aboutsummaryrefslogtreecommitdiffstats
path: root/spi25.c
blob: 6a6ee75da103a390337133a7e0c75c8258054434 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*
 * This file is part of the flashrom project.
 *
 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
 * Copyright (C) 2008 coresystems GmbH
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 * Contains the common SPI chip driver functions
 */

#include <stddef.h>
#include <string.h>
#include <stdbool.h>
#include "flash.h"
#include "flashchips.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"

enum id_type {
	RDID,
	RDID4,
	REMS,
	RES2,
	RES3,
	NUM_ID_TYPES,
};

static struct {
	bool is_cached;
	unsigned char bytes[4];		/* enough to hold largest ID type */
} id_cache[NUM_ID_TYPES];

void clear_spi_id_cache(void)
{
	memset(id_cache, 0, sizeof(id_cache));
	return;
}

static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes)
{
	static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
	int ret;
	int i;

	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
	if (ret)
		return ret;
	msg_cspew("RDID returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
	return 0;
}

static int spi_rems(struct flashctx *flash, unsigned char *readarr)
{
	static const unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, };
	int ret;

	ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
	if (ret)
		return ret;
	msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]);
	return 0;
}

static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes)
{
	static const unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, };
	int ret;
	int i;

	ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr);
	if (ret)
		return ret;
	msg_cspew("RES returned");
	for (i = 0; i < bytes; i++)
		msg_cspew(" 0x%02x", readarr[i]);
	msg_cspew(". ");
	return 0;
}

int spi_write_enable(struct flashctx *flash)
{
	static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
	int result;

	/* Send WREN (Write Enable) */
	result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);

	if (result)
		msg_cerr("%s failed\n", __func__);

	return result;
}

int spi_write_disable(struct flashctx *flash)
{
	static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };

	/* Send WRDI (Write Disable) */
	return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
}

static void rdid_get_ids(unsigned char *readarr, int bytes,
		uint32_t *id1, uint32_t *id2)
{
	if (!oddparity(readarr[0]))
		msg_cdbg("RDID byte 0 parity violation. ");

	/* Check if this is a continuation vendor ID.
	 * FIXME: Handle continuation device IDs.
	 */
	if (readarr[0] == 0x7f) {
		if (!oddparity(readarr[1]))
			msg_cdbg("RDID byte 1 parity violation. ");
		*id1 = (readarr[0] << 8) | readarr[1];
		*id2 = readarr[2];
		if (bytes > 3) {
			*id2 <<= 8;
			*id2 |= readarr[3];
		}
	} else {
		*id1 = readarr[0];
		*id2 = (readarr[1] << 8) | readarr[2];
	}
}

static int compare_id(const struct flashctx *flash, uint32_t id1, uint32_t id2)
{
	const struct flashchip *chip = flash->chip;

	msg_cdbg("%s: id1 0x%02"PRIx32", id2 0x%02"PRIx32"\n", __func__, id1, id2);
	if (id1 == chip->manufacture_id && id2 == chip->model_id)
		return 1;

	/* Test if this is a pure vendor match. */
	if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id)
		return 1;

	/* Test if there is any vendor ID. */
	if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00)
		return 1;

	return 0;
}

static int probe_spi_rdid_generic(struct flashctx *flash, int bytes)
{
	uint32_t id1, id2;
	enum id_type idty = bytes == 3 ? RDID : RDID4;

	if (!id_cache[idty].is_cached) {
		const int ret = spi_rdid(flash, id_cache[idty].bytes, bytes);
		if (ret == SPI_INVALID_LENGTH)
			msg_cinfo("%d byte RDID not supported on this SPI controller\n", bytes);
		if (ret)
			return 0;
		id_cache[idty].is_cached = true;
	}

	rdid_get_ids(id_cache[idty].bytes, bytes, &id1, &id2);
	return compare_id(flash, id1, id2);
}

int probe_spi_rdid(struct flashctx *flash)
{
	return probe_spi_rdid_generic(flash, 3);
}

int probe_spi_rdid4(struct flashctx *flash)
{
	return probe_spi_rdid_generic(flash, 4);
}

int probe_spi_rems(struct flashctx *flash)
{
	uint32_t id1, id2;

	if (!id_cache[REMS].is_cached) {
		if (spi_rems(flash, id_cache[REMS].bytes))
			return 0;
		id_cache[REMS].is_cached = true;
	}

	id1 = id_cache[REMS].bytes[0];
	id2 = id_cache[REMS].bytes[1];
	return compare_id(flash, id1, id2);
}

int probe_spi_res1(struct flashctx *flash)
{
	static const unsigned char allff[] = {0xff, 0xff, 0xff};
	static const unsigned char all00[] = {0x00, 0x00, 0x00};
	unsigned char readarr[3];
	uint32_t id2;

