diff options
author | Tristan Gingold <tgingold@free.fr> | 2017-04-08 04:02:42 +0200 |
---|---|---|
committer | Tristan Gingold <tgingold@free.fr> | 2017-04-19 20:48:23 +0200 |
commit | 761f216517447532ba7aedd9b54300328d0dfa1b (patch) | |
tree | 530d2b346a39ffd3036fa92d942f731257f8fc6d | |
parent | f12749b4be6dca9dcbf05f7aa9fdc2a47079f2c9 (diff) | |
download | ghdl-761f216517447532ba7aedd9b54300328d0dfa1b.tar.gz ghdl-761f216517447532ba7aedd9b54300328d0dfa1b.tar.bz2 ghdl-761f216517447532ba7aedd9b54300328d0dfa1b.zip |
scanner: use grt-fcvt for radix conversion.
-rw-r--r-- | Makefile.in | 14 | ||||
-rw-r--r-- | src/grt/grt-fcvt.adb | 634 | ||||
-rw-r--r-- | src/grt/grt-fcvt.ads | 50 | ||||
-rw-r--r-- | src/vhdl/scanner-scan_literal.adb | 411 |
4 files changed, 596 insertions, 513 deletions
diff --git a/Makefile.in b/Makefile.in index 18dcbe78d..58543a457 100644 --- a/Makefile.in +++ b/Makefile.in @@ -103,7 +103,7 @@ copy-sources: copy-sources.$(backend) Makefile: $(srcdir)/Makefile.in ./config.status -GHDL_COMMON_INCFLAGS=-aI$(srcdir)/src -aI$(srcdir)/src/vhdl -aI$(srcdir)/src/psl -aI$(srcdir)/src/vhdl/translate +GHDL_COMMON_INCFLAGS=-aI$(srcdir)/src -aI$(srcdir)/src/vhdl -aI$(srcdir)/src/grt -aI$(srcdir)/src/psl -aI$(srcdir)/src/vhdl/translate GRTSRCDIR=$(srcdir)/src/grt include $(GRTSRCDIR)/Makefile.inc @@ -126,7 +126,7 @@ version.ads: version.tmp all.mcode: ghdl_mcode$(EXEEXT) libs.vhdl.mcode all.vpi -GHDL_MCODE_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/grt -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/mcode +GHDL_MCODE_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/mcode ghdl_mcode$(EXEEXT): GRT_FLAGS+=-DWITH_GNAT_RUN_TIME ghdl_mcode$(EXEEXT): $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) $(ORTHO_DEPS) \ @@ -167,6 +167,8 @@ copy-sources.gcc: version.ads $(CP) -p $(srcdir)/src/vhdl/*.ad? $(gcc_vhdl_dir) $(CP) -p $(srcdir)/src/vhdl/translate/*.ad? $(gcc_vhdl_dir) $(CP) -p $(srcdir)/src/psl/*.ad? $(gcc_vhdl_dir) + $(CP) -p $(srcdir)/src/grt/grt.ad? $(gcc_vhdl_dir) + $(CP) -p $(srcdir)/src/grt/grt-fcvt.ad? $(gcc_vhdl_dir) $(CP) -p $(srcdir)/src/ortho/*.ad? $(gcc_vhdl_dir) $(CP) -p $(srcdir)/src/ortho/gcc/*.ad? $(gcc_vhdl_dir) $(CP) -p $(srcdir)/src/ortho/gcc/*.c $(gcc_vhdl_dir) @@ -235,7 +237,7 @@ oread-gcc$(EXEEXT): force #################### For llvm backend ############################## -GHDL_LLVM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/grt -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/$(llvm_be) +GHDL_LLVM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/$(llvm_be) all.llvm: ghdl1-llvm$(EXEEXT) ghdl_llvm$(EXEEXT) grt-all libs.vhdl.llvm all.vpi @@ -285,7 +287,7 @@ install.llvm: install.llvm.program install.vhdllib install.grt install.vpi ################ For simul (no code generation, interpretation) ########## -GHDL_SIMUL_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/synth -aI$(srcdir)/src/grt +GHDL_SIMUL_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/synth ghdl_simul$(EXEEXT): $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force $(GNATMAKE) $(GHDL_SIMUL_INCFLAGS) $(GNATFLAGS) -gnat12 ghdl_simul $(GNAT_BARGS) -largs $(GNAT_LARGS) $(GRT_ADD_OBJS) $(subst @,$(GRTSRCDIR),$(GRT_EXTRA_LIB)) @@ -295,7 +297,7 @@ libs.vhdl.simul: ghdl_simul$(EXEEXT) ################ mhdlsim (library for the vhdl part) #################### -GHDL_MHDLSIM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/mhdlsim -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/grt +GHDL_MHDLSIM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/mhdlsim -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate libmhdlsimvhdl.a: $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force $(GNATMAKE) -c mhdlsim $(GNATFLAGS) $(GHDL_MHDLSIM_INCFLAGS) @@ -307,7 +309,7 @@ libmhdlsimvhdl.a: $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force ################ ghdlsynth library ###################################### -GHDL_SYNTHLIB_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/synth -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/grt +GHDL_SYNTHLIB_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/synth -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate libghdlsynth.a: $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force $(GNATMAKE) -c libghdlsynth $(GNATFLAGS) -gnat12 $(GHDL_SYNTHLIB_INCFLAGS) diff --git a/src/grt/grt-fcvt.adb b/src/grt/grt-fcvt.adb index 0328a04a3..2e3cd0d23 100644 --- a/src/grt/grt-fcvt.adb +++ b/src/grt/grt-fcvt.adb @@ -25,6 +25,22 @@ with Ada.Unchecked_Conversion; +-- Double float (aka binary64 representation): +-- exponent bias is 1023 +-- +-- |----------------------------------------------------------- +-- | 