aboutsummaryrefslogtreecommitdiffstats
path: root/util/git-hooks/pre-commit
blob: dbccb9e274a20eaeb1c92577365111f8f26171ac (plain)
1
2
3
4
5
6
7
8
9
/a> 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
//
// Copyright 2019, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//    * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//    * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Alternatively, this software may be distributed under the terms of the
// GNU General Public License ("GPL") version 2 as published by the Free
// Software Foundation.
//

use super::rand_util;
use super::types;
use super::utils::{self, LayoutSizes};
use flashrom::{FlashChip, Flashrom, FlashromCmd};
use serde_json::json;
use std::mem::MaybeUninit;
use std::sync::Mutex;

// type-signature comes from the return type of lib.rs workers.
type TestError = Box<dyn std::error::Error>;
pub type TestResult = Result<(), TestError>;

pub struct TestEnv<'a> {
    chip_type: FlashChip,
    /// Flashrom instantiation information.
    ///
    /// Where possible, prefer to use methods on the TestEnv rather than delegating
    /// to the raw flashrom functions.
    pub cmd: &'a FlashromCmd,
    layout: LayoutSizes,

    pub wp: WriteProtectState<'a, 'static>,
    /// The path to a file containing the flash contents at test start.
    // TODO(pmarheine) migrate this to a PathBuf for clarity
    original_flash_contents: String,
    /// The path to a file containing flash-sized random data
    // TODO(pmarheine) make this a PathBuf too
    random_data: String,
}

impl<'a> TestEnv<'a> {
    pub fn create(chip_type: FlashChip, cmd: &'a FlashromCmd) -> Result<Self, String> {
        let rom_sz = cmd.get_size()?;
        let out = TestEnv {
            chip_type: chip_type,
            cmd: cmd,
            layout: utils::get_layout_sizes(rom_sz)?,
            wp: WriteProtectState::from_hardware(cmd)?,
            original_flash_contents: "/tmp/flashrom_tester_golden.bin".into(),
            random_data: "/tmp/random_content.bin".into(),
        };

        info!("Stashing golden image for verification/recovery on completion");
        flashrom::read(&out.cmd, &out.original_flash_contents)?;
        flashrom::verify(&out.cmd, &out.original_flash_contents)?;

        info!("Generating random flash-sized data");
        rand_util::gen_rand_testdata(&out.random_data, rom_sz as usize)
            .map_err(|io_err| format!("I/O error writing random data file: {:#}", io_err))?;

        Ok(out)
    }

    pub fn run_test<T: TestCase>(&mut self, test: T) -> TestResult {
        let use_dut_control = self.chip_type == FlashChip::SERVO;
        if use_dut_control && flashrom::dut_ctrl_toggle_wp(false).is_err() {
            error!("failed to dispatch dut_ctrl_toggle_wp()!");
        }

        let name = test.get_name();
        info!("Beginning test: {}", name);
        let out = test.run(self);
        info!("Completed test: {}; result {:?}", name, out);

        if use_dut_control && flashrom::dut_ctrl_toggle_wp(true).is_err() {
            error!("failed to dispatch dut_ctrl_toggle_wp()!");
        }
        out
    }

    pub fn chip_type(&self) -> FlashChip {
        // This field is not public because it should be immutable to tests,
        // so this getter enforces that it is copied.
        self.chip_type
    }

    /// Return the path to a file that contains random data and is the same size
    /// as the flash chip.
    pub fn random_data_file(&self) -> &str {
        &self.random_data
    }

    pub fn layout(&self) -> &LayoutSizes {
        &self.layout
    }

    /// Return true if the current Flash contents are the same as the golden image
    /// that was present at the start of testing.
    pub fn is_golden(&self) -> bool {
        flashrom::verify(&self.cmd, &self.original_flash_contents).is_ok()
    }