	/* We only want one-byte RES if RDID and REMS are unusable. */

	/* Check if RDID is usable and does not return 0xff 0xff 0xff or
	 * 0x00 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) &&
	    memcmp(readarr, all00, 3)) {
		msg_cdbg("Ignoring RES in favour of RDID.\n");
		return 0;
	}
	/* Check if REMS is usable and does not return 0xff 0xff or
	 * 0x00 0x00. In that case, RES is pointless.
	 */
	if (!spi_rems(flash, readarr) &&
	    memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
	    memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
		msg_cdbg("Ignoring RES in favour of REMS.\n");
		return 0;
	}

	if (spi_res(flash, readarr, 1)) {
		return 0;
	}

	id2 = readarr[0];

	msg_cdbg("%s: id 0x%"PRIx32"\n", __func__, id2);

	if (id2 != flash->chip->model_id)
		return 0;

	return 1;
}

int probe_spi_res2(struct flashctx *flash)
{
	uint32_t id1, id2;

	if (!id_cache[RES2].is_cached) {
		if (spi_res(flash, id_cache[RES2].bytes, 2))
			return 0;
		id_cache[RES2].is_cached = true;
	}

	id1 = id_cache[RES2].bytes[0];
	id2 = id_cache[RES2].bytes[1];
	msg_cdbg("%s: id1 0x%"PRIx32", id2 0x%"PRIx32"\n", __func__, id1, id2);

	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
		return 0;

	return 1;
}

int probe_spi_res3(struct flashctx *flash)
{
	uint32_t id1, id2;

	if (!id_cache[RES3].is_cached) {
		if (spi_res(flash, id_cache[RES3].bytes, 3))
			return 0;
		id_cache[RES3].is_cached = true;
	}

	id1 = (id_cache[RES3].bytes[0] << 8) | id_cache[RES3].bytes[1];
	id2 = id_cache[RES3].bytes[3];
	msg_cdbg("%s: id1 0x%"PRIx32", id2 0x%"PRIx32"\n", __func__, id1, id2);

	if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id)
		return 0;

	return 1;
}

/* Only used for some Atmel chips. */
int probe_spi_at25f(struct flashctx *flash)
{
	static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID };
	unsigned char readarr[AT25F_RDID_INSIZE];
	uint32_t id1;
	uint32_t id2;

	if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr))
		return 0;

	id1 = readarr[0];
	id2 = readarr[1];

	msg_cdbg("%s: id1 0x%02"PRIx32", id2 0x%02"PRIx32"\n", __func__, id1, id2);

	if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id)
		return 1;

	return 0;
}

static int spi_poll_wip(struct flashctx *const flash, const unsigned int poll_delay)
{
	/* FIXME: We don't time out. */
	while (true) {
		uint8_t status;
		int ret = spi_read_register(flash, STATUS1, &status);
		if (ret)
			return ret;
		if (!(status & SPI_SR_WIP))
			return 0;

		programmer_delay(flash, poll_delay);
	}
}

/**
 * Execute WREN plus another one byte `op`, optionally poll WIP afterwards.
 *
 * @param flash       the flash chip's context
 * @param op          the operation to execute
 * @param poll_delay  interval in us for polling WIP, don't poll if zero
 * @return 0 on success, non-zero otherwise
 */
static int spi_simple_write_cmd(struct flashctx *const flash, const uint8_t op, const unsigned int poll_delay)
{
	struct spi_command cmds[] = {
	{
		.readarr = 0,
		.writecnt = JEDEC_WREN_OUTSIZE,
		.writearr = (const unsigned char[]){ JEDEC_WREN },
	}, {
		.readarr = 0,
		.writecnt = 1,
		.writearr = (const unsigned char[]){ op },
	},
		NULL_SPI_CMD,
	};