63 | 62-52 | 51-0 | +-- | sign | exponent | fraction | Value +-- |----------------------------------------------------------- +-- | s | 0 | f | (-1)**s * 0.f * 2**(1 - 1023) +-- |----------------------------------------------------------- +-- | s | 1 - 2046 | f | (-1)**s * 1.f * 2**(e - 1023) +-- |----------------------------------------------------------- +-- | s | 2047 | 0 | (-1)**s * inf +-- |----------------------------------------------------------- +-- | s | 2047 | /= 0 | NaN +-- |----------------------------------------------------------- + -- Implement 'dragon4' algorithm described in: -- Printing Floating-Point Numbers Quickly and Accurately -- Robert G. Burger and R. Kent Dybvig @@ -37,15 +53,6 @@ package body Grt.Fcvt is function F64_To_U64 is new Ada.Unchecked_Conversion (IEEE_Float_64, Unsigned_64); - type Unsigned_32_Array is array (Natural range <>) of Unsigned_32; - - type Bignum is record - -- Number of digits. Must be 0 for number 0. - N : Natural; - -- Digits. The leading digit V(N + 1) must not be 0. - V : Unsigned_32_Array (1 .. 37); - end record; - type Fcvt_Context is record -- Inputs -- v = f * 2**e @@ -60,13 +67,11 @@ package body Grt.Fcvt is -- If true, Mp = Mm (often the case). In that case Mm is not set. Equal_M : Boolean; - -- If true, the number is >= 1.0 - -- Used by the fast estimator. - Ge_One : Boolean; + -- Log2 (v). Used to estimate k. + Log2v : Integer; -- Internal variables -- v = r / s - Log2_S0 : Natural; K : Integer; R : Bignum; S : Bignum; @@ -90,8 +95,7 @@ package body Grt.Fcvt is end Bignum_Is_Valid; -- Create a bignum from a natural. - procedure Bignum_Int (Res : out Bignum; N : Natural) - is + procedure Bignum_Int (Res : out Bignum; N : Natural) is begin if N = 0 then Res.N := 0; @@ -101,6 +105,24 @@ package body Grt.Fcvt is end if; end Bignum_Int; + procedure Bignum_To_Int + (N : Bignum; Res : out Unsigned_64; OK : out Boolean) is + begin + OK := True; + case N.N is + when 0 => + Res := 0; + when 1 => + Res := Unsigned_64 (N.V (1)); + when 2 => + Res := Shift_Left (Unsigned_64 (N.V (2)), 32) + or Unsigned_64 (N.V (1)); + when others => + Res := 0; + OK := False; + end case; + end Bignum_To_Int; + -- Add two bignums, assuming A > B. function Bignum_Add2 (A, B : Bignum) return Bignum is @@ -195,18 +217,14 @@ package body Grt.Fcvt is return Res; end Bignum_Mul; - function Bignum_Mul_Int (L : Bignum; R : Natural) return Bignum + function Bignum_Mul_Int (L : Bignum; R : Positive; Carry_In : Natural := 0) + return Bignum is Res : Bignum; Tmp : Unsigned_64; begin - if R = 0 then - Res.N := 0; - return Res; - end if; - - Tmp := 0; + Tmp := Unsigned_64 (Carry_In); for I in 1 .. L.N loop Tmp := Tmp + Unsigned_64 (L.V (I)) * Unsigned_64 (R); @@ -226,11 +244,13 @@ package body Grt.Fcvt is end Bignum_Mul_Int; -- In place multiplication. - procedure Bignum_Mul_Int (L : in out Bignum; R : Positive) + procedure Bignum_Mul_Int + (L : in out Bignum; R : Positive; Carry_In : Natural := 0) is Tmp : Unsigned_64; begin - Tmp := 0; + Tmp := Unsigned_64 (Carry_In); + for I in 1 .. L.N loop Tmp := Tmp + Unsigned_64 (L.V (I)) * Unsigned_64 (R); L.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#); @@ -259,7 +279,7 @@ package body Grt.Fcvt is end Bignum_Pow2; -- Compute L**N - function Bignum_Pow (L : Bignum; N : Natural) return Bignum + function Bignum_Pow (L : Natural; N : Natural) return Bignum is Res : Bignum; N1 : Natural; @@ -267,7 +287,7 @@ package body Grt.Fcvt is begin Bignum_Int (Res, 1); - T := L; + Bignum_Int (T, L); N1 := N; loop if N1 mod 2 = 1 then @@ -323,6 +343,225 @@ package body Grt.Fcvt is end if; end Bignum_Divstep; + -- N := N * 2 + procedure Bignum_Mul2 (N : in out Bignum) + is + Carry, Carry1 : Unsigned_32; + V : Unsigned_32; + begin + if N.N = 0 then + return; + end if; + + Carry := 0; + for I in 1 .. N.N loop + V := N.V (I); + Carry1 := Shift_Right (V, 31); + V := Shift_Left (V, 1) or Carry; + N.V (I) := V; + Carry := Carry1; + end loop; + if Carry /= 0 then + N.N := N.N + 1; + N.V (N.N) := Carry; + end if; + end Bignum_Mul2; + + function Ffs (V : Unsigned_32) return Natural + is + T : Unsigned_32; + Res : Natural; + begin + if V = 0 then + return 0; + end if; + + -- Compute clz (Count Leading Zero). + T := V; + Res := 0; + if (T and 16#ffff_0000#) = 0 then + T := Shift_Left (T, 16); + Res := Res + 16; + end if; + if (T and 16#ff00_0000#) = 0 then + T := Shift_Left (T, 8); + Res := Res + 8; + end if; + if (T and 16#f000_0000#) = 0 then + T := Shift_Left (T, 4); + Res := Res + 4; + end if; + if (T and 16#c000_0000#) = 0 then + T := Shift_Left (T, 2); + Res := Res + 2; + end if; + if (T and 16#8000_0000#) = 0 then + Res := Res + 1; + end