aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorTristan Gingold <tgingold@free.fr>2017-04-08 04:02:42 +0200
committerTristan Gingold <tgingold@free.fr>2017-04-19 20:48:23 +0200
commit761f216517447532ba7aedd9b54300328d0dfa1b (patch)
tree530d2b346a39ffd3036fa92d942f731257f8fc6d
parentf12749b4be6dca9dcbf05f7aa9fdc2a47079f2c9 (diff)
downloadghdl-761f216517447532ba7aedd9b54300328d0dfa1b.tar.gz
ghdl-761f216517447532ba7aedd9b54300328d0dfa1b.tar.bz2
ghdl-761f216517447532ba7aedd9b54300328d0dfa1b.zip
scanner: use grt-fcvt for radix conversion.
-rw-r--r--Makefile.in14
-rw-r--r--src/grt/grt-fcvt.adb634
-rw-r--r--src/grt/grt-fcvt.ads50
-rw-r--r--src/vhdl/scanner-scan_literal.adb411
4 files changed, 596 insertions, 513 deletions
diff --git a/Makefile.in b/Makefile.in
index 18dcbe78d..58543a457 100644
--- a/Makefile.in
+++ b/Makefile.in
@@ -103,7 +103,7 @@ copy-sources: copy-sources.$(backend)
Makefile: $(srcdir)/Makefile.in
./config.status
-GHDL_COMMON_INCFLAGS=-aI$(srcdir)/src -aI$(srcdir)/src/vhdl -aI$(srcdir)/src/psl -aI$(srcdir)/src/vhdl/translate
+GHDL_COMMON_INCFLAGS=-aI$(srcdir)/src -aI$(srcdir)/src/vhdl -aI$(srcdir)/src/grt -aI$(srcdir)/src/psl -aI$(srcdir)/src/vhdl/translate
GRTSRCDIR=$(srcdir)/src/grt
include $(GRTSRCDIR)/Makefile.inc
@@ -126,7 +126,7 @@ version.ads: version.tmp
all.mcode: ghdl_mcode$(EXEEXT) libs.vhdl.mcode all.vpi
-GHDL_MCODE_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/grt -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/mcode
+GHDL_MCODE_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/mcode
ghdl_mcode$(EXEEXT): GRT_FLAGS+=-DWITH_GNAT_RUN_TIME
ghdl_mcode$(EXEEXT): $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) $(ORTHO_DEPS) \
@@ -167,6 +167,8 @@ copy-sources.gcc: version.ads
$(CP) -p $(srcdir)/src/vhdl/*.ad? $(gcc_vhdl_dir)
$(CP) -p $(srcdir)/src/vhdl/translate/*.ad? $(gcc_vhdl_dir)
$(CP) -p $(srcdir)/src/psl/*.ad? $(gcc_vhdl_dir)
+ $(CP) -p $(srcdir)/src/grt/grt.ad? $(gcc_vhdl_dir)
+ $(CP) -p $(srcdir)/src/grt/grt-fcvt.ad? $(gcc_vhdl_dir)
$(CP) -p $(srcdir)/src/ortho/*.ad? $(gcc_vhdl_dir)
$(CP) -p $(srcdir)/src/ortho/gcc/*.ad? $(gcc_vhdl_dir)
$(CP) -p $(srcdir)/src/ortho/gcc/*.c $(gcc_vhdl_dir)
@@ -235,7 +237,7 @@ oread-gcc$(EXEEXT): force
#################### For llvm backend ##############################
-GHDL_LLVM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/grt -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/$(llvm_be)
+GHDL_LLVM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/ortho -aI$(srcdir)/src/ortho/$(llvm_be)
all.llvm: ghdl1-llvm$(EXEEXT) ghdl_llvm$(EXEEXT) grt-all libs.vhdl.llvm all.vpi
@@ -285,7 +287,7 @@ install.llvm: install.llvm.program install.vhdllib install.grt install.vpi
################ For simul (no code generation, interpretation) ##########
-GHDL_SIMUL_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/synth -aI$(srcdir)/src/grt
+GHDL_SIMUL_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/synth
ghdl_simul$(EXEEXT): $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force
$(GNATMAKE) $(GHDL_SIMUL_INCFLAGS) $(GNATFLAGS) -gnat12 ghdl_simul $(GNAT_BARGS) -largs $(GNAT_LARGS) $(GRT_ADD_OBJS) $(subst @,$(GRTSRCDIR),$(GRT_EXTRA_LIB))
@@ -295,7 +297,7 @@ libs.vhdl.simul: ghdl_simul$(EXEEXT)
################ mhdlsim (library for the vhdl part) ####################
-GHDL_MHDLSIM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/mhdlsim -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/grt
+GHDL_MHDLSIM_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/mhdlsim -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate
libmhdlsimvhdl.a: $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force
$(GNATMAKE) -c mhdlsim $(GNATFLAGS) $(GHDL_MHDLSIM_INCFLAGS)
@@ -307,7 +309,7 @@ libmhdlsimvhdl.a: $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force
################ ghdlsynth library ######################################
-GHDL_SYNTHLIB_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/synth -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate -aI$(srcdir)/src/grt
+GHDL_SYNTHLIB_INCFLAGS=$(GHDL_COMMON_INCFLAGS) -aI$(srcdir)/src/synth -aI$(srcdir)/src/ghdldrv -aI$(srcdir)/src/vhdl/simulate
libghdlsynth.a: $(GRT_ADD_OBJS) $(GRT_SRC_DEPS) version.ads force
$(GNATMAKE) -c libghdlsynth $(GNATFLAGS) -gnat12 $(GHDL_SYNTHLIB_INCFLAGS)
diff --git a/src/grt/grt-fcvt.adb b/src/grt/grt-fcvt.adb
index 0328a04a3..2e3cd0d23 100644
--- a/src/grt/grt-fcvt.adb
+++ b/src/grt/grt-fcvt.adb
@@ -25,6 +25,22 @@
with Ada.Unchecked_Conversion;
+-- Double float (aka binary64 representation):
+-- exponent bias is 1023
+--
+-- |-----------------------------------------------------------
+-- | 63 | 62-52 | 51-0 |
+-- | sign | exponent | fraction | Value
+-- |-----------------------------------------------------------
+-- | s | 0 | f | (-1)**s * 0.f * 2**(1 - 1023)
+-- |-----------------------------------------------------------
+-- | s | 1 - 2046 | f | (-1)**s * 1.f * 2**(e - 1023)
+-- |-----------------------------------------------------------
+-- | s | 2047 | 0 | (-1)**s * inf
+-- |-----------------------------------------------------------
+-- | s | 2047 | /= 0 | NaN
+-- |-----------------------------------------------------------
+
-- Implement 'dragon4' algorithm described in:
-- Printing Floating-Point Numbers Quickly and Accurately
-- Robert G. Burger and R. Kent Dybvig
@@ -37,15 +53,6 @@ package body Grt.Fcvt is
function F64_To_U64 is new Ada.Unchecked_Conversion
(IEEE_Float_64, Unsigned_64);
- type Unsigned_32_Array is array (Natural range <>) of Unsigned_32;
-
- type Bignum is record
- -- Number of digits. Must be 0 for number 0.