	const int result = spi_send_multicommand(flash, cmds);
	if (result)
		msg_cerr("%s failed during command execution\n", __func__);

	const int status = poll_delay ? spi_poll_wip(flash, poll_delay) : 0;

	return result ? result : status;
}

static int spi_write_extended_address_register(struct flashctx *const flash, const uint8_t regdata)
{
	uint8_t op;
	if (flash->chip->feature_bits & FEATURE_4BA_EAR_C5C8) {
		op = JEDEC_WRITE_EXT_ADDR_REG;
	} else if (flash->chip->feature_bits & FEATURE_4BA_EAR_1716) {
		op = ALT_WRITE_EXT_ADDR_REG_17;
	} else {
		msg_cerr("Flash misses feature flag for extended-address register.\n");
		return -1;
	}

	struct spi_command cmds[] = {
	{
		.readarr = 0,
		.writecnt = 1,
		.writearr = (const unsigned char[]){ JEDEC_WREN },
	}, {
		.readarr = 0,
		.writecnt = 2,
		.writearr = (const unsigned char[]){ op, regdata },
	},
		NULL_SPI_CMD,
	};

	const int result = spi_send_multicommand(flash, cmds);
	if (result)
		msg_cerr("%s failed during command execution\n", __func__);
	return result;
}

int spi_set_extended_address(struct flashctx *const flash, const uint8_t addr_high)
{
	if (flash->address_high_byte != addr_high &&
	    spi_write_extended_address_register(flash, addr_high))
		return -1;
	flash->address_high_byte = addr_high;
	return 0;
}

static int spi_prepare_address(struct flashctx *const flash, uint8_t cmd_buf[],
			       const bool native_4ba, const unsigned int addr)
{
	if (native_4ba || flash->in_4ba_mode) {
		if (!spi_master_4ba(flash)) {
			msg_cwarn("4-byte address requested but master can't handle 4-byte addresses.\n");
			return -1;
		}
		cmd_buf[1] = (addr >> 24) & 0xff;
		cmd_buf[2] = (addr >> 16) & 0xff;
		cmd_buf[3] = (addr >>  8) & 0xff;
		cmd_buf[4] = (addr >>  0) & 0xff;
		return 4;
	} else {
		if (flash->chip->feature_bits & FEATURE_4BA_EAR_ANY) {
			if (spi_set_extended_address(flash, addr >> 24))
				return -1;
		} else if (addr >> 24) {
			msg_cerr("Can't handle 4-byte address for opcode '0x%02x'\n"
				 "with this chip/programmer combination.\n", cmd_buf[0]);
			return -1;
		}
		cmd_buf[1] = (addr >> 16) & 0xff;
		cmd_buf[2] = (addr >>  8) & 0xff;
		cmd_buf[3] = (addr >>  0) & 0xff;
		return 3;
	}
}

/**
 * Execute WREN plus another `op` that takes an address and
 * optional data, poll WIP afterwards.
 *
 * @param flash       the flash chip's context
 * @param op          the operation to execute
 * @param native_4ba  whether `op` always takes a 4-byte address
 * @param addr        the address parameter to `op`
 * @param out_bytes   bytes to send after the address,
 *                    may be NULL if and only if `out_bytes` is 0
 * @param out_bytes   number of bytes to send, 256 at most, may be zero
 * @param poll_delay  interval in us for polling WIP
 * @return 0 on success, non-zero otherwise
 */
static int spi_write_cmd(struct flashctx *const flash, const uint8_t op,
			 const bool native_4ba, const unsigned int addr,
			 const uint8_t *const out_bytes, const size_t out_len,
			 const unsigned int poll_delay)
{
	uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN + 256];
	struct spi_command cmds[] = {
	{
		.readarr = 0,
		.writecnt = 1,
		.writearr = (const unsigned char[]){ JEDEC_WREN },
	}, {
		.readarr = 0,
		.writearr = cmd,
	},
		NULL_SPI_CMD,
	};

	cmd[0] = op;
	const int addr_len = spi_prepare_address(flash, cmd, native_4ba, addr);
	if (addr_len < 0)
		return 1;