if; + return 32 - Res; + end Ffs; + + -- Convert F to M*2**E, M having P bits of precision (2**P > M >= 2**(P-1)) + -- P < 64 + procedure Bignum_To_Fp (F : Bignum; + P : Natural; + M : out Unsigned_64; + E : out Integer) + is + Nbits : Natural; + P1 : Natural; + MSW : Unsigned_32; + MSW_Pos : Natural; + R : Unsigned_32; + Carry : Boolean; + begin + if F.N = 0 then + M := 0; + E := 0; + return; + end if; + + -- MSW_Pos is the position of the word from which R is extracted. + MSW_Pos := F.N; + MSW := F.V (MSW_Pos); + pragma Assert (MSW /= 0); + Nbits := Ffs (MSW); + P1 := P; + M := 0; + + E := Nbits + (F.N - 1) * 32 - P; + + if Nbits > P1 then + M := Unsigned_64 (Shift_Right (MSW, Nbits - P1)); + R := Shift_Left (MSW, 32 - (Nbits - P1)); + else + M := Shift_Left (Unsigned_64 (MSW), P1 - Nbits); + P1 := P1 - Nbits; + loop + MSW_Pos := MSW_Pos - 1; + if MSW_Pos = 0 then + -- No more input bits. + R := 0; + exit; + end if; + MSW:= F.V (MSW_Pos); + if P1 = 0 then + -- No more bits to shift in. + R := MSW; + exit; + end if; + if P1 < 32 then + M := M or Shift_Right (Unsigned_64 (MSW), 32 - P1); + R := Shift_Left (MSW, P1); + P1 := 0; + exit; + else + M := M or Shift_Left (Unsigned_64 (MSW), P1 - 32); + P1 := P1 - 32; + end if; + end loop; + end if; + + -- Round. + if R > 16#8000_0000# then + Carry := True; + elsif R < 16#8000_0000# then + Carry := False; + else + -- Tie. + loop + -- MSW_Pos = 0 means R was 0. + pragma Assert (MSW_Pos /= 0); + + if MSW_Pos = 1 then + -- R was extracted from the first word of F. No more input + -- bits. + + -- When exactely half in the middle, truncate. + Carry := False; + exit; + end if; + + MSW_Pos := MSW_Pos - 1; + if F.V (MSW_Pos) /= 0 then + Carry := True; + exit; + end if; + MSW_Pos := MSW_Pos - 1; + end loop; + end if; + + if Carry then + M := M + 1; + if M >= Shift_Left (1, P) then + E := E + 1; + M := Shift_Right (M, 1); + end if; + end if; + end Bignum_To_Fp; + + -- Multiply N by 2**(32 * Count) + procedure Bignum_Shift32_Left (N : in out Bignum; Count : Natural) is + begin + for I in reverse 1 .. N.N loop + N.V (I + Count) := N.V (I); + end loop; + for I in 1 .. Count loop + N.V (I) := 0; + end loop; + N.N := N.N + Count; + end Bignum_Shift32_Left; + + -- Compute F / Div = M * 2**E, with 2**Precision > M >= 2**(Precision-1) + procedure Bignum_Divide_To_Fp (F : in out Bignum; + Div : in out Bignum; + Precision : Natural; + M : out Unsigned_64; + E : out Integer) + is + Ediff : constant Integer := Div.N - (F.N + 1); + Dig : Boolean; + begin + -- Adjust exponents so that Div.N = F.N + 1 + E := -Precision + 1; + if Ediff > 0 then + -- Divider is larger + E := E - (32 * Ediff); + Bignum_Shift32_Left (F, Ediff); + elsif Ediff < 0 then + E := E - (32 * Ediff); + Bignum_Shift32_Left (Div, -Ediff); + end if; + pragma Assert (Div.N > F.N); + + -- Divide until the first 1. + loop + Bignum_Divstep (F, Div, Dig); + Bignum_Mul2 (F); + exit when Dig; + E := E - 1; + end loop; + + M := 1; + + -- Do precision steps + for I in 1 .. Precision - 1 loop + Bignum_Divstep (F, Div, Dig); + Bignum_Mul2 (F); + M := 2*M + Boolean'Pos (Dig); + end loop; + + -- Round. + Bignum_Divstep (F, Div, Dig); + if Dig then + M := M + 1; + if M = Shift_Left (1, Precision) then + M := M / 2; + E := E + 1; + end if; + end if; + end Bignum_Divide_To_Fp; + procedure Append (Str : in out String; Len : in out Natural; C : Character) @@ -347,7 +586,9 @@ package body Grt.Fcvt is end Append_Digit; -- Implement Table 1 - procedure Dragon4_Prepare (Ctxt : in out Fcvt_Context) is + procedure Dragon4_Prepare (Ctxt : in out Fcvt_Context) + is + Log2_S0 : Natural; begin if Ctxt.E >= 0 then -- Case e >= 0 @@ -359,7 +600,7 @@ package body Grt.Fcvt is -- m- = b**e Ctxt.R := Bignum_Mul (Ctxt.F, Bignum_Pow2 (Ctxt.E + 1)); Bignum_Int (Ctxt.S, 2); - Ctxt.Log2_S0 := 1; + Log2_S0 := 1; Ctxt.Mp := Bignum_Pow2 (Ctxt.E); Ctxt.Equal_M := True; else @@ -370,7 +611,7 @@ package body Grt.Fcvt is -- m- = b**e Ctxt.R := Bignum_Mul (Ctxt.F, Bignum_Pow2 (Ctxt.E + 1 + 1)); Bignum_Int (Ctxt.S, 2 * 2); - Ctxt.Log2_S0 := 2; + Log2_S0 := 2; Ctxt.Mp := Bignum_Pow2 (Ctxt.E + 1); Ctxt.Mm := Bignum_Pow2 (Ctxt.E); Ctxt.Equal_M := False; @@ -384,7 +625,7 @@ package body Grt.Fcvt is -- m+ = 1 -- m- = 1 Ctxt.R := Bignum_Mul_Int (Ctxt.F, 2); - Ctxt.Log2_S0 := -Ctxt.E + 1; + Log2_S0 := -Ctxt.E + 1; Bignum_Int (Ctxt.Mp, 1); Ctxt.Equal_M := True; else @@ -394,15 +635,29 @@ package body Grt.Fcvt is -- m+ = b -- m- = 1 Ctxt.R := Bignum_Mul_Int (Ctxt.F, 2 * 2); - Ctxt.Log2_S0 := -Ctxt.E + 1 + 1; + Log2_S0 := -Ctxt.E + 1 + 1; Bignum_Int (Ctxt.Mp, 2); Bignum_Int (Ctxt.Mm, 1); Ctxt.Equal_M := False; end if; - Ctxt.S := Bignum_Pow2 (Ctxt.Log2_S0); + Ctxt.S := Bignum_Pow2 (Log2_S0); end if; end Dragon4_Prepare; + procedure Dragon4_Fixup (Ctxt : in out Fcvt_Context) + is + begin + if Bignum_Compare (Bignum_Add (Ctxt.R, Ctxt.Mp), Ctxt.S) = Gt then + Ctxt.K := Ctxt.K + 1; + else + Bignum_Mul_Int (Ctxt.R, 10); + Bignum_Mul_Int (Ctxt.Mp, 10); + if not Ctxt.Equal_M then + Bignum_Mul_Int (Ctxt.Mm, 10); + end if; + end if; + end Dragon4_Fixup; + -- 2. Find the smallest integer k such that (r + m+) / s <= B**k; ie: -- k = ceil (logB ((r+m+)/s)) -- 3. If k >= 0, let r0 = r, s0 = s * B**k, m0+=m+ and m0-=m- @@ -413,96 +668,34 @@ package body Grt.Fcvt is -- k = ceil (logB (high)) procedure Dragon4_Scale (Ctxt : in out Fcvt_Context) is + L2 : Integer_64; T1 : Bignum; begin - if False and Ctxt.B = 10 then - -- TODO. - declare - E : Integer; - begin - if Ctxt.F.N = 2 and then Ctxt.F.V (2) >= 16#10_00_00# then - -- Normal binary64 number - E := 52 + Ctxt.E; - else - -- Denormal or non binary64. - E := Ctxt.E; - end if; - - -- Estimate k. - Ctxt.K := Integer (Float (E) * 0.30103); - - -- Need to compute B**k - Bignum_Int (T1, Ctxt.B); - - if Ctxt.K >= 0 then - T1 := Bignum_Pow (T1, Ctxt.K); - Ctxt.S := Bignum_Mul (Ctxt.S, T1); - else - T1 := Bignum_Pow (T1, -Ctxt.K); - Ctxt.R := Bignum_Mul (Ctxt.R, T1); - Ctxt.Mp := Bignum_Mul (Ctxt.Mp, T1); - if not Ctxt.Equal_M then - Ctxt.Mm := Bignum_Mul (Ctxt.Mm, T1); - end if; - end if; - end; - else - Ctxt.K := 0; - end if; - - T1 := Bignum_Add (Ctxt.R, Ctxt.Mp); - - -- Adjust s0 so that r + m+ <= s0 * B**k - while Bignum_Compare (T1, Ctxt.S) >= Eq loop + -- Estimate k. + -- log10(2) ~= 0.301029995664 + -- log10(2) * 2**32 ~= 1292913986 + L2 := Integer_64 (Ctxt.Log2v) * 1292913986; + Ctxt.K := Integer (L2 / 2**32); + + -- Ceiling. + -- If L2 < 0, L2 rem 2**32 <= 0 + if L2 rem 2**32 > 0 then Ctxt.K := Ctxt.K + 1; - Bignum_Mul_Int (Ctxt.S, Ctxt.B); - end loop; - - if Ctxt.K > 0 then - return; end if; - loop - Bignum_Mul_Int (T1, Ctxt.B); - exit when not (Bignum_Compare (T1, Ctxt.S) <= Eq); - Ctxt.K := Ctxt.K - 1; - Bignum_Mul_Int (Ctxt.R, Ctxt.B); - Bignum_Mul_Int (Ctxt.Mp, Ctxt.B); + -- Need to compute B**k + if Ctxt.K >= 0 then + T1 := Bignum_Pow (10, Ctxt.K); + Ctxt.S := Bignum_Mul (Ctxt.S, T1); + else + T1 := Bignum_Pow (10, -Ctxt.K); + Ctxt.R := Bignum_Mul (Ctxt.R, T1); + Ctxt.Mp := Bignum_Mul (Ctxt.Mp, T1); if not Ctxt.Equal_M then - Bignum_Mul_Int (Ctxt.Mm, Ctxt.B); + Ctxt.Mm := Bignum_Mul (Ctxt.Mm, T1); end if; - T1 := Bignum_Add (Ctxt.R, Ctxt.Mp); - end loop; - - -- Note: high = (v + v+) / 2 - -- = (2*v + b**e) / 2 - -- = ((2*f + 1) * b**e) / 2 - -- Proof: - -- - -- Case e >= 0 - -- Case f /= b**(p-1): - -- high = ((2*f + 1) * b**e) / 2 - -- Case f = b**(p-1) - -- high = ((2*f + 1) * b**(e+1)) / (b * 2) - -- = ((2*f + 1) * b**e) / 2 - -- Case e < 0 - -- Case e = min exp or f /= b**(p-1) - -- high = (2*f + 1) / (2*b**(-e)) - -- Case e > min exp and f = b**(p-1) - -- high = (2*f*b + b) / (2*b**(-e+1)) - -- = (2*f + 1) / (2*b**(-e)) - -- In all cases: - -- high = ((2*f + 1) * b**e) / 2 - - -- if Ctxt.B = 10 then - -- log10(2) ~= 0.30103 - -- k = ceil(log10((2*f+1) / 2) + log10(b**e)) - -- = ceil(log10((2*f+1)/2) + e*log10(2)) - -- If the input number was normalized, then: - -- 2**53 <= (2*f + 1)/2 <= 2**54 - -- 15.95 <= log10((2*f+1)/2) <= 16.255 - - -- so k = ceil (log10(r+m+) - log2(s)*log10(2)) + end if; + Dragon4_Fixup (Ctxt); end Dragon4_Scale; procedure Dragon4_Generate (Str : in out String; @@ -518,8 +711,6 @@ package body Grt.Fcvt is Cond1, Cond2 : Boolean; begin loop - Bignum_Mul_Int (Ctxt.R, Ctxt.B); - Bignum_Divstep (Ctxt.R, S8, Step); D := Boolean'Pos (Step) * 8; Bignum_Divstep (Ctxt.R, S4, Step); @@ -529,13 +720,10 @@ package body Grt.Fcvt is Bignum_Divstep (Ctxt.R, S1, Step); D := D + Boolean'Pos (Step); - Bignum_Mul_Int (Ctxt.Mp, Ctxt.B); - if not Ctxt.Equal_M then - Bignum_Mul_Int (Ctxt.Mm, Ctxt.B); - end if; - -- Stop conditions. - -- Note: there is a typo for condition (2) in the original paper. + -- Note: there is a typo for condition (2) in the original paper + -- (was fixed in 2006 - check the publish note at the bottom of the + -- first page). if not Ctxt.Equal_M then Cond1 := Bignum_Compare (Ctxt.R, Ctxt.Mm) = Lt; else @@ -545,6 +733,12 @@ package body Grt.Fcvt is exit when Cond1 or Cond2; Append_Digit (Str, Len, D); + + Bignum_Mul_Int (Ctxt.R, 10); + Bignum_Mul_Int (Ctxt.Mp, 10); + if not Ctxt.Equal_M then + Bignum_Mul_Int (Ctxt.Mm, 10); + end if; end loop; if Cond1 and not Cond2 then @@ -595,8 +789,7 @@ package body Grt.Fcvt is procedure To_String (Str : out String; Len : out Natural; - V : IEEE_Float_64; - Radix : Positive := 10) + V : IEEE_Float_64) is pragma Assert (Str'First = 1); @@ -618,7 +811,6 @@ package body Grt.Fcvt is -- Normal or denormal float. Len := 0; - Ctxt.B := Radix; Ctxt.F.N := 2; Ctxt.F.V (1) := Unsigned_32 (M and 16#ffff_ffff#); Ctxt.F.V (2) := Unsigned_32 (Shift_Right (M, 32) and 16#ffff_ffff#); @@ -636,7 +828,16 @@ package body Grt.Fcvt is Ctxt.Is_Emin := True; Ctxt.Is_Pow2 := False; -- Not needed. - Ctxt.Ge_One := False; + + -- Compute len(M). Don't use a dichotomy as the distribution is + -- not uniform but exponential. + Ctxt.Log2v := -1022 - 53; + for I in reverse 0 .. 