- N : Natural;
- -- Digits. The leading digit V(N + 1) must not be 0.
- V : Unsigned_32_Array (1 .. 37);
- end record;
-
type Fcvt_Context is record
-- Inputs
-- v = f * 2**e
@@ -60,13 +67,11 @@ package body Grt.Fcvt is
-- If true, Mp = Mm (often the case). In that case Mm is not set.
Equal_M : Boolean;
- -- If true, the number is >= 1.0
- -- Used by the fast estimator.
- Ge_One : Boolean;
+ -- Log2 (v). Used to estimate k.
+ Log2v : Integer;
-- Internal variables
-- v = r / s
- Log2_S0 : Natural;
K : Integer;
R : Bignum;
S : Bignum;
@@ -90,8 +95,7 @@ package body Grt.Fcvt is
end Bignum_Is_Valid;
-- Create a bignum from a natural.
- procedure Bignum_Int (Res : out Bignum; N : Natural)
- is
+ procedure Bignum_Int (Res : out Bignum; N : Natural) is
begin
if N = 0 then
Res.N := 0;
@@ -101,6 +105,24 @@ package body Grt.Fcvt is
end if;
end Bignum_Int;
+ procedure Bignum_To_Int
+ (N : Bignum; Res : out Unsigned_64; OK : out Boolean) is
+ begin
+ OK := True;
+ case N.N is
+ when 0 =>
+ Res := 0;
+ when 1 =>
+ Res := Unsigned_64 (N.V (1));
+ when 2 =>
+ Res := Shift_Left (Unsigned_64 (N.V (2)), 32)
+ or Unsigned_64 (N.V (1));
+ when others =>
+ Res := 0;
+ OK := False;
+ end case;
+ end Bignum_To_Int;
+
-- Add two bignums, assuming A > B.
function Bignum_Add2 (A, B : Bignum) return Bignum
is
@@ -195,18 +217,14 @@ package body Grt.Fcvt is
return Res;
end Bignum_Mul;
- function Bignum_Mul_Int (L : Bignum; R : Natural) return Bignum
+ function Bignum_Mul_Int (L : Bignum; R : Positive; Carry_In : Natural := 0)
+ return Bignum
is
Res : Bignum;
Tmp : Unsigned_64;
begin
- if R = 0 then
- Res.N := 0;
- return Res;
- end if;
-
- Tmp := 0;
+ Tmp := Unsigned_64 (Carry_In);
for I in 1 .. L.N loop
Tmp := Tmp + Unsigned_64 (L.V (I)) * Unsigned_64 (R);
@@ -226,11 +244,13 @@ package body Grt.Fcvt is
end Bignum_Mul_Int;
-- In place multiplication.
- procedure Bignum_Mul_Int (L : in out Bignum; R : Positive)
+ procedure Bignum_Mul_Int
+ (L : in out Bignum; R : Positive; Carry_In : Natural := 0)
is
Tmp : Unsigned_64;
begin
- Tmp := 0;
+ Tmp := Unsigned_64 (Carry_In);
+
for I in 1 .. L.N loop
Tmp := Tmp + Unsigned_64 (L.V (I)) * Unsigned_64 (R);
L.V (I) := Unsigned_32 (Tmp and 16#ffff_ffff#);
@@ -259,7 +279,7 @@ package body Grt.Fcvt is
end Bignum_Pow2;
-- Compute L**N
- function Bignum_Pow (L : Bignum; N : Natural) return Bignum
+ function Bignum_Pow (L : Natural; N : Natural) return Bignum
is
Res : Bignum;
N1 : Natural;
@@ -267,7 +287,7 @@ package body Grt.Fcvt is
begin
Bignum_Int (Res, 1);
- T := L;
+ Bignum_Int (T, L);
N1 := N;
loop
if N1 mod 2 = 1 then
@@ -323,6 +343,225 @@ package body Grt.Fcvt is
end if;
end Bignum_Divstep;
+ -- N := N * 2
+ procedure Bignum_Mul2 (N : in out Bignum)
+ is
+ Carry, Carry1 : Unsigned_32;
+ V : Unsigned_32;
+ begin
+ if N.N = 0 then
+ return;
+ end if;
+
+ Carry := 0;
+ for I in 1 .. N.N loop
+ V := N.V (I);
+ Carry1 := Shift_Right (V, 31);
+ V := Shift_Left (V, 1) or Carry;
+ N.V (I) := V;
+ Carry := Carry1;
+ end loop;
+ if Carry /= 0 then
+ N.N := N.N + 1;
+ N.V (N.N) := Carry;
+ end if;
+ end Bignum_Mul2;
+
+ function Ffs (V : Unsigned_32) return Natural
+ is
+ T : Unsigned_32;
+ Res : Natural;
+ begin
+ if V = 0 then
+ return 0;
+ end if;
+
+ -- Compute clz (Count Leading Zero).
+ T := V;
+ Res := 0;
+ if (T and 16#ffff_0000#) = 0 then
+ T := Shift_Left (T, 16);
+ Res := Res + 16;
+ end if;
+ if (T and 16#ff00_0000#) = 0 then
+ T := Shift_Left (T, 8);
+ Res := Res + 8;
+ end if;
+ if (T and 16#f000_0000#) = 0 then
+ T := Shift_Left (T, 4);
+ Res := Res + 4;
+ end if;
+ if (T and 16#c000_0000#) = 0 then
+ T := Shift_Left (T, 2);
+ Res := Res + 2;
+ end if;
+ if (T and 16#8000_0000#) = 0 then
+ Res := Res + 1;
+ end if;
+ return 32 - Res;
+ end Ffs;
+
+ -- Convert F to M*2**E, M having P bits of precision (2**P > M >= 2**(P-1))
+ -- P < 64
+ procedure Bignum_To_Fp (F : Bignum;
+ P : Natural;
+ M : out Unsigned_64;
+ E : out Integer)
+ is
+ Nbits : Natural;
+ P1 : Natural;
+ MSW : Unsigned_32;
+ MSW_Pos : Natural;
+ R : Unsigned_32;
+ Carry : Boolean;
+ begin
+ if F.N = 0 then
+ M := 0;
+ E := 0;
+ return;
+ end if;
+
+ -- MSW_Pos is the position of the word from which R is extracted.