	if (1 + addr_len + out_len > sizeof(cmd)) {
		msg_cerr("%s called for too long a write\n", __func__);
		return 1;
	}
	if (!out_bytes && out_len > 0)
		return 1;

	memcpy(cmd + 1 + addr_len, out_bytes, out_len);
	cmds[1].writecnt = 1 + addr_len + out_len;

	const int result = spi_send_multicommand(flash, cmds);
	if (result)
		msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr);

	const int status = spi_poll_wip(flash, poll_delay);

	return result ? result : status;
}

static int spi_chip_erase_60(struct flashctx *flash)
{
	/* This usually takes 1-85s, so wait in 1s steps. */
	return spi_simple_write_cmd(flash, JEDEC_CE_60, 1000 * 1000);
}

static int spi_chip_erase_62(struct flashctx *flash)
{
	/* This usually takes 2-5s, so wait in 100ms steps. */
	return spi_simple_write_cmd(flash, JEDEC_CE_62, 100 * 1000);
}

static int spi_chip_erase_c7(struct flashctx *flash)
{
	/* This usually takes 1-85s, so wait in 1s steps. */
	return spi_simple_write_cmd(flash, JEDEC_CE_C7, 1000 * 1000);
}

int spi_block_erase_52(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	/* This usually takes 100-4000ms, so wait in 100ms steps. */
	return spi_write_cmd(flash, JEDEC_BE_52, false, addr, NULL, 0, 100 * 1000);
}

/* Block size is usually
 * 32M (one die) for Micron
 */
int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 240-480s, so wait in 500ms steps. */
	return spi_write_cmd(flash, JEDEC_BE_C4, false, addr, NULL, 0, 500 * 1000);
}

/* Block size is usually
 * 64k for Macronix
 * 32k for SST
 * 4-32k non-uniform for EON
 */
int spi_block_erase_d8(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	/* This usually takes 100-4000ms, so wait in 100ms steps. */
	return spi_write_cmd(flash, JEDEC_BE_D8, false, addr, NULL, 0, 100 * 1000);
}

/* Block size is usually
 * 4k for PMC
 */
int spi_block_erase_d7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	/* This usually takes 100-4000ms, so wait in 100ms steps. */
	return spi_write_cmd(flash, JEDEC_BE_D7, false, addr, NULL, 0, 100 * 1000);
}

/* Page erase (usually 256B blocks) */
int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This takes up to 20ms usually (on worn out devices
	   up to the 0.5s range), so wait in 1ms steps. */
	return spi_write_cmd(flash, 0xdb, false, addr, NULL, 0, 1 * 1000);
}

/* Sector size is usually 4k, though Macronix eliteflash has 64k */
int spi_block_erase_20(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	/* This usually takes 15-800ms, so wait in 10ms steps. */
	return spi_write_cmd(flash, JEDEC_SE, false, addr, NULL, 0, 10 * 1000);
}

int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 10ms, so wait in 1ms steps. */
	return spi_write_cmd(flash, JEDEC_BE_50, false, addr, NULL, 0, 1 * 1000);
}

int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 8ms, so wait in 1ms steps. */
	return spi_write_cmd(flash, JEDEC_BE_81, false, addr, NULL, 0, 1 * 1000);
}

int spi_block_erase_60(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_60(flash);
}

int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_62(flash);
}

int spi_block_erase_c7(struct flashctx *flash, unsigned int addr,
		       unsigned int blocklen)
{
	if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) {
		msg_cerr("%s called with incorrect arguments\n",
			__func__);
		return -1;
	}
	return spi_chip_erase_c7(flash);
}

/* Erase 4 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_21(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 15-800ms, so wait in 10ms steps. */
	return spi_write_cmd(flash, 0x21, true, addr, NULL, 0, 10 * 1000);
}

/* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_53(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 100-4000ms, so wait in 100ms steps. */
	return spi_write_cmd(flash, 0x53, true, addr, NULL, 0, 100 * 1000);
}

/* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_5c(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 100-4000ms, so wait in 100ms steps. */
	return spi_write_cmd(flash, 0x5c, true, addr, NULL, 0, 100 * 1000);
}