    /// Do whatever is necessary to make the current Flash contents the same as they
    /// were at the start of testing.
    pub fn ensure_golden(&mut self) -> Result<(), String> {
        self.wp.set_hw(false)?.set_sw(false)?;
        flashrom::write(&self.cmd, &self.original_flash_contents)
    }

    /// Attempt to erase the flash.
    pub fn erase(&self) -> Result<(), String> {
        flashrom::erase(self.cmd)
    }

    /// Verify that the current Flash contents are the same as the file at the given
    /// path.
    ///
    /// Returns Err if they are not the same.
    pub fn verify(&self, contents_path: &str) -> Result<(), String> {
        flashrom::verify(self.cmd, contents_path)
    }
}

impl Drop for TestEnv<'_> {
    fn drop(&mut self) {
        info!("Verifying flash remains unmodified");
        if !self.is_golden() {
            warn!("ROM seems to be in a different state at finish; restoring original");
            if let Err(e) = self.ensure_golden() {
                error!("Failed to write back golden image: {:?}", e);
            }
        }
    }
}

/// RAII handle for setting write protect in either hardware or software.
///
/// Given an instance, the state of either write protect can be modified by calling
/// `set` or `push`. When it goes out of scope, the write protects will be returned
/// to the state they had then it was created.
///
/// The lifetime `'p` on this struct is the parent state it derives from; `'static`
/// implies it is derived from hardware, while anything else is part of a stack
/// created by `push`ing states. An initial state is always static, and the stack
/// forms a lifetime chain `'static -> 'p -> 'p1 -> ... -> 'pn`.
pub struct WriteProtectState<'a, 'p> {
    /// The parent state this derives from.
    ///
    /// If it's a root (gotten via `from_hardware`), then this is Hardware and the
    /// liveness flag will be reset on drop.
    initial: InitialState<'p>,
    // Tuples are (hardware, software)
    current: (bool, bool),
    cmd: &'a FlashromCmd,
}

enum InitialState<'p> {
    Hardware(bool, bool),
    Previous(&'p WriteProtectState<'p, 'p>),
}

impl InitialState<'_> {
    fn get_target(&self) -> (bool, bool) {
        match self {
            InitialState::Hardware(hw, sw) => (*hw, *sw),
            InitialState::Previous(s) => s.current,
        }
    }
}

impl<'a> WriteProtectState<'a, 'static> {
    /// Initialize a state from the current state of the hardware.
    ///
    /// Panics if there is already a live state derived from hardware. In such a situation the
    /// new state must be derived from the live one, or the live one must be dropped first.
    pub fn from_hardware(cmd: &'a FlashromCmd) -> Result<Self, String> {
        let mut lock = Self::get_liveness_lock()
            .lock()
            .expect("Somebody panicked during WriteProtectState init from hardware");
        if *lock {
            drop(lock); // Don't poison the lock
            panic!("Attempted to create a new WriteProtectState when one is already live");
        }

        let hw = Self::get_hw(cmd)?;
        let sw = Self::get_sw(cmd)?;
        info!("Initial hardware write protect: HW={} SW={}", hw, sw);

        *lock = true;
        Ok(WriteProtectState {
            initial: InitialState::Hardware(hw, sw),
            current: (hw, sw),
            cmd,
        })
    }

    /// Get the actual hardware write protect state.
    fn get_hw(cmd: &FlashromCmd) -> Result<bool, String> {
        if cmd.fc.can_control_hw_wp() {
            super::utils::get_hardware_wp()
        } else {
            Ok(false)
        }
    }

    /// Get the actual software write protect state.
    fn get_sw(cmd: &FlashromCmd) -> Result<bool, String> {
        flashrom::wp_status(cmd, true)
    }
}

impl<'a, 'p> WriteProtectState<'a, 'p> {
    /// Return true if the current programmer supports setting the hardware
    /// write protect.
    ///
    /// If false, calls to set_hw() will do nothing.
    pub fn can_control_hw_wp(&self) -> bool {
        self.cmd.fc.can_control_hw_wp()
    }