+ MSW_Pos := F.N;
+ MSW := F.V (MSW_Pos);
+ pragma Assert (MSW /= 0);
+ Nbits := Ffs (MSW);
+ P1 := P;
+ M := 0;
+
+ E := Nbits + (F.N - 1) * 32 - P;
+
+ if Nbits > P1 then
+ M := Unsigned_64 (Shift_Right (MSW, Nbits - P1));
+ R := Shift_Left (MSW, 32 - (Nbits - P1));
+ else
+ M := Shift_Left (Unsigned_64 (MSW), P1 - Nbits);
+ P1 := P1 - Nbits;
+ loop
+ MSW_Pos := MSW_Pos - 1;
+ if MSW_Pos = 0 then
+ -- No more input bits.
+ R := 0;
+ exit;
+ end if;
+ MSW:= F.V (MSW_Pos);
+ if P1 = 0 then
+ -- No more bits to shift in.
+ R := MSW;
+ exit;
+ end if;
+ if P1 < 32 then
+ M := M or Shift_Right (Unsigned_64 (MSW), 32 - P1);
+ R := Shift_Left (MSW, P1);
+ P1 := 0;
+ exit;
+ else
+ M := M or Shift_Left (Unsigned_64 (MSW), P1 - 32);
+ P1 := P1 - 32;
+ end if;
+ end loop;
+ end if;
+
+ -- Round.
+ if R > 16#8000_0000# then
+ Carry := True;
+ elsif R < 16#8000_0000# then
+ Carry := False;
+ else
+ -- Tie.
+ loop
+ -- MSW_Pos = 0 means R was 0.
+ pragma Assert (MSW_Pos /= 0);
+
+ if MSW_Pos = 1 then
+ -- R was extracted from the first word of F. No more input
+ -- bits.
+
+ -- When exactely half in the middle, truncate.
+ Carry := False;
+ exit;
+ end if;
+
+ MSW_Pos := MSW_Pos - 1;
+ if F.V (MSW_Pos) /= 0 then
+ Carry := True;
+ exit;
+ end if;
+ MSW_Pos := MSW_Pos - 1;
+ end loop;
+ end if;
+
+ if Carry then
+ M := M + 1;
+ if M >= Shift_Left (1, P) then
+ E := E + 1;
+ M := Shift_Right (M, 1);
+ end if;
+ end if;
+ end Bignum_To_Fp;
+
+ -- Multiply N by 2**(32 * Count)
+ procedure Bignum_Shift32_Left (N : in out Bignum; Count : Natural) is
+ begin
+ for I in reverse 1 .. N.N loop
+ N.V (I + Count) := N.V (I);
+ end loop;
+ for I in 1 .. Count loop
+ N.V (I) := 0;
+ end loop;
+ N.N := N.N + Count;
+ end Bignum_Shift32_Left;
+
+ -- Compute F / Div = M * 2**E, with 2**Precision > M >= 2**(Precision-1)
+ procedure Bignum_Divide_To_Fp (F : in out Bignum;
+ Div : in out Bignum;
+ Precision : Natural;
+ M : out Unsigned_64;
+ E : out Integer)
+ is
+ Ediff : constant Integer := Div.N - (F.N + 1);
+ Dig : Boolean;
+ begin
+ -- Adjust exponents so that Div.N = F.N + 1
+ E := -Precision + 1;
+ if Ediff > 0 then
+ -- Divider is larger
+ E := E - (32 * Ediff);
+ Bignum_Shift32_Left (F, Ediff);
+ elsif Ediff < 0 then
+ E := E - (32 * Ediff);
+ Bignum_Shift32_Left (Div, -Ediff);
+ end if;
+ pragma Assert (Div.N > F.N);
+
+ -- Divide until the first 1.
+ loop
+ Bignum_Divstep (F, Div, Dig);
+ Bignum_Mul2 (F);
+ exit when Dig;
+ E := E - 1;
+ end loop;
+
+ M := 1;
+
+ -- Do precision steps
+ for I in 1 .. Precision - 1 loop
+ Bignum_Divstep (F, Div, Dig);
+ Bignum_Mul2 (F);
+ M := 2*M + Boolean'Pos (Dig);
+ end loop;
+
+ -- Round.
+ Bignum_Divstep (F, Div, Dig);
+ if Dig then
+ M := M + 1;
+ if M = Shift_Left (1, Precision) then
+ M := M / 2;
+ E := E + 1;
+ end if;
+ end if;
+ end Bignum_Divide_To_Fp;
+
procedure Append (Str : in out String;
Len : in out Natural;
C : Character)
@@ -347,7 +586,9 @@ package body Grt.Fcvt is
end Append_Digit;
-- Implement Table 1
- procedure Dragon4_Prepare (Ctxt : in out Fcvt_Context) is
+ procedure Dragon4_Prepare (Ctxt : in out Fcvt_Context)
+ is
+ Log2_S0 : Natural;
begin
if Ctxt.E >= 0 then
-- Case e >= 0
@@ -359,7 +600,7 @@ package body Grt.Fcvt is
-- m- = b**e
Ctxt.R := Bignum_Mul (Ctxt.F, Bignum_Pow2 (Ctxt.E + 1));
Bignum_Int (Ctxt.S, 2);
- Ctxt.Log2_S0 := 1;
+ Log2_S0 := 1;
Ctxt.Mp := Bignum_Pow2 (Ctxt.E);
Ctxt.Equal_M := True;
else
@@ -370,7 +611,7 @@ package body Grt.Fcvt is
-- m- = b**e
Ctxt.R := Bignum_Mul (Ctxt.F, Bignum_Pow2 (Ctxt.E + 1 + 1));
Bignum_Int (Ctxt.S, 2 * 2);
- Ctxt.Log2_S0 := 2;
+ Log2_S0 := 2;
Ctxt.Mp := Bignum_Pow2 (Ctxt.E + 1);
Ctxt.Mm := Bignum_Pow2 (Ctxt.E);
Ctxt.Equal_M := False;
@@ -384,7 +625,7 @@ package body Grt.Fcvt is
-- m+ = 1
-- m- = 1
Ctxt.R := Bignum_Mul_Int (Ctxt.F, 2);
- Ctxt.Log2_S0 := -Ctxt.E + 1;
+ Log2_S0 := -Ctxt.E + 1;
Bignum_Int (Ctxt.Mp, 1);
Ctxt.Equal_M := True;
else
@@ -394,15 +635,29 @@ package body Grt.Fcvt is
-- m+ = b
-- m- = 1
Ctxt.R := Bignum_Mul_Int (Ctxt.F, 2 * 2);
- Ctxt.Log2_S0 := -Ctxt.E + 1 + 1;
+ Log2_S0 := -Ctxt.E + 1 + 1;
Bignum_Int (Ctxt.Mp, 2);
Bignum_Int (Ctxt.Mm, 1);
Ctxt.Equal_M := False;
end if;
- Ctxt.S := Bignum_Pow2 (Ctxt.Log2_S0);
+ Ctxt.S := Bignum_Pow2 (Log2_S0);
end if;
end Dragon4_Prepare;
+ procedure Dragon4_Fixup (Ctxt : in out Fcvt_Context)
+ is
+ begin
+ if Bignum_Compare (Bignum_Add (Ctxt.R, Ctxt.Mp), Ctxt.S) = Gt then
+ Ctxt.K := Ctxt.K + 1;
+ else
+ Bignum_Mul_Int (Ctxt.R, 10);
+ Bignum_Mul_Int (Ctxt.Mp, 10);
+ if not Ctxt.Equal_M then
+ Bignum_Mul_Int (Ctxt.Mm, 10);
+ end if;
+ end if;
+ end Dragon4_Fixup;
+
-- 2. Find the smallest integer k such that (r + m+) / s <= B**k; ie:
-- k = ceil (logB ((r+m+)/s))
-- 3. If k >= 0, let r0 = r, s0 = s * B**k, m0+=m+ and m0-=m-
@@ -413,96 +668,34 @@ package body Grt.Fcvt is
-- k = ceil (logB (high))
procedure Dragon4_Scale (Ctxt : in out Fcvt_Context)
is
+ L2 : Integer_64;
T1 : Bignum;
begin
- if False and Ctxt.B = 10 then
- -- TODO.