51 loop + if M >= Shift_Left (1, I) then + Ctxt.Log2v := -1022 - 53 + I + 1; + exit; + end if; + end loop; else -- Normal. Ctxt.E := E - 1023 - 52; @@ -651,15 +852,17 @@ package body Grt.Fcvt is Ctxt.Is_Emin := False; Ctxt.Is_Pow2 := M = 0; - Ctxt.Ge_One := E = 1023; + Ctxt.Log2v := E - 1023; end if; pragma Assert (Bignum_Is_Valid (Ctxt.F)); First := Len; + -- At this point, the number is represented as: + -- F * 2**K if Ctxt.F.N = 0 then - -- Zero is special + -- Zero is special, handle it directly. Append (Str, Len, '0'); Ctxt.K := 1; else @@ -711,4 +914,177 @@ package body Grt.Fcvt is end loop; end; end To_String; + + -- Input is: (-1)**S * M * 2**E + function Pack (M : Unsigned_64; + E : Integer; + S : Boolean) return IEEE_Float_64 + is + function To_IEEE_Float_64 is new Ada.Unchecked_Conversion + (Unsigned_64, IEEE_Float_64); + T : Unsigned_64; + begin + pragma Assert (M < 16#20_00_00_00_00_00_00#); + if M = 0 then + T := 0; + else + pragma Assert (M >= 16#10_00_00_00_00_00_00#); + -- Note: input is (-1)**S * 1.FFFFF... * 2**(E + 52) + if E + 52 + 1023 >= 2047 then + -- Above greatest IEEE number, use Inf. + T := 16#7ff_0000000000000#; + elsif E + 52 + 1023 < 1 then + -- Denormal + if E + 52 + 1023 < -52 then + -- Below small IEEE number, use 0 + T := 0; + else + -- Denormal + T := Shift_Right (M, 52 + E + 52 + 1023); + end if; + else + -- Normal + T := M and 16#f_ff_ff_ff_ff_ff_ff#; + T := T or Shift_Left (Unsigned_64 (E + 52 + 1023), 52); + end if; + end if; + + if S then + T := T or Shift_Left (1, 63); + end if; + + return To_IEEE_Float_64 (T); + end Pack; + + -- Return (-1)**Neg * F * BASE**EXP to a float. + function To_Float_64 + (Neg : Boolean; F : Bignum; Base : Positive; Exp : Integer) + return IEEE_Float_64 + is + M : Unsigned_64; + T : Bignum; + Frac : Bignum; + E : Integer; + begin + if F.N = 0 then + -- 0 is always special... + M := 0; + E := 0; + elsif Exp >= 0 then + -- TODO: Multiply by 2**EXP * 5**EXP + Frac := Bignum_Mul (F, Bignum_Pow (Base, Exp)); + Bignum_To_Fp (Frac, 53, M, E); + else + T := Bignum_Pow (Base, -Exp); + -- M = F / 10**-Exp + -- = F / T + Frac := F; + Bignum_Divide_To_Fp (Frac, T, 53, M, E); + end if; + + return Pack (M, E, Neg); + end To_Float_64; + + function From_String (Str : String) return IEEE_Float_64 + is + P : Positive; + C : Character; + + Neg : Boolean; + Nbr_Digits : Natural; + Point_Position : Integer; + + F : Bignum; + Exp : Integer; + Exp_Neg : Boolean; + begin + Neg := False; + + P := Str'First; + + -- A correctly formatted number has at least one character. + + -- Leading (and optional) sign. + C := Str (P); + if C = '-' then + Neg := True; + P := P + 1; + C := Str (P); + elsif C = '+' then + P := P + 1; + C := Str (P); + end if; + + Nbr_Digits := 0; + Point_Position := -1; + F.N := 0; + loop + case C is + when '0' .. '9' => + F := Bignum_Mul_Int + (F, 10, Character'Pos (C) - Character'Pos ('0')); + Nbr_Digits := Nbr_Digits + 1; + when '.' => + Point_Position := Nbr_Digits; + when '_' => + null; + when 'e' | 'E' => + Exp := 0; + exit; + when others => + raise Constraint_Error; + end case; + P := P + 1; + if P > Str'Last then + Exp := -1; + exit; + end if; + C := Str (P); + end loop; + + if Exp = 0 then + P := P + 1; + C := Str (P); + + -- Sign of the exponent. + Exp_Neg := False; + if C = '-' then + Exp_Neg := True; + P := P + 1; + C := Str (P); + elsif C = '+' then + P := P + 1; + C := Str (P); + end if; + + -- Exponent. + loop + case C is + when '0' .. '9' => + Exp := Exp * 10 + Character'Pos (C) - Character'Pos ('0'); + when '_' => + null; + when others => + raise Constraint_Error; + end case; + P := P + 1; + exit when P > Str'Last; + C := Str (P); + end loop; + + if Exp_Neg then + Exp := -Exp; + end if; + else + Exp := 0; + end if; + + if Point_Position /= -1 then + Exp := Exp - (Nbr_Digits - Point_Position); + end if; + + -- The internal representation of the number is: + -- F * 10**EXP + return To_Float_64 (Neg, F, 10, Exp); + end From_String; end Grt.Fcvt; diff --git a/src/grt/grt-fcvt.ads b/src/grt/grt-fcvt.ads index 82ed94363..e1e272850 100644 --- a/src/grt/grt-fcvt.ads +++ b/src/grt/grt-fcvt.ads @@ -23,16 +23,60 @@ -- however invalidate any other reasons