    /// Set the software write protect.
    pub fn set_sw(&mut self, enable: bool) -> Result<&mut Self, String> {
        info!("request={}, current={}", enable, self.current.1);
        if self.current.1 != enable {
            flashrom::wp_toggle(self.cmd, /* en= */ enable)?;
            self.current.1 = enable;
        }
        Ok(self)
    }

    /// Set the hardware write protect.
    pub fn set_hw(&mut self, enable: bool) -> Result<&mut Self, String> {
        if self.current.0 != enable {
            if self.can_control_hw_wp() {
                super::utils::toggle_hw_wp(/* dis= */ !enable)?;
                self.current.0 = enable;
            } else if enable {
                info!(
                    "Ignoring attempt to enable hardware WP with {:?} programmer",
                    self.cmd.fc
                );
            }
        }
        Ok(self)
    }

    /// Stack a new write protect state on top of the current one.
    ///
    /// This is useful if you need to temporarily make a change to write protection:
    ///
    /// ```no_run
    /// # fn main() -> Result<(), String> {
    /// # let cmd: flashrom::FlashromCmd = unimplemented!();
    /// let wp = flashrom_tester::tester::WriteProtectState::from_hardware(&cmd)?;
    /// {
    ///     let mut wp = wp.push();
    ///     wp.set_sw(false)?;
    ///     // Do something with software write protect disabled
    /// }
    /// // Now software write protect returns to its original state, even if
    /// // set_sw() failed.
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// This returns a new state which restores the original when it is dropped- the new state
    /// refers to the old, so the compiler enforces that states are disposed of in the reverse
    /// order of their creation and correctly restore the original state.
    pub fn push<'p1>(&'p1 self) -> WriteProtectState<'a, 'p1> {
        WriteProtectState {
            initial: InitialState::Previous(self),
            current: self.current,
            cmd: self.cmd,
        }
    }

    fn get_liveness_lock() -> &'static Mutex<bool> {
        static INIT: std::sync::Once = std::sync::Once::new();
        /// Value becomes true when there is a live WriteProtectState derived `from_hardware`,
        /// blocking duplicate initialization.
        ///
        /// This is required because hardware access is not synchronized; it's possible to leave the
        /// hardware in an unintended state by creating a state handle from it, modifying the state,
        /// creating another handle from the hardware then dropping the first handle- then on drop
        /// of the second handle it will restore the state to the modified one rather than the initial.
        ///
        /// This flag ensures that a duplicate root state cannot be created.
        ///
        /// This is a Mutex<bool> rather than AtomicBool because acquiring the flag needs to perform
        /// several operations that may themselves fail- acquisitions must be fully synchronized.
        static mut LIVE_FROM_HARDWARE: MaybeUninit<Mutex<bool>> = MaybeUninit::uninit();

        unsafe {
            INIT.call_once(|| {
                LIVE_FROM_HARDWARE.as_mut_ptr().write(Mutex::new(false));
            });
            &*LIVE_FROM_HARDWARE.as_ptr()
        }
    }

    /// Reset the hardware to what it was when this state was created, reporting errors.
    ///
    /// This behaves exactly like allowing a state to go out of scope, but it can return
    /// errors from that process rather than panicking.
    pub fn close(mut self) -> Result<(), String> {
        unsafe {
            let out = self.drop_internal();
            // We just ran drop, don't do it again
            std::mem::forget(self);
            out
        }
    }

    /// Internal Drop impl.
    ///
    /// This is unsafe because it effectively consumes self when clearing the
    /// liveness lock. Callers must be able to guarantee that self will be forgotten
    /// if the state was constructed from hardware in order to uphold the liveness
    /// invariant (that only a single state constructed from hardware exists at any
    /// time).
    unsafe fn drop_internal(&mut self) -> Result<(), String> {
        let lock = match self.initial {
            InitialState::Hardware(_, _) => Some(
                Self::get_liveness_lock()
                    .lock()
                    .expect("Somebody panicked during WriteProtectState drop from hardware"),
            ),
            _ => None,
        };
        let (hw, sw) = self.initial.get_target();

        fn enable_str(enable: bool) -> &'static str {
            if enable {
                "en"
            } else {
                "dis"
            }
        }