- declare
- E : Integer;
- begin
- if Ctxt.F.N = 2 and then Ctxt.F.V (2) >= 16#10_00_00# then
- -- Normal binary64 number
- E := 52 + Ctxt.E;
- else
- -- Denormal or non binary64.
- E := Ctxt.E;
- end if;
-
- -- Estimate k.
- Ctxt.K := Integer (Float (E) * 0.30103);
-
- -- Need to compute B**k
- Bignum_Int (T1, Ctxt.B);
-
- if Ctxt.K >= 0 then
- T1 := Bignum_Pow (T1, Ctxt.K);
- Ctxt.S := Bignum_Mul (Ctxt.S, T1);
- else
- T1 := Bignum_Pow (T1, -Ctxt.K);
- Ctxt.R := Bignum_Mul (Ctxt.R, T1);
- Ctxt.Mp := Bignum_Mul (Ctxt.Mp, T1);
- if not Ctxt.Equal_M then
- Ctxt.Mm := Bignum_Mul (Ctxt.Mm, T1);
- end if;
- end if;
- end;
- else
- Ctxt.K := 0;
- end if;
-
- T1 := Bignum_Add (Ctxt.R, Ctxt.Mp);
-
- -- Adjust s0 so that r + m+ <= s0 * B**k
- while Bignum_Compare (T1, Ctxt.S) >= Eq loop
+ -- Estimate k.
+ -- log10(2) ~= 0.301029995664
+ -- log10(2) * 2**32 ~= 1292913986
+ L2 := Integer_64 (Ctxt.Log2v) * 1292913986;
+ Ctxt.K := Integer (L2 / 2**32);
+
+ -- Ceiling.
+ -- If L2 < 0, L2 rem 2**32 <= 0
+ if L2 rem 2**32 > 0 then
Ctxt.K := Ctxt.K + 1;
- Bignum_Mul_Int (Ctxt.S, Ctxt.B);
- end loop;
-
- if Ctxt.K > 0 then
- return;
end if;
- loop
- Bignum_Mul_Int (T1, Ctxt.B);
- exit when not (Bignum_Compare (T1, Ctxt.S) <= Eq);
- Ctxt.K := Ctxt.K - 1;
- Bignum_Mul_Int (Ctxt.R, Ctxt.B);
- Bignum_Mul_Int (Ctxt.Mp, Ctxt.B);
+ -- Need to compute B**k
+ if Ctxt.K >= 0 then
+ T1 := Bignum_Pow (10, Ctxt.K);
+ Ctxt.S := Bignum_Mul (Ctxt.S, T1);
+ else
+ T1 := Bignum_Pow (10, -Ctxt.K);
+ Ctxt.R := Bignum_Mul (Ctxt.R, T1);
+ Ctxt.Mp := Bignum_Mul (Ctxt.Mp, T1);
if not Ctxt.Equal_M then
- Bignum_Mul_Int (Ctxt.Mm, Ctxt.B);
+ Ctxt.Mm := Bignum_Mul (Ctxt.Mm, T1);
end if;
- T1 := Bignum_Add (Ctxt.R, Ctxt.Mp);
- end loop;
-
- -- Note: high = (v + v+) / 2
- -- = (2*v + b**e) / 2
- -- = ((2*f + 1) * b**e) / 2
- -- Proof:
- --
- -- Case e >= 0
- -- Case f /= b**(p-1):
- -- high = ((2*f + 1) * b**e) / 2
- -- Case f = b**(p-1)
- -- high = ((2*f + 1) * b**(e+1)) / (b * 2)
- -- = ((2*f + 1) * b**e) / 2
- -- Case e < 0
- -- Case e = min exp or f /= b**(p-1)
- -- high = (2*f + 1) / (2*b**(-e))
- -- Case e > min exp and f = b**(p-1)
- -- high = (2*f*b + b) / (2*b**(-e+1))
- -- = (2*f + 1) / (2*b**(-e))
- -- In all cases:
- -- high = ((2*f + 1) * b**e) / 2
-
- -- if Ctxt.B = 10 then
- -- log10(2) ~= 0.30103
- -- k = ceil(log10((2*f+1) / 2) + log10(b**e))
- -- = ceil(log10((2*f+1)/2) + e*log10(2))
- -- If the input number was normalized, then:
- -- 2**53 <= (2*f + 1)/2 <= 2**54
- -- 15.95 <= log10((2*f+1)/2) <= 16.255
-
- -- so k = ceil (log10(r+m+) - log2(s)*log10(2))
+ end if;
+ Dragon4_Fixup (Ctxt);
end Dragon4_Scale;
procedure Dragon4_Generate (Str : in out String;
@@ -518,8 +711,6 @@ package body Grt.Fcvt is
Cond1, Cond2 : Boolean;
begin
loop
- Bignum_Mul_Int (Ctxt.R, Ctxt.B);
-
Bignum_Divstep (Ctxt.R, S8, Step);
D := Boolean'Pos (Step) * 8;
Bignum_Divstep (Ctxt.R, S4, Step);
@@ -529,13 +720,10 @@ package body Grt.Fcvt is
Bignum_Divstep (Ctxt.R, S1, Step);
D := D + Boolean'Pos (Step);
- Bignum_Mul_Int (Ctxt.Mp, Ctxt.B);
- if not Ctxt.Equal_M then
- Bignum_Mul_Int (Ctxt.Mm, Ctxt.B);
- end if;
-
-- Stop conditions.
- -- Note: there is a typo for condition (2) in the original paper.
