/10;
- end loop;
+ -- ISO-C 7.19.6.1 The fprintf function
+ -- [...], the maximum number of significant digits for the g and G
+ -- conversions, [...]
+
+ -- Note: the code always uses the 'e' format, with a full precision.
+ Grt.Fcvt.To_String (Str, Len, Interfaces.IEEE_Float_64 (V));
+
+ Vcd_Put (Str (1 .. Len));
end Vcd_Put_Float64;
procedure Vcd_Put_Var (I : Vcd_Index_Type)