        // Toggle both protects back to their initial states.
        // Software first because we can't change it once hardware is enabled.
        if sw != self.current.1 {
            // Is the hw wp currently enabled?
            if self.current.0 {
                super::utils::toggle_hw_wp(/* dis= */ true).map_err(|e| {
                    format!(
                        "Failed to {}able hardware write protect: {}",
                        enable_str(false),
                        e
                    )
                })?;
            }
            flashrom::wp_toggle(self.cmd, /* en= */ sw).map_err(|e| {
                format!(
                    "Failed to {}able software write protect: {}",
                    enable_str(sw),
                    e
                )
            })?;
        }

        assert!(
            self.cmd.fc.can_control_hw_wp() || (!self.current.0 && !hw),
            "HW WP must be disabled if it cannot be controlled"
        );
        if hw != self.current.0 {
            super::utils::toggle_hw_wp(/* dis= */ !hw).map_err(|e| {
                format!(
                    "Failed to {}able hardware write protect: {}",
                    enable_str(hw),
                    e
                )
            })?;
        }

        if let Some(mut lock) = lock {
            // Initial state was constructed via from_hardware, now we can clear the liveness
            // lock since reset is complete.
            *lock = false;
        }
        Ok(())
    }
}

impl<'a, 'p> Drop for WriteProtectState<'a, 'p> {
    /// Sets both write protects to the state they had when this state was created.
    ///
    /// Panics on error because there is no mechanism to report errors in Drop.
    fn drop(&mut self) {
        unsafe { self.drop_internal() }.expect("Error while dropping WriteProtectState")
    }
}

pub trait TestCase {
    fn get_name(&self) -> &str;
    fn expected_result(&self) -> TestConclusion;
    fn run(&self, env: &mut TestEnv) -> TestResult;
}

impl<S: AsRef<str>, F: Fn(&mut TestEnv) -> TestResult> TestCase for (S, F) {
    fn get_name(&self) -> &str {
        self.0.as_ref()
    }

    fn expected_result(&self) -> TestConclusion {
        TestConclusion::Pass
    }

    fn run(&self, env: &mut TestEnv) -> TestResult {
        (self.1)(env)
    }
}

impl<T: TestCase + ?Sized> TestCase for &T {
    fn get_name(&self) -> &str {
        (*self).get_name()
    }

    fn expected_result(&self) -> TestConclusion {
        (*self).expected_result()
    }

    fn run(&self, env: &mut TestEnv) -> TestResult {
        (*self).run(env)
    }
}

#[allow(dead_code)]
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum TestConclusion {
    Pass,
    Fail,
    UnexpectedPass,
    UnexpectedFail,
}

pub struct ReportMetaData {
    pub chip_name: String,
    pub os_release: String,
    pub system_info: String,
    pub bios_info: String,
}

fn decode_test_result(res: TestResult, con: TestConclusion) -> (TestConclusion, Option<TestError>) {
    use TestConclusion::*;

    match (res, con) {
        (Ok(_), Fail) => (UnexpectedPass, None),
        (Err(e), Pass) => (UnexpectedFail, Some(e)),
        _ => (Pass, None),
    }
}

pub fn run_all_tests<T, TS>(
    chip: FlashChip,
    cmd: &FlashromCmd,
    ts: TS,
) -> Vec<(String, (TestConclusion, Option<TestError>))>
where
    T: TestCase + Copy,
    TS: IntoIterator<Item = T>,
{
    let mut env = TestEnv::create(chip, cmd).expect("Failed to set up test environment");

    let mut results = Vec::new();
    for t in ts {
        let result = decode_test_result(env.run_test(t), t.expected_result());
        results.push((t.get_name().into(), result));
    }
    results
}