+ -- Note: there is a typo for condition (2) in the original paper
+ -- (was fixed in 2006 - check the publish note at the bottom of the
+ -- first page).
if not Ctxt.Equal_M then
Cond1 := Bignum_Compare (Ctxt.R, Ctxt.Mm) = Lt;
else
@@ -545,6 +733,12 @@ package body Grt.Fcvt is
exit when Cond1 or Cond2;
Append_Digit (Str, Len, D);
+
+ Bignum_Mul_Int (Ctxt.R, 10);
+ Bignum_Mul_Int (Ctxt.Mp, 10);
+ if not Ctxt.Equal_M then
+ Bignum_Mul_Int (Ctxt.Mm, 10);
+ end if;
end loop;
if Cond1 and not Cond2 then
@@ -595,8 +789,7 @@ package body Grt.Fcvt is
procedure To_String (Str : out String;
Len : out Natural;
- V : IEEE_Float_64;
- Radix : Positive := 10)
+ V : IEEE_Float_64)
is
pragma Assert (Str'First = 1);
@@ -618,7 +811,6 @@ package body Grt.Fcvt is
-- Normal or denormal float.
Len := 0;
- Ctxt.B := Radix;
Ctxt.F.N := 2;
Ctxt.F.V (1) := Unsigned_32 (M and 16#ffff_ffff#);
Ctxt.F.V (2) := Unsigned_32 (Shift_Right (M, 32) and 16#ffff_ffff#);
@@ -636,7 +828,16 @@ package body Grt.Fcvt is
Ctxt.Is_Emin := True;
Ctxt.Is_Pow2 := False; -- Not needed.
- Ctxt.Ge_One := False;
+
+ -- Compute len(M). Don't use a dichotomy as the distribution is
+ -- not uniform but exponential.
+ Ctxt.Log2v := -1022 - 53;
+ for I in reverse 0 .. 51 loop
+ if M >= Shift_Left (1, I) then
+ Ctxt.Log2v := -1022 - 53 + I + 1;
+ exit;
+ end if;
+ end loop;
else
-- Normal.
Ctxt.E := E - 1023 - 52;
@@ -651,15 +852,17 @@ package body Grt.Fcvt is
Ctxt.Is_Emin := False;
Ctxt.Is_Pow2 := M = 0;
- Ctxt.Ge_One := E = 1023;
+ Ctxt.Log2v := E - 1023;
end if;
pragma Assert (Bignum_Is_Valid (Ctxt.F));
First := Len;
+ -- At this point, the number is represented as:
+ -- F * 2**K
if Ctxt.F.N = 0 then
- -- Zero is special
+ -- Zero is special, handle it directly.
Append (Str, Len, '0');
Ctxt.K := 1;
else
@@ -711,4 +914,177 @@ package body Grt.Fcvt is
end loop;
end;
end To_String;
+
+ -- Input is: (-1)**S * M * 2**E
+ function Pack (M : Unsigned_64;
+ E : Integer;
+ S : Boolean) return IEEE_Float_64
+ is
+ function To_IEEE_Float_64 is new Ada.Unchecked_Conversion
+ (Unsigned_64, IEEE_Float_64);
+ T : Unsigned_64;
+ begin
+ pragma Assert (M < 16#20_00_00_00_00_00_00#);
+ if M = 0 then
+ T := 0;
+ else
+ pragma Assert (M >= 16#10_00_00_00_00_00_00#);
+ -- Note: input is (-1)**S * 1.FFFFF... * 2**(E + 52)
+ if E + 52 + 1023 >= 2047 then
+ -- Above greatest IEEE number, use Inf.
+ T := 16#7ff_0000000000000#;
+ elsif E + 52 + 1023 < 1 then
+ -- Denormal
+ if E + 52 + 1023 < -52 then
+ -- Below small IEEE number, use 0
+ T := 0;
+ else
+ -- Denormal
+ T := Shift_Right (M, 52 + E + 52 + 1023);
+ end if;
+ else
+ -- Normal
+ T := M and 16#f_ff_ff_ff_ff_ff_ff#;
+ T := T or Shift_Left (Unsigned_64 (E + 52 + 1023), 52);
+ end if;
+ end if;
+
+ if S then
+ T := T or Shift_Left (1, 63);
+ end if;
+
+ return To_IEEE_Float_64 (T);
+ end Pack;
+
+ -- Return (-1)**Neg * F * BASE**EXP to a float.
+ function To_Float_64
+ (Neg : Boolean; F : Bignum; Base : Positive; Exp : Integer)
+ return IEEE_Float_64
+ is
+ M : Unsigned_64;
+ T : Bignum;
+ Frac : Bignum;
+ E : Integer;
+ begin
+ if F.N = 0 then
+ -- 0 is always special...
+ M := 0;
+ E := 0;
+ elsif Exp >= 0 then
+ -- TODO: Multiply by 2**EXP * 5**EXP
+ Frac := Bignum_Mul (F, Bignum_Pow (Base, Exp));
+ Bignum_To_Fp (Frac, 53, M, E);
+ else
+ T := Bignum_Pow (Base, -Exp);
+ -- M = F / 10**-Exp
+ -- = F / T
+ Frac := F;
+ Bignum_Divide_To_Fp (Frac, T, 53, M, E);
+ end if;
+
+ return Pack (M, E, Neg);
+ end To_Float_64;
+
+ function From_String (Str : String) return IEEE_Float_64
+ is
+ P : Positive;
+ C : Character;
+
+ Neg : Boolean;
+ Nbr_Digits : Natural;
+ Point_Position : Integer;
+
+ F : Bignum;
+ Exp : Integer;
+ Exp_Neg : Boolean;
+ begin
+ Neg := False;
+
+ P := Str'First;
+
+ -- A correctly formatted number has at least one character.
+
+ -- Leading (and optional) sign.
+ C := Str (P);
+ if C = '-' then
+ Neg := True;
+ P := P + 1;
+ C := Str (P);
+ elsif C = '+' then
+ P := P + 1;
+ C := Str (P);
+ end if;
+
+ Nbr_Digits := 0;
+ Point_Position := -1;
+ F.N := 0;
+ loop
+ case C is
+ when '0' .. '9' =>
+ F := Bignum_Mul_Int
+ (F, 10, Character'Pos (C) - Character'Pos ('0'));
+ Nbr_Digits := Nbr_Digits + 1;
+ when '.' =>
+ Point_Position := Nbr_Digits;
+ when '_' =>
+ null;
+ when 'e' | 'E' =>
+ Exp := 0;
+ exit;
+ when others =>
+ raise Constraint_Error;
+ end case;
+ P := P + 1;
+ if P > Str'Last then
+ Exp := -1;
+ exit;
+ end if;
+ C := Str (P);
+ end loop;
+
+ if Exp = 0 then
+ P := P + 1;
+ C := Str (P);
+
+ -- Sign of the exponent.