why the executable file might be -- covered by the GNU Public License. +-- IMPORTANT: this unit can also be used by the front-end, so it must NOT +-- depend on anything else from grt (except the grt parent package), including +-- grt.types. + with Interfaces; use Interfaces; package Grt.Fcvt is - -- Convert V to RADIX number stored (in ASCII) in STR/LEN [using at most + -- Convert V to 10-based number stored (in ASCII) in STR/LEN [using at most -- NDIGITS digits.] -- LEN is the number of characters needed (so it may be greater than -- STR'Length). -- Requires STR'First = 1. procedure To_String (Str : out String; Len : out Natural; - V : IEEE_Float_64; - Radix : Positive := 10); + V : IEEE_Float_64); + + -- Input format is [+-]int[.int][e[+-]int] + -- where int is digit { _ digit } + -- and [+-] means optional + or -. + -- The input string must be correctly formatted. + function From_String (Str : String) return IEEE_Float_64; + + -- Ad-hoc implementation of bignums, with the minimal features to support + -- radix conversion. + type Bignum is private; + + -- Compute L * R + CARRY_IN. + procedure Bignum_Mul_Int + (L : in out Bignum; R : Positive; Carry_In : Natural := 0); + + -- Multiply two bignums. + function Bignum_Mul (L, R : Bignum) return Bignum; + + -- Compute L**N + function Bignum_Pow (L : Natural; N : Natural) return Bignum; + + -- Create a bignum from a natural. + procedure Bignum_Int (Res : out Bignum; N : Natural); + + -- Convert N to RES. OK is set to True if the number fits in RES. + procedure Bignum_To_Int + (N : Bignum; Res : out Unsigned_64; OK : out Boolean); + + -- Return (-1)**Neg * F * BASE**EXP to a float. + function To_Float_64 + (Neg : Boolean; F : Bignum; Base : Positive; Exp : Integer) + return IEEE_Float_64; +private + type Unsigned_32_Array is array (Natural range <>) of Unsigned_32; + + type Bignum is record + -- Number of digits. Must be 0 for number 0. + N : Natural; + -- Digits. The leading digit V(N + 1) must not be 0. + V : Unsigned_32_Array (1 .. 37); + end record; end Grt.Fcvt; diff --git a/src/vhdl/scanner-scan_literal.adb b/src/vhdl/scanner-scan_literal.adb index 74acf44d5..74af66fff 100644 --- a/src/vhdl/scanner-scan_literal.adb +++ b/src/vhdl/scanner-scan_literal.adb @@ -15,7 +15,9 @@ -- along with GHDL; see the file COPYING. If not, write to the Free -- Software Foundation, 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. -with Ada.Unchecked_Conversion; + +with Interfaces; use Interfaces; +with Grt.Fcvt; use Grt.Fcvt; separate (Scanner) @@ -29,329 +31,9 @@ separate (Scanner) -- BASED_LITERAL ::= BASE # BASED_INTEGER [ . BASED_INTEGER ] # EXPONENT -- BASE ::= INTEGER procedure Scan_Literal is - -- The base of an E_NUM is 2**16. - -- Type Uint16 is the type of a digit. - type Uint16 is mod 2 ** 16; - - type Uint32 is mod 2 ** 32; - - -- Type of the exponent. - type Sint16 is range -2 ** 15 .. 2 ** 15 - 1; - - -- Number of digits in a E_NUM. - -- We want at least 64bits of precision, so at least 5 digits of 16 bits - -- are required. - Nbr_Digits : constant Sint16 := 5; - subtype Digit_Range is Sint16 range 0 .. Nbr_Digits - 1; - - type Uint16_Array is array (Sint16 range <>) of Uint16; - - -- The value of an E_NUM is (S(N-1)|S(N-2) .. |S(0))* 2**(16*E) - -- where '|' is concatenation. - type E_Num is record - S : Uint16_Array (Digit_Range); - E : Sint16; - end record; - - E_Zero : constant E_Num := (S => (others => 0), E => 0); - E_One : constant E_Num := (S => (0 => 1, others => 0), E => 0); - - -- Compute RES = E * B + V. - -- RES and E can be the same object. - procedure Bmul (Res : out E_Num; E : E_Num; V : Uint16; B : Uint16); - - -- Convert to integer. - procedure Fix (Res : out Iir_Int64; Ok : out Boolean; E : E_Num); - - -- RES := A * B - -- RES can be A or B. - procedure Mul (Res : out E_Num; A, B : E_Num); - - -- RES := A / B. - -- RES can be A. - -- May raise constraint error. - procedure Div (Res : out E_Num; A, B: E_Num); - - -- Convert V to an E_Num. - function To_E_Num (V : Uint16) return E_Num; - - -- Convert E to RES. - procedure To_Float (Res : out Iir_Fp64; Ok : out Boolean; E : E_Num); - - procedure Bmul (Res : out E_Num; E : E_Num; V : Uint16; B : Uint16) - is - -- The carry. - C : Uint32; - begin - -- Only consider V if E is not scaled (otherwise V is not significant). - if E.E = 0 then - C := Uint32 (V); - else - C := 0; - end if; - - -- Multiply and propagate the carry. - for I in Digit_Range loop - C := Uint32 (E.S (I)) * Uint32 (B) + C; - Res.S (I) := Uint16 (C mod Uint16'Modulus); - C := C / Uint16'Modulus; - end loop; - - -- There is a carry, shift. - if C /= 0 then - -- ERR: Possible overflow. - Res.E := E.E + 1; - for I in 0 .. Nbr_Digits - 2 loop - Res.S (I) := Res.S (I + 1); - end loop; - Res.S (Nbr_Digits - 1) := Uint16 (C); - else - Res.E := E.E; - end if; - end Bmul; - - type Uint64 is mod 2 ** 64; - function Shift_Left (Value : Uint64; Amount: Natural) return Uint64; - function Shift_Left (Value : Uint16; Amount: Natural) return Uint16; - pragma Import (Intrinsic, Shift_Left); - - function Shift_Right (Value : Uint16; Amount: Natural) return Uint16; - pragma Import (Intrinsic, Shift_Right); - - function Unchecked_Conversion is new Ada.Unchecked_Conversion - (Source => Uint64, Target => Iir_Int64); - - procedure Fix (Res : out Iir_Int64; Ok : out Boolean; E : E_Num) - is - R : Uint64; - M : Sint16; - begin - -- Find the most significant digit. - M := -1; - for I in reverse Digit_Range loop - if E.S (I) /= 0 then - M := I; - exit; - end if; - end loop; - - -- Handle the easy 0 case. - -- The case M = -1 is handled below, in the normal flow. - if M + E.E < 0 then - Res := 0; - Ok := True; - return; - end if; - - -- Handle overflow. - -- 4 is the number of uint16 in a uint64. - if M + E.E >= 4 then - Ok := False; - return; - end if; - - -- Convert - R := 0; - for I in 0 .. M loop - R := R or Shift_Left (Uint64 (E.S (I)), 16 * Natural (E.E + I)); - end loop; - -- Check the sign bit is 0. - if (R and Shift_Left (1, 63)) /= 0 then - Ok := False; - else - Ok := True; - Res := Unchecked_Conversion (R); - end if; - end Fix; - - -- Return the position of the most non-null digit, -1 if V is 0. - function First_Digit (V : E_Num) return Sint16 is - begin - for I in reverse Digit_Range loop - if V.S (I) /= 0 then - return I; - end if; - end loop; - return -1; - end First_Digit; - - procedure Mul (Res : out E_Num; A, B : E_Num) - is - T : Uint16_Array (0 .. 2 * Nbr_Digits - 1); - V : Uint32; - Max : Sint16; - begin - V := 0; - for I in 0 .. Nbr_Digits - 1 loop - for J in 0 .. I loop - V := V + Uint32 (A.S (J)) * Uint32 (B.S (I - J)); - end loop; - T (I) := Uint16 (V mod Uint16'Modulus); - V := V / Uint16'Modulus; - end loop; - for I in Nbr_Digits .. 2 * Nbr_Digits - 2 loop - for J in I - Nbr_Digits + 1 .. Nbr_Digits - 1 loop - V := V + Uint32 (A.S (J)) * Uint32 (B.S (I - J)); - end loop; - T (I) := Uint16 (V mod Uint16'Modulus); - V := V / Uint16'Modulus; - end loop; - T (T'Last) := Uint16 (V); - -- Search the leading non-nul. - Max := -1; - for I in reverse T'Range loop - if T (I) /= 0 then - Max := I; - exit; - end if; - end loop; - if Max > Nbr_Digits - 1 then - -- Loss of precision. - -- Round. - if T (Max - Nbr_Digits) >= Uint16 (Uint16'Modulus / 2) then - V := 1; - for I in Max - (Nbr_Digits - 1) .. Max loop - V := V + Uint32 (T (I)); - T (I) := Uint16 (V mod Uint16'Modulus); - V := V / Uint16'Modulus; - exit when V = 0; - end loop; - if V /= 0 then - Max := Max + 1; - T (Max) := Uint16 (V); - end if; - end if; - Res.S := T (Max - (Nbr_Digits - 1) .. Max); - -- This may overflow. - Res.E := A.E + B.E + Max - (Nbr_Digits - 1); - else - Res.S (0 .. Max) := T (0 .. Max); - Res.S (Max + 1 .. Nbr_Digits - 1) := (others => 0); - -- This may overflow. - Res.E := A.E + B.E; - end if; - end Mul; - - procedure Div (Res : out E_Num; A, B: E_Num) - is - Dividend : Uint16_Array (0 .. Nbr_Digits); - A_F : constant Sint16 := First_Digit (A); - B_F : constant Sint16 := First_Digit (B); - - -- Digit corresponding to the first digit of B. - Doff : constant Sint16 := Dividend'Last - B_F; - Q : Uint16; - C, N_C : Uint16; - begin - -- Check for division by 0. - if B_F < 0 then - raise Constraint_Error; - end if; - - -- Copy and shift dividend. - -- Bit 15 of the most significant digit of A becomes bit 0 of the - -- most significant digit of DIVIDEND. Therefore we are sure - -- DIVIDEND < B (after realignment). - C := 0; - for K in 0 .. A_F loop - N_C := Shift_Right (A.S (K), 15); - Dividend (Dividend'Last - A_F - 1 + K) - := Shift_Left (A.S (K), 1) or C; - C := N_C; - end loop; - Dividend (Nbr_Digits) := C; - Dividend (0 .. Dividend'last - 2 - A_F) := (others => 0); - - -- Algorithm is the same as division by hand. - C := 0; - for I in reverse Digit_Range loop - Q := 0; - for J in 0 .. 