#[derive(Debug, PartialEq, Clone, Copy)]
pub enum OutputFormat {
    Pretty,
    Json,
}

impl std::str::FromStr for OutputFormat {
    type Err = ();

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        use OutputFormat::*;

        if s.eq_ignore_ascii_case("pretty") {
            Ok(Pretty)
        } else if s.eq_ignore_ascii_case("json") {
            Ok(Json)
        } else {
            Err(())
        }
    }
}

pub fn collate_all_test_runs(
    truns: &[(String, (TestConclusion, Option<TestError>))],
    meta_data: ReportMetaData,
    format: OutputFormat,
) {
    match format {
        OutputFormat::Pretty => {
            println!();
            println!("  =============================");
            println!("  =====  AVL qual RESULTS  ====");
            println!("  =============================");
            println!();
            println!("  %---------------------------%");
            println!("   os release: {}", meta_data.os_release);
            println!("   chip name: {}", meta_data.chip_name);
            println!("   system info: \n{}", meta_data.system_info);
            println!("   bios info: \n{}", meta_data.bios_info);
            println!("  %---------------------------%");
            println!();

            for trun in truns.iter() {
                let (name, (result, error)) = trun;
                if *result != TestConclusion::Pass {
                    println!(
                        " {} {}",
                        style!(format!(" <+> {} test:", name), types::BOLD),
                        style_dbg!(result, types::RED)
                    );
                    match error {
                        None => {}
                        Some(e) => info!(" - {} failure details:\n{}", name, e.to_string()),
                    };
                } else {
                    println!(
                        " {} {}",
                        style!(format!(" <+> {} test:", name), types::BOLD),
                        style_dbg!(result, types::GREEN)
                    );
                }
            }
            println!();
        }
        OutputFormat::Json => {
            use serde_json::{Map, Value};

            let mut all_pass = true;
            let mut tests = Map::<String, Value>::new();
            for (name, (result, error)) in truns {
                let passed = *result == TestConclusion::Pass;
                all_pass &= passed;

                let error = match error {
                    Some(e) => Value::String(format!("{:#?}", e)),
                    None => Value::Null,
                };

                assert!(
                    !tests.contains_key(name),
                    "Found multiple tests named {:?}",
                    name
                );
                tests.insert(
                    name.into(),
                    json!({
                        "pass": passed,
                        "error": error,
                    }),
                );
            }

            let json = json!({
                "pass": all_pass,
                "metadata": {
                    "os_release": meta_data.os_release,
                    "chip_name": meta_data.chip_name,
                    "system_info": meta_data.system_info,
                    "bios_info": meta_data.bios_info,
                },
                "tests": tests,
            });
            println!("{:#}", json);
        }
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn decode_test_result() {
        use super::decode_test_result;
        use super::TestConclusion::*;

        let (result, err) = decode_test_result(Ok(()), Pass);
        assert_eq!(result, Pass);
        assert!(err.is_none());

        let (result, err) = decode_test_result(Ok(()), Fail);
        assert_eq!(result, UnexpectedPass);
        assert!(err.is_none());

        let (result, err) = decode_test_result(Err("broken".into()), Pass);
        assert_eq!(result, UnexpectedFail);
        assert!(err.is_some());

        let (result, err) = decode_test_result(Err("broken".into()), Fail);
        assert_eq!(result, Pass);
        assert!(err.is_none());
    }

    #[test]
    fn output_format_round_trip() {
        use super::OutputFormat::{self, *};

        assert_eq!(format!("{:?}", Pretty).parse::<OutputFormat>(), Ok(Pretty));
        assert_eq!(format!("{:?}", Json).parse::<OutputFormat>(), Ok(Json));
    }
}