+ Exp_Neg := False;
+ if C = '-' then
+ Exp_Neg := True;
+ P := P + 1;
+ C := Str (P);
+ elsif C = '+' then
+ P := P + 1;
+ C := Str (P);
+ end if;
+
+ -- Exponent.
+ loop
+ case C is
+ when '0' .. '9' =>
+ Exp := Exp * 10 + Character'Pos (C) - Character'Pos ('0');
+ when '_' =>
+ null;
+ when others =>
+ raise Constraint_Error;
+ end case;
+ P := P + 1;
+ exit when P > Str'Last;
+ C := Str (P);
+ end loop;
+
+ if Exp_Neg then
+ Exp := -Exp;
+ end if;
+ else
+ Exp := 0;
+ end if;
+
+ if Point_Position /= -1 then
+ Exp := Exp - (Nbr_Digits - Point_Position);
+ end if;
+
+ -- The internal representation of the number is:
+ -- F * 10**EXP
+ return To_Float_64 (Neg, F, 10, Exp);
+ end From_String;
end Grt.Fcvt;
diff --git a/src/grt/grt-fcvt.ads b/src/grt/grt-fcvt.ads
index 82ed94363..e1e272850 100644
--- a/src/grt/grt-fcvt.ads
+++ b/src/grt/grt-fcvt.ads
@@ -23,16 +23,60 @@
-- however invalidate any other reasons why the executable file might be
-- covered by the GNU Public License.
+-- IMPORTANT: this unit can also be used by the front-end, so it must NOT
+-- depend on anything else from grt (except the grt parent package), including
+-- grt.types.
+
with Interfaces; use Interfaces;
package Grt.Fcvt is
- -- Convert V to RADIX number stored (in ASCII) in STR/LEN [using at most
+ -- Convert V to 10-based number stored (in ASCII) in STR/LEN [using at most
-- NDIGITS digits.]
-- LEN is the number of characters needed (so it may be greater than
-- STR'Length).
-- Requires STR'First = 1.
procedure To_String (Str : out String;
Len : out Natural;
- V : IEEE_Float_64;
- Radix : Positive := 10);
+ V : IEEE_Float_64);
+
+ -- Input format is [+-]int[.int][e[+-]int]
+ -- where int is digit { _ digit }
+ -- and [+-] means optional + or -.
+ -- The input string must be correctly formatted.
+ function From_String (Str : String) return IEEE_Float_64;
+
+ -- Ad-hoc implementation of bignums, with the minimal features to support
+ -- radix conversion.
+ type Bignum is private;
+
+ -- Compute L * R + CARRY_IN.
+ procedure Bignum_Mul_Int
+ (L : in out Bignum; R : Positive; Carry_In : Natural := 0);
+
+ -- Multiply two bignums.
+ function Bignum_Mul (L, R : Bignum) return Bignum;
+
+ -- Compute L**N
+ function Bignum_Pow (L : Natural; N : Natural) return Bignum;
+
+ -- Create a bignum from a natural.
+ procedure Bignum_Int (Res : out Bignum; N : Natural);
+
+ -- Convert N to RES. OK is set to True if the number fits in RES.
+ procedure Bignum_To_Int
+ (N : Bignum; Res : out Unsigned_64; OK : out Boolean);
+
+ -- Return (-1)**Neg * F * BASE**EXP to a float.
+ function To_Float_64
+ (Neg : Boolean; F : Bignum; Base : Positive; Exp : Integer)
+ return IEEE_Float_64;
+private
+ type Unsigned_32_Array is array (Natural range <>) of Unsigned_32;
+
+ type Bignum is record
+ -- Number of digits. Must be 0 for number 0.
+ N : Natural;
+ -- Digits. The leading digit V(N + 1) must not be 0.
+ V : Unsigned_32_Array (1 .. 37);
+ end record;
end Grt.Fcvt;
diff --git a/src/vhdl/scanner-scan_literal.adb b/src/vhdl/scanner-scan_literal.adb
index 74acf44d5..74af66fff 100644
--- a/src/vhdl/scanner-scan_literal.adb
+++ b/src/vhdl/scanner-scan_literal.adb
@@ -15,7 +15,9 @@
-- along with GHDL; see the file COPYING. If not, write to the Free
-- Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-- 02111-1307, USA.
-with Ada.Unchecked_Conversion;
+
+with Interfaces; use Interfaces;
+with Grt.Fcvt; use Grt.Fcvt;
separate (Scanner)
@@ -29,329 +31,9 @@ separate (Scanner)
-- BASED_LITERAL ::= BASE # BASED_INTEGER [ . BASED_INTEGER ] # EXPONENT
-- BASE ::= INTEGER
procedure Scan_Literal is
- -- The base of an E_NUM is 2**16.
- -- Type Uint16 is the type of a digit.
- type Uint16 is mod 2 ** 16;
-
- type Uint32 is mod 2 ** 32;
-
- -- Type of the exponent.
- type Sint16 is range -2 ** 15 .. 2 ** 15 - 1;
-
- -- Number of digits in a E_NUM.
- -- We want at least 64bits of precision, so at least 5 digits of 16 bits
- -- are required.
- Nbr_Digits : constant Sint16 := 5;
- subtype Digit_Range is Sint16 range 0 .. Nbr_Digits - 1;
-
- type Uint16_Array is array (Sint16 range <>) of Uint16;
-
- -- The value of an E_NUM is (S(N-1)|S(N-2) .. |S(0))* 2**(16*E)
- -- where '|' is concatenation.
- type E_Num is record
- S : Uint16_Array (Digit_Range);
- E : Sint16;
- end record;
-
- E_Zero : constant E_Num := (S => (others => 0), E => 0);
- E_One : constant E_Num := (S => (0 => 1, others => 0), E => 0);
-
- -- Compute RES = E * B + V.
- -- RES and E can be the same object.
- procedure Bmul (Res : out E_Num; E : E_Num; V : Uint16; B : Uint16);
-
- -- Convert to integer.
- procedure Fix (Res : out Iir_Int64; Ok : out Boolean; E : E_Num);
-
- -- RES := A * B
- -- RES can be A or B.
- procedure Mul (Res : out E_Num; A, B : E_Num);
-
- -- RES := A / B.
- -- RES can be A.
- -- May raise constraint error.
- procedure Div (Res : out E_Num; A, B: E_Num);
-
- -- Convert V to an E_Num.
- function To_E_Num (V : Uint16) return E_Num;
-
- -- Convert E to RES.
- procedure To_Float (Res : out Iir_Fp64; Ok : out Boolean; E : E_Num);
-
- procedure Bmul (Res : out E_Num; E : E_Num; V : Uint16; B : Uint16)
- is
- -- The carry.
- C : Uint32;
- begin
- -- Only consider V if E is not scaled (otherwise V is not significant).
- if E.E = 0 then
- C := Uint32 (V);
- else
- C := 0;
- end if;
-
- -- Multiply and propagate the carry.
