1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
////////////////////////////////////////////////////////////////////////////////
//
// Filename: faxis_slave.v
//
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Formal properties for verifying the proper functionality of an
// AXI Stream slave.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2019-2020, Gisselquist Technology, LLC
//
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
//
module faxis_slave #(
parameter F_MAX_PACKET = 0,
parameter F_MIN_PACKET = 0,
parameter F_MAX_STALL = 0,
parameter C_S_AXI_DATA_WIDTH = 32,
parameter C_S_AXI_ID_WIDTH = 1,
parameter C_S_AXI_ADDR_WIDTH = 1,
parameter C_S_AXI_USER_WIDTH = 1,
parameter [0:0] OPT_ASYNC_RESET = 1'b0,
//
// F_LGDEPTH is the number of bits necessary to represent a packets
// length
parameter F_LGDEPTH = 32,
//
localparam AW = C_S_AXI_ADDR_WIDTH,
localparam DW = C_S_AXI_DATA_WIDTH,
localparam IDW = C_S_AXI_ID_WIDTH,
localparam UW = C_S_AXI_USER_WIDTH
//
) (
//
input wire i_aclk, i_aresetn,
input wire i_tvalid,
input wire i_tready = 1,
input wire [DW-1:0] i_tdata,
input wire [DW/8-1:0] i_tstrb = {(DW/8){1'b1}},
input wire [DW/8-1:0] i_tkeep = {(DW/8){1'b1}},
input wire i_tlast,
input wire [(IDW>0?IDW:1)-1:0] i_tid = {(IDW){1'b0}},
input wire [(AW>0?AW:1)-1:0] i_tdest = {(AW){1'b0}},
input wire [(UW>0?UW:1)-1:0] i_tuser = {(UW){1'b0}},
//
output reg [F_LGDEPTH-1:0] f_bytecount,
//(* anyconst *) output reg [AW+IDW-1:0] f_routecheck
);
`define SLAVE_ASSUME assume
`define SLAVE_ASSERT assert
localparam F_STALLBITS = (F_MAX_STALL <= 1)
? 1 : $clog2(F_MAX_STALL+2);
reg f_past_valid;
reg [F_LGDEPTH-1:0] f_vbytes;
reg [F_STALLBITS-1:0] f_stall_count;
integer iB;
genvar k;
//
// f_past_valid is used to make certain that temporal assertions
// depending upon past values depend upon *valid* past values.
// It is true for all clocks other than the first clock.
initial f_past_valid = 1'b0;
always @(posedge i_aclk)
f_past_valid <= 1'b1;
//
// Reset should always be active (low) initially
always @(posedge i_aclk)
if (!f_past_valid)
`SLAVE_ASSUME(!i_aresetn);
//
// During and following a reset, TVALID should be deasserted
always @(posedge i_aclk)
if ((!f_past_valid)||(!i_aresetn && OPT_ASYNC_RESET)||($past(!i_aresetn)))
`SLAVE_ASSUME(!i_tvalid);
//
// If TVALID but not TREADY, then the master isn't allowed to change
// anything until the slave asserts TREADY.
always @(posedge i_aclk)
if ((f_past_valid)&&($past(i_aresetn))&&(!OPT_ASYNC_RESET || i_aresetn)
&&($past(i_tvalid))&&(!$past(i_tready)))
begin
`SLAVE_ASSUME(i_tvalid);
`SLAVE_ASSUME($stable(i_tstrb));
`SLAVE_ASSUME($stable(i_tkeep));
`SLAVE_ASSUME($stable(i_tlast));
`SLAVE_ASSUME($stable(i_tid));
`SLAVE_ASSUME($stable(i_tdest));
`SLAVE_ASSUME($stable(i_tuser));
end
generate for(k=0; k<DW/8; k=k+1)
begin : CHECK_PARTIAL_DATA
// If TVALID && !TREADY, only those TDATA values with TKEEP
// high are required to maintain their values until TREADY
// becomes true.
always @(posedge i_aclk)
if ((f_past_valid)&&($past(i_aresetn))
&&(!OPT_ASYNC_RESET || i_aresetn)
&&($past(i_tvalid))&&(!$past(i_tready)))
begin
if (i_tkeep[k])
`SLAVE_ASSUME($stable(i_tdata[k*8 +: 8]));
// else this is a null (don't care) byte, with
// no data within it
//
end
end endgenerate
//
// TKEEP == LOW and TSTRB == HIGH is reserved per the spec, and
// must not be used
always @(posedge i_aclk)
if (i_tvalid)
`SLAVE_ASSUME((~i_tkeep & i_tstrb)==0);
//
// f_vbytes is the number of valid bytes contained in the current beat
// It is used for counting packet lengths below.
always @(*)
if (!i_tvalid)
f_vbytes = 0;
else begin
f_vbytes = 0;
for(iB=0; iB < DW/8; iB=iB+1)
if (i_tkeep[iB] && i_tstrb[iB])
f_vbytes = f_vbytes + 1;
end
//
// f_bytecount is the number of bytes that have taken place so far in
// the current packet transmission. Note that we are *only* counting
// our location within the stream if the TUSER and TDEST fields match
// our (solver chosen) ROUTECHECK. That way we don't have to check
// *EVERY POSSIBLE* TUSER and TDEST combination.
initial f_bytecount = 0;
always @(posedge i_aclk)
if (!i_aresetn)
f_bytecount <= 0;
else if (i_tready && i_tvalid /*&& ({ i_tuser, i_tdest } == f_routecheck)*/)
begin
if (i_tlast)
f_bytecount <= 0;
else
f_bytecount <= f_bytecount + f_vbytes;
end
//
// Count the number of clock cycles between ready's. We'll use this in
// a bit to insist on an (optional) minimum transfer speed.
initial f_stall_count = 0;
always @(posedge i_aclk)
if (!i_aresetn || !i_tvalid || i_tready)
f_stall_count <= 0;
else if (!(&f_stall_count))
f_stall_count <= f_stall_count + 1;
//
// F_MAX_PACKET
//
// An optional check, to make certain packets don't exceed some maximum
// length
generate if (F_MAX_PACKET > 0)
begin : MAX_PACKET
always @(*)
`SLAVE_ASSUME(f_bytecount + f_vbytes <= F_MAX_PACKET);
end endgenerate
//
// F_MIN_PACKET
//
// An optoinal check, forcing a minimum packet length
generate if (F_MIN_PACKET > 0)
begin : MIN_PACKET
always @(*)
if (i_tvalid && i_tlast)
`SLAVE_ASSUME(f_bytecount + f_vbytes >= F_MIN_PACKET);
end endgenerate
//
// F_MAX_STALL
//
// Another optional check, this time insisting that the READY flag can
// only be low for up to F_MAX_STALL clocks.
//
generate if (F_MAX_STALL > 0)
begin : MAX_STALL_CHECK
always @(*)
`SLAVE_ASSERT(f_stall_count < F_MAX_STALL);
end endgenerate
endmodule
`undef SLAVE_ASSUME
`undef SLAVE_ASSERT
|