/* Erase 64 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */
int spi_block_erase_dc(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
	/* This usually takes 100-4000ms, so wait in 100ms steps. */
	return spi_write_cmd(flash, 0xdc, true, addr, NULL, 0, 100 * 1000);
}

static const struct {
	enum block_erase_func func;
	uint8_t opcode;
} spi25_function_opcode_list[] = {
	{SPI_BLOCK_ERASE_20, 0x20},
	{SPI_BLOCK_ERASE_21, 0x21},
	{SPI_BLOCK_ERASE_50, 0x50},
	{SPI_BLOCK_ERASE_52, 0x52},
	{SPI_BLOCK_ERASE_53, 0x53},
	{SPI_BLOCK_ERASE_5C, 0x5c},
	{SPI_BLOCK_ERASE_60, 0x60},
	{SPI_BLOCK_ERASE_62, 0x62},
	{SPI_BLOCK_ERASE_81, 0x81},
	{SPI_BLOCK_ERASE_C4, 0xc4},
	{SPI_BLOCK_ERASE_C7, 0xc7},
	{SPI_BLOCK_ERASE_D7, 0xd7},
	{SPI_BLOCK_ERASE_D8, 0xd8},
	{SPI_BLOCK_ERASE_DB, 0xdb},
	{SPI_BLOCK_ERASE_DC, 0xdc},
};

enum block_erase_func spi25_get_erasefn_from_opcode(uint8_t opcode)
{
	size_t i;
	for (i = 0; i < ARRAY_SIZE(spi25_function_opcode_list); i++) {
		if (spi25_function_opcode_list[i].opcode == opcode)
			return spi25_function_opcode_list[i].func;
	}
	msg_cinfo("%s: unknown erase opcode (0x%02x). Please report "
			  "this at flashrom@flashrom.org\n", __func__, opcode);
	return NO_BLOCK_ERASE_FUNC;
}

static int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len)
{
	const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_WRITE && spi_master_4ba(flash);
	const uint8_t op = native_4ba ? JEDEC_BYTE_PROGRAM_4BA : JEDEC_BYTE_PROGRAM;
	return spi_write_cmd(flash, op, native_4ba, addr, bytes, len, 10);
}

int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes,
		   unsigned int len)
{
	const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_READ && spi_master_4ba(flash);
	uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN] = { native_4ba ? JEDEC_READ_4BA : JEDEC_READ, };

	const int addr_len = spi_prepare_address(flash, cmd, native_4ba, address);
	if (addr_len < 0)
		return 1;

	/* Send Read */
	return spi_send_command(flash, 1 + addr_len, len, cmd, bytes);
}

/*
 * Read a part of the flash chip.
 * Data is read in chunks with a maximum size of chunksize.
 */
int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start,
		     unsigned int len, unsigned int chunksize)
{
	int ret;
	size_t to_read;
	size_t start_address = start;
	size_t end_address = len - start;
	for (; len; len -= to_read, buf += to_read, start += to_read) {
		to_read = min(chunksize, len);
		ret = spi_nbyte_read(flash, start, buf, to_read);
		if (ret)
			return ret;
		update_progress(flash, FLASHROM_PROGRESS_READ, start - start_address + to_read, end_address);
	}
	return 0;
}

/*
 * Write a part of the flash chip.
 * FIXME: Use the chunk code from Michael Karcher instead.
 * Each page is written separately in chunks with a maximum size of chunksize.
 */
int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start,
		      unsigned int len, unsigned int chunksize)
{
	unsigned int i, j, starthere, lenhere, towrite;
	/* FIXME: page_size is the wrong variable. We need max_writechunk_size
	 * in struct flashctx to do this properly. All chips using
	 * spi_chip_write_256 have page_size set to max_writechunk_size, so
	 * we're OK for now.
	 */
	unsigned int page_size = flash->chip->page_size;
	size_t start_address = start;
	size_t end_address = len - start;