- for I in Digit_Range loop
- C := Uint32 (E.S (I)) * Uint32 (B) + C;
- Res.S (I) := Uint16 (C mod Uint16'Modulus);
- C := C / Uint16'Modulus;
- end loop;
-
- -- There is a carry, shift.
- if C /= 0 then
- -- ERR: Possible overflow.
- Res.E := E.E + 1;
- for I in 0 .. Nbr_Digits - 2 loop
- Res.S (I) := Res.S (I + 1);
- end loop;
- Res.S (Nbr_Digits - 1) := Uint16 (C);
- else
- Res.E := E.E;
- end if;
- end Bmul;
-
- type Uint64 is mod 2 ** 64;
- function Shift_Left (Value : Uint64; Amount: Natural) return Uint64;
- function Shift_Left (Value : Uint16; Amount: Natural) return Uint16;
- pragma Import (Intrinsic, Shift_Left);
-
- function Shift_Right (Value : Uint16; Amount: Natural) return Uint16;
- pragma Import (Intrinsic, Shift_Right);
-
- function Unchecked_Conversion is new Ada.Unchecked_Conversion
- (Source => Uint64, Target => Iir_Int64);
-
- procedure Fix (Res : out Iir_Int64; Ok : out Boolean; E : E_Num)
- is
- R : Uint64;
- M : Sint16;
- begin
- -- Find the most significant digit.
- M := -1;
- for I in reverse Digit_Range loop
- if E.S (I) /= 0 then
- M := I;
- exit;
- end if;
- end loop;
-
- -- Handle the easy 0 case.
- -- The case M = -1 is handled below, in the normal flow.
- if M + E.E < 0 then
- Res := 0;
- Ok := True;
- return;
- end if;
-
- -- Handle overflow.
- -- 4 is the number of uint16 in a uint64.
- if M + E.E >= 4 then
- Ok := False;
- return;
- end if;
-
- -- Convert
- R := 0;
- for I in 0 .. M loop
- R := R or Shift_Left (Uint64 (E.S (I)), 16 * Natural (E.E + I));
- end loop;
- -- Check the sign bit is 0.
- if (R and Shift_Left (1, 63)) /= 0 then
- Ok := False;
- else
- Ok := True;
- Res := Unchecked_Conversion (R);
- end if;
- end Fix;
-
- -- Return the position of the most non-null digit, -1 if V is 0.
- function First_Digit (V : E_Num) return Sint16 is
- begin
- for I in reverse Digit_Range loop
- if V.S (I) /= 0 then
- return I;
- end if;
- end loop;
- return -1;
- end First_Digit;
-
- procedure Mul (Res : out E_Num; A, B : E_Num)
- is
- T : Uint16_Array (0 .. 2 * Nbr_Digits - 1);
- V : Uint32;
- Max : Sint16;
- begin
- V := 0;
- for I in 0 .. Nbr_Digits - 1 loop
- for J in 0 .. I loop
- V := V + Uint32 (A.S (J)) * Uint32 (B.S (I - J));
- end loop;
- T (I) := Uint16 (V mod Uint16'Modulus);
- V := V / Uint16'Modulus;
- end loop;
- for I in Nbr_Digits .. 2 * Nbr_Digits - 2 loop
- for J in I - Nbr_Digits + 1 .. Nbr_Digits - 1 loop
- V := V + Uint32 (A.S (J)) * Uint32 (B.S (I - J));
- end loop;
- T (I) := Uint16 (V mod Uint16'Modulus);
- V := V / Uint16'Modulus;
- end loop;
- T (T'Last) := Uint16 (V);
- -- Search the leading non-nul.
- Max := -1;
- for I in reverse T'Range loop
- if T (I) /= 0 then
- Max := I;
- exit;
- end if;
- end loop;
- if Max > Nbr_Digits - 1 then
- -- Loss of precision.
- -- Round.
- if T (Max - Nbr_Digits) >= Uint16 (Uint16'Modulus / 2) then
- V := 1;
- for I in Max - (Nbr_Digits - 1) .. Max loop
- V := V + Uint32 (T (I));
- T (I) := Uint16 (V mod Uint16'Modulus);
- V := V / Uint16'Modulus;
- exit when V = 0;
- end loop;
- if V /= 0 then
- Max := Max + 1;
- T (Max) := Uint16 (V);
- end if;
- end if;
- Res.S := T (Max - (Nbr_Digits - 1) .. Max);
- -- This may overflow.
- Res.E := A.E + B.E + Max - (Nbr_Digits - 1);
- else
- Res.S (0 .. Max) := T (0 .. Max);
- Res.S (Max + 1 .. Nbr_Digits - 1) := (others => 0);
- -- This may overflow.
- Res.E := A.E + B.E;
- end if;
- end Mul;
-
- procedure Div (Res : out E_Num; A, B: E_Num)
- is
- Dividend : Uint16_Array (0 .. Nbr_Digits);
- A_F : constant Sint16 := First_Digit (A);
- B_F : constant Sint16 := First_Digit (B);
-
- -- Digit corresponding to the first digit of B.
- Doff : constant Sint16 := Dividend'Last - B_F;
- Q : Uint16;
- C, N_C : Uint16;
- begin
- -- Check for division by 0.
- if B_F < 0 then
- raise Constraint_Error;
- end if;
-
- -- Copy and shift dividend.
- -- Bit 15 of the most significant digit of A becomes bit 0 of the
- -- most significant digit of DIVIDEND. Therefore we are sure
- -- DIVIDEND < B (after realignment).
- C := 0;
- for K in 0 .. A_F loop
- N_C := Shift_Right (A.S (K), 15);
- Dividend (Dividend'Last - A_F - 1 + K)
- := Shift_Left (A.S (K), 1) or C;
- C := N_C;
- end loop;
- Dividend (Nbr_Digits) := C;
- Dividend (0 .. Dividend'last - 2 - A_F) := (others => 0);
-
- -- Algorithm is the same as division by hand.