15 loop - declare - Borrow : Uint32; - Tmp : Uint16_Array (0 .. B_F); - V : Uint32; - V16 : Uint16; - begin - -- Compute TMP := dividend - B; - Borrow := 0; - for K in 0 .. B_F loop - V := Uint32 (B.S (K)) + Borrow; - V16 := Uint16 (V mod Uint16'Modulus); - if V16 > Dividend (Doff + K) then - Borrow := 1; - else - Borrow := 0; - end if; - Tmp (K) := Dividend (Doff + K) - V16; - end loop; - - -- If the last shift creates a carry, we are sure Dividend > B - if C /= 0 then - Borrow := 0; - end if; - - Q := Q * 2; - -- Begin of : Dividend = Dividend * 2 - C := 0; - for K in 0 .. Doff - 1 loop - N_C := Shift_Right (Dividend (K), 15); - Dividend (K) := Shift_Left (Dividend (K), 1) or C; - C := N_C; - end loop; - - if Borrow = 0 then - -- Dividend > B - Q := Q + 1; - -- Dividend = Tmp * 2 - -- = (Dividend - B) * 2 - for K in Doff .. Nbr_Digits loop - N_C := Shift_Right (Tmp (K - Doff), 15); - Dividend (K) := Shift_Left (Tmp (K - Doff), 1) or C; - C := N_C; - end loop; - else - -- Dividend = Dividend * 2 - for K in Doff .. Nbr_Digits loop - N_C := Shift_Right (Dividend (K), 15); - Dividend (K) := Shift_Left (Dividend (K), 1) or C; - C := N_C; - end loop; - end if; - end; - end loop; - Res.S (I) := Q; - end loop; - Res.E := A.E - B.E + (A_F - B_F) - (Nbr_Digits - 1); - end Div; - - procedure To_Float (Res : out Iir_Fp64; Ok : out Boolean; E : E_Num) - is - V : Iir_Fp64; - P : Iir_Fp64; - begin - Res := 0.0; - P := Iir_Fp64'Scaling (1.0, 16 * E.E); - for I in Digit_Range loop - V := Iir_Fp64 (E.S (I)) * P; - P := Iir_Fp64'Scaling (P, 16); - Res := Res + V; - end loop; - Ok := True; - end To_Float; - - function To_E_Num (V : Uint16) return E_Num - is - Res : E_Num; - begin - Res.E := 0; - Res.S := (0 => V, others => 0); - return Res; - end To_E_Num; - -- Numbers of digits. Scale : Integer; - Res : E_Num; + Res : Bignum; -- LRM 13.4.1 -- INTEGER ::= DIGIT { [ UNDERLINE ] DIGIT } @@ -365,7 +47,7 @@ procedure Scan_Literal is C := Source (Pos); loop -- C is a digit. - Bmul (Res, Res, Character'Pos (C) - Character'Pos ('0'), 10); + Bignum_Mul_Int (Res, 10, Character'Pos (C) - Character'Pos ('0')); Scale := Scale + 1; Pos := Pos + 1; @@ -386,12 +68,12 @@ procedure Scan_Literal is end Scan_Integer; C : Character; - D : Uint16; + D : Natural; Ok : Boolean; Has_Dot : Boolean; Exp : Integer; Exp_Neg : Boolean; - Base : Uint16; + Base : Positive; begin -- Start with a simple and fast conversion. C := Source (Pos); @@ -416,7 +98,7 @@ begin if C = '.' or else C = '#' or else (C = 'e' or C = 'E' or C = ':') then -- Continue scanning. - Res := To_E_Num (D); + Bignum_Int (Res, D); exit; end if; @@ -426,10 +108,10 @@ begin -- No possible overflow. Current_Context.Int64 := Iir_Int64 (D); return; - elsif D >= 6552 then - -- Number may be greather than the uint16 limit. + elsif D >= (Natural'Last / 10) - 1 then + -- Number may be greather than the natural limit. Scale := 0; - Res := To_E_Num (D); + Bignum_Int (Res, D); Scan_Integer; exit; end if; @@ -465,9 +147,9 @@ begin -- Based integer. declare Number_Sign : constant Character := C; - Res_Int : Iir_Int64; + Res_Int : Interfaces.Unsigned_64; begin - Fix (Res_Int, Ok, Res); + Bignum_To_Int (Res, Res_Int, Ok); if not Ok or else Res_Int > 16 then -- LRM 13.4.2 -- The base must be [...] at most sixteen. @@ -481,11 +163,11 @@ begin -- Fallback. Base := 2; else - Base := Uint16 (Res_Int); + Base := Natural (Res_Int); end if; Pos := Pos + 1; - Res := E_Zero; + Bignum_Int (Res, 0); C := Source (Pos); loop if C >= '0' and C <= '9' then @@ -508,7 +190,7 @@ begin D := 1; end if; Pos := Pos + 1; - Bmul (Res, Res, D, Base); + Bignum_Mul_Int (Res, Base, D); Scale := Scale + 1; C := Source (Pos); @@ -538,6 +220,8 @@ begin end loop; end; end if; + + -- Exponent. C := Source (Pos); Exp := 0; if C = 'E' or else C = 'e' then @@ -594,53 +278,30 @@ begin end if; if Has_Dot then - Scale := Scale - Exp; - else - Scale := -Exp; - end if; - if Scale /= 0 then - declare - Scale_Neg : Boolean; - Val_Exp : E_Num; - Val_Pow : E_Num; - begin - if Scale > 0 then - Scale_Neg := True; - else - Scale_Neg := False; - Scale := -Scale; - end if; - - Val_Pow := To_E_Num (Base); - Val_Exp := E_One; - while Scale /= 0 loop - if Scale mod 2 = 1 then - Mul (Val_Exp, Val_Exp, Val_Pow); - end if; - Scale := Scale / 2; - Mul (Val_Pow, Val_Pow, Val_Pow); - end loop; - if Scale_Neg then - Div (Res, Res, Val_Exp); - else - Mul (Res, Res, Val_Exp); - end if; - end; - end if; - - if Has_Dot then -- a universal real. Current_Token := Tok_Real; - -- Set to a valid literal, in case of constraint error. - To_Float (Current_Context.Fp64, Ok, Res); - if not Ok then - Error_Msg_Scan ("literal beyond real bounds"); - end if; + + Current_Context.Fp64 := + Fp64 (To_Float_64 (False, Res, Base, Exp - Scale)); else -- a universal integer. Current_Token := Tok_Integer; + -- Set to a valid literal, in case of constraint error. - Fix (Current_Context.Int64, Ok, Res); + if Exp /= 0 then + Res := Bignum_Mul (Res, Bignum_Pow (Base, Exp)); + end if; + + declare + U : Unsigned_64; + begin + Bignum_To_Int (Res, U, Ok); + if U > Unsigned_64 (Iir_Int64'Last) then + Ok := False; + else + Current_Context.Int64 := Iir_Int64 (U); + end if; + end; if not Ok then Error_Msg_Scan ("literal beyond integer bounds"); end if; |