	/* Warning: This loop has a very unusual condition and body.
	 * The loop needs to go through each page with at least one affected
	 * byte. The lowest page number is (start / page_size) since that
	 * division rounds down. The highest page number we want is the page
	 * where the last byte of the range lives. That last byte has the
	 * address (start + len - 1), thus the highest page number is
	 * (start + len - 1) / page_size. Since we want to include that last
	 * page as well, the loop condition uses <=.
	 */
	for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
		/* Byte position of the first byte in the range in this page. */
		/* starthere is an offset to the base address of the chip. */
		starthere = max(start, i * page_size);
		/* Length of bytes in the range in this page. */
		lenhere = min(start + len, (i + 1) * page_size) - starthere;
		for (j = 0; j < lenhere; j += chunksize) {
			int rc;

			towrite = min(chunksize, lenhere - j);
			rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite);
			if (rc)
				return rc;
		}
		update_progress(flash, FLASHROM_PROGRESS_WRITE, start - start_address + lenhere, end_address);
	}

	return 0;
}

/*
 * Program chip using byte programming. (SLOW!)
 * This is for chips which can only handle one byte writes
 * and for chips where memory mapped programming is impossible
 * (e.g. due to size constraints in IT87* for over 512 kB)
 */
/* real chunksize is 1, logical chunksize is 1 */
int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
	unsigned int i;

	for (i = start; i < start + len; i++) {
		if (spi_nbyte_program(flash, i, buf + i - start, 1))
			return 1;
		update_progress(flash, FLASHROM_PROGRESS_WRITE, i - start, len - start);
	}
	return 0;
}

int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len)
{
	uint32_t pos = start;
	int result;
	unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
		JEDEC_AAI_WORD_PROGRAM,
	};

	/* The even start address and even length requirements can be either
	 * honored outside this function, or we can call spi_byte_program
	 * for the first and/or last byte and use AAI for the rest.
	 * FIXME: Move this to generic code.
	 */
	/* The data sheet requires a start address with the low bit cleared. */
	if (start % 2) {
		msg_cerr("%s: start address not even! Please report a bug at "
			 "flashrom@flashrom.org\n", __func__);
		if (spi_chip_write_1(flash, buf, start, start % 2))
			return SPI_GENERIC_ERROR;
		pos += start % 2;
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
	}
	/* The data sheet requires total AAI write length to be even. */
	if (len % 2) {
		msg_cerr("%s: total write length not even! Please report a "
			 "bug at flashrom@flashrom.org\n", __func__);
		/* Do not return an error for now. */
		//return SPI_GENERIC_ERROR;
	}

	result = spi_write_cmd(flash, JEDEC_AAI_WORD_PROGRAM, false, start, buf + pos - start, 2, 10);
	if (result)
		goto bailout;

	/* We already wrote 2 bytes in the multicommand step. */
	pos += 2;

	/* Are there at least two more bytes to write? */
	while (pos < start + len - 1) {
		cmd[1] = buf[pos++ - start];
		cmd[2] = buf[pos++ - start];
		result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
		if (result != 0) {
			msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result);
			goto bailout;
		}
		if (spi_poll_wip(flash, 10))
			goto bailout;
	}

	/* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */
	result = spi_write_disable(flash);
	if (result != 0) {
		msg_cerr("%s failed to disable AAI mode.\n", __func__);
		return SPI_GENERIC_ERROR;
	}

	/* Write remaining byte (if any). */
	if (pos < start + len) {
		if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
			return SPI_GENERIC_ERROR;
	}

	return 0;

bailout:
	result = spi_write_disable(flash);
	if (result != 0)
		msg_cerr("%s failed to disable AAI mode.\n", __func__);
	return SPI_GENERIC_ERROR;
}

static int spi_enter_exit_4ba(struct flashctx *const flash, const bool enter)
{
	const unsigned char cmd = enter ? JEDEC_ENTER_4_BYTE_ADDR_MODE : JEDEC_EXIT_4_BYTE_ADDR_MODE;
	int ret = 1;

	if (flash->chip->feature_bits & FEATURE_4BA_ENTER)
		ret = spi_send_command(flash, sizeof(cmd), 0, &cmd, NULL);
	else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_WREN)
		ret = spi_simple_write_cmd(flash, cmd, 0);
	else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_EAR7)
		ret = spi_set_extended_address(flash, enter ? 0x80 : 0x00);

	if (!ret)
		flash->in_4ba_mode = enter;
	return ret;
}

int spi_enter_4ba(struct flashctx *const flash)
{
	return spi_enter_exit_4ba(flash, true);
}

int spi_exit_4ba(struct flashctx *flash)
{
	return spi_enter_exit_4ba(flash, false);
}