- C := 0;
- for I in reverse Digit_Range loop
- Q := 0;
- for J in 0 .. 15 loop
- declare
- Borrow : Uint32;
- Tmp : Uint16_Array (0 .. B_F);
- V : Uint32;
- V16 : Uint16;
- begin
- -- Compute TMP := dividend - B;
- Borrow := 0;
- for K in 0 .. B_F loop
- V := Uint32 (B.S (K)) + Borrow;
- V16 := Uint16 (V mod Uint16'Modulus);
- if V16 > Dividend (Doff + K) then
- Borrow := 1;
- else
- Borrow := 0;
- end if;
- Tmp (K) := Dividend (Doff + K) - V16;
- end loop;
-
- -- If the last shift creates a carry, we are sure Dividend > B
- if C /= 0 then
- Borrow := 0;
- end if;
-
- Q := Q * 2;
- -- Begin of : Dividend = Dividend * 2
- C := 0;
- for K in 0 .. Doff - 1 loop
- N_C := Shift_Right (Dividend (K), 15);
- Dividend (K) := Shift_Left (Dividend (K), 1) or C;
- C := N_C;
- end loop;
-
- if Borrow = 0 then
- -- Dividend > B
- Q := Q + 1;
- -- Dividend = Tmp * 2
- -- = (Dividend - B) * 2
- for K in Doff .. Nbr_Digits loop
- N_C := Shift_Right (Tmp (K - Doff), 15);
- Dividend (K) := Shift_Left (Tmp (K - Doff), 1) or C;
- C := N_C;
- end loop;
- else
- -- Dividend = Dividend * 2
- for K in Doff .. Nbr_Digits loop
- N_C := Shift_Right (Dividend (K), 15);
- Dividend (K) := Shift_Left (Dividend (K), 1) or C;
- C := N_C;
- end loop;
- end if;
- end;
- end loop;
- Res.S (I) := Q;
- end loop;
- Res.E := A.E - B.E + (A_F - B_F) - (Nbr_Digits - 1);
- end Div;
-
- procedure To_Float (Res : out Iir_Fp64; Ok : out Boolean; E : E_Num)
- is
- V : Iir_Fp64;
- P : Iir_Fp64;
- begin
- Res := 0.0;
- P := Iir_Fp64'Scaling (1.0, 16 * E.E);
- for I in Digit_Range loop
- V := Iir_Fp64 (E.S (I)) * P;
- P := Iir_Fp64'Scaling (P, 16);
- Res := Res + V;
- end loop;
- Ok := True;
- end To_Float;
-
- function To_E_Num (V : Uint16) return E_Num
- is
- Res : E_Num;
- begin
- Res.E := 0;
- Res.S := (0 => V, others => 0);
- return Res;
- end To_E_Num;
-
-- Numbers of digits.
Scale : Integer;
- Res : E_Num;
+ Res : Bignum;
-- LRM 13.4.1
-- INTEGER ::= DIGIT { [ UNDERLINE ] DIGIT }
@@ -365,7 +47,7 @@ procedure Scan_Literal is
C := Source (Pos);
loop
-- C is a digit.
- Bmul (Res, Res, Character'Pos (C) - Character'Pos ('0'), 10);
+ Bignum_Mul_Int (Res, 10, Character'Pos (C) - Character'Pos ('0'));
Scale := Scale + 1;
Pos := Pos + 1;
@@ -386,12 +68,12 @@ procedure Scan_Literal is
end Scan_Integer;
C : Character;
- D : Uint16;
+ D : Natural;
Ok : Boolean;
Has_Dot : Boolean;
Exp : Integer;
Exp_Neg : Boolean;
- Base : Uint16;
+ Base : Positive;
begin
-- Start with a simple and fast conversion.
C := Source (Pos);
@@ -416,7 +98,7 @@ begin
if C = '.' or else C = '#' or else (C = 'e' or C = 'E' or C = ':')
then
-- Continue scanning.
- Res := To_E_Num (D);
+ Bignum_Int (Res, D);
exit;
end if;
@@ -426,10 +108,10 @@ begin
-- No possible overflow.
Current_Context.Int64 := Iir_Int64 (D);
return;
- elsif D >= 6552 then
- -- Number may be greather than the uint16 limit.
+ elsif D >= (Natural'Last / 10) - 1 then
+ -- Number may be greather than the natural limit.
Scale := 0;
- Res := To_E_Num (D);
+ Bignum_Int (Res, D);
Scan_Integer;
exit;
end if;
@@ -465,9 +147,9 @@ begin
-- Based integer.
declare
Number_Sign : constant Character := C;
- Res_Int : Iir_Int64;
+ Res_Int : Interfaces.Unsigned_64;
begin
- Fix (Res_Int, Ok, Res);
+ Bignum_To_Int (Res, Res_Int, Ok);
if not Ok or else Res_Int > 16 then
-- LRM 13.4.2
-- The base must be [...] at most sixteen.
@@ -481,11 +163,11 @@ begin
-- Fallback.
Base := 2;
else
- Base := Uint16 (Res_Int);
+ Base := Natural (Res_Int);
end if;
Pos := Pos + 1;
- Res := E_Zero;
+ Bignum_Int (Res, 0);
C := Source (Pos);
loop
if C >= '0' and C <= '9' then
@@ -508,7 +190,7 @@ begin
D := 1;
end if;
Pos := Pos + 1;
- Bmul (Res, Res, D, Base);
+ Bignum_Mul_Int (Res, Base, D);
Scale := Scale + 1;
C := Source (Pos);
@@ -538,6 +220,8 @@ begin
end loop;
end;
end if;
+
+ -- Exponent.
C := Source (Pos);
Exp := 0;
if C = 'E' or else C = 'e' then
@@ -594,53 +278,30 @@ begin
end if;
if Has_Dot then
- Scale := Scale - Exp;
- else
- Scale := -Exp;
- end if;
- if Scale /= 0 then
- declare
- Scale_Neg : Boolean;
- Val_Exp : E_Num;
- Val_Pow : E_Num;
- begin
- if Scale > 0 then
- Scale_Neg := True;
- else
- Scale_Neg := False;
- Scale := -Scale;
- end if;
-
- Val_Pow := To_E_Num (Base);
- Val_Exp := E_One;
- while Scale /= 0 loop
- if Scale mod 2 = 1 then
- Mul (Val_Exp, Val_Exp, Val_Pow);
- end if;
- Scale := Scale / 2;
- Mul (Val_Pow, Val_Pow, Val_Pow);
- end loop;
- if Scale_Neg then
- Div (Res, Res, Val_Exp);
- else
- Mul (Res, Res, Val_Exp);
- end if;
- end;
- end if;
-
- if Has_Dot then
-- a universal real.
Current_Token := Tok_Real;
- -- Set to a valid literal, in case of constraint error.
- To_Float (Current_Context.Fp64, Ok, Res);
- if not Ok then
- Error_Msg_Scan ("literal beyond real bounds");
- end if;
+
+ Current_Context.Fp64 :=
+ Fp64 (To_Float_64 (False, Res, Base, Exp - Scale));
else
-- a universal integer.
Current_Token := Tok_Integer;
+
-- Set to a valid literal, in case of constraint error.
- Fix (Current_Context.Int64, Ok, Res);
+ if Exp /= 0 then
+ Res := Bignum_Mul (Res, Bignum_Pow (Base, Exp));
+ end if;
+
+ declare
+ U : Unsigned_64;
+ begin
+ Bignum_To_Int (Res, U, Ok);
+ if U > Unsigned_64 (Iir_Int64'Last) then
+ Ok := False;
+ else
+ Current_Context.Int64 := Iir_Int64 (U);
+ end if;
+ end;
if not Ok then
Error_Msg_Scan ("literal beyond integer bounds");
end if;