1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
/**CFile****************************************************************
FileName [exorLink.c]
SystemName [ABC: Logic synthesis and verification system.]
PackageName [Exclusive sum-of-product minimization.]
Synopsis [Cube iterators.]
Author [Alan Mishchenko]
Affiliation [UC Berkeley]
Date [Ver. 1.0. Started - June 20, 2005.]
Revision [$Id: exorLink.c,v 1.0 2005/06/20 00:00:00 alanmi Exp $]
***********************************************************************/
////////////////////////////////////////////////////////////////////////
/// ///
/// Implementation of EXORCISM - 4 ///
/// An Exclusive Sum-of-Product Minimizer ///
/// ///
/// Alan Mishchenko <alanmi@ee.pdx.edu> ///
/// ///
////////////////////////////////////////////////////////////////////////
/// ///
/// Generation of ExorLinked Cubes ///
/// ///
/// Ver. 1.0. Started - July 26, 2000. Last update - July 29, 2000 ///
/// Ver. 1.4. Started - Aug 10, 2000. Last update - Aug 12, 2000 ///
/// ///
////////////////////////////////////////////////////////////////////////
/// This software was tested with the BDD package "CUDD", v.2.3.0 ///
/// by Fabio Somenzi ///
/// http://vlsi.colorado.edu/~fabio/ ///
////////////////////////////////////////////////////////////////////////
#include "exor.h"
ABC_NAMESPACE_IMPL_START
////////////////////////////////////////////////////////////////////////
/// MACRO DEFINITIONS ///
////////////////////////////////////////////////////////////////////////
#define LARGE_NUM 1000000
////////////////////////////////////////////////////////////////////////
/// EXTERNAL FUNCTION DECLARATIONS ///
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
/// FUNCTIONS OF THIS MODULE ///
////////////////////////////////////////////////////////////////////////
int ExorLinkCubeIteratorStart( Cube** pGroup, Cube* pC1, Cube* pC2, cubedist Dist );
// this function starts the Exor-Link iterator, which iterates
// through the cube groups starting from the group with min literals
// returns 1 on success, returns 0 if the cubes have wrong distance
int ExorLinkCubeIteratorNext( Cube** pGroup );
// give the next group in the decreasing order of sum of literals
// returns 1 on success, returns 0 if there are no more groups
int ExorLinkCubeIteratorPick( Cube** pGroup, int g );
// gives the group #g in the order in which the groups were given
// during iteration
// returns 1 on success, returns 0 if something g is too large
void ExorLinkCubeIteratorCleanUp( int fTakeLastGroup );
// removes the cubes from the store back into the list of free cubes
// if fTakeLastGroup is 0, removes all cubes
// if fTakeLastGroup is 1, does not store the last group
////////////////////////////////////////////////////////////////////////
/// EXTERNAL VARIABLES ///
////////////////////////////////////////////////////////////////////////
// information about the cube cover before
extern cinfo g_CoverInfo;
// new IDs are assigned only when it is known that the cubes are useful
// this is done in ExorLinkCubeIteratorCleanUp();
// the head of the list of free cubes
extern Cube* g_CubesFree;
extern byte BitCount[];
////////////////////////////////////////////////////////////////////////
/// EXORLINK INFO ///
////////////////////////////////////////////////////////////////////////
const int s_ELMax = 4;
// ExorLink-2: there are 4 cubes, 2 literals each, combined into 2 groups
// ExorLink-3: there are 12 cubes, 3 literals each, combined into 6 groups
// ExorLink-4: there are 32 cubes, 4 literals each, combined into 24 groups
// ExorLink-5: there are 80 cubes, 5 literals each, combined into 120 groups
// Exorlink-n: there are n*2^(n-1) cubes, n literals each, combined into n! groups
const int s_ELnCubes[4] = { 4, 12, 32, 80 };
const int s_ELnGroups[4] = { 2, 6, 24, 120 };
// value sets of cubes X{a0}Y{b0}Z{c0}U{d0} and X{a1}Y{b1}Z{c1}U{d1}
// used to represent the ExorLink cube generation rules
enum { vs0, vs1, vsX };
// vs0 = 0, // the value set of the first cube
// vs1 = 1, // the value set of the second cube
// vsX = 2 // EXOR of the value sets of the first and second cubes
// representation of ExorLinked cubes
static int s_ELCubeRules[3][32][4] = {
{ // ExorLink-2 Cube Generating Rules
// | 0 | 1 | - sections
// |-------|
{vsX,vs0}, // cube 0 | | |
{vsX,vs1}, // cube 1 | | 0 |
{vs0,vsX}, // cube 2 | | |
{vs1,vsX} // cube 3 | 0 | |
},
{ // ExorLink-3 Cube Generating Rules
// | 0 | 1 | 2 | - sections
// |-----------|
{vsX,vs0,vs0}, // cube 0 | | | |
{vsX,vs0,vs1}, // cube 1 | | | 0 |
{vsX,vs1,vs0}, // cube 2 | | 0 | |
{vsX,vs1,vs1}, // cube 3 | | 1 | 1 |
{vs0,vsX,vs0}, // cube 4 | | | |
{vs0,vsX,vs1}, // cube 5 | | | 2 |
{vs1,vsX,vs0}, // cube 6 | 0 | | |
{vs1,vsX,vs1}, // cube 7 | 1 | | 3 |
{vs0,vs0,vsX}, // cube 8 | | | |
{vs0,vs1,vsX}, // cube 9 | | 2 | |
{vs1,vs0,vsX}, // cube 10 | 2 | | |
{vs1,vs1,vsX} // cube 11 | 3 | 3 | |
},
{ // ExorLink-4 Rules Generating Rules
// | 0 | 1 | 2 | 4 | - sections
// |---------------|
{vsX,vs0,vs0,vs0}, // cube 0 | | | | |
{vsX,vs0,vs0,vs1}, // cube 1 | | | | 0 |
{vsX,vs0,vs1,vs0}, // cube 2 | | | 0 | |
{vsX,vs0,vs1,vs1}, // cube 3 | | | 1 | 1 |
{vsX,vs1,vs0,vs0}, // cube 4 | | 0 | | |
{vsX,vs1,vs0,vs1}, // cube 5 | | 1 | | 2 |
{vsX,vs1,vs1,vs0}, // cube 6 | | 2 | 2 | |
{vsX,vs1,vs1,vs1}, // cube 7 | | 3 | 3 | 3 |
{vs0,vsX,vs0,vs0}, // cube 8 | | | | |
{vs0,vsX,vs0,vs1}, // cube 9 | | | | 4 |
{vs0,vsX,vs1,vs0}, // cube 10 | | | 4 | |
{vs0,vsX,vs1,vs1}, // cube 11 | | | 5 | 5 |
{vs1,vsX,vs0,vs0}, // cube 12 | 0 | | | |
{vs1,vsX,vs0,vs1}, // cube 13 | 1 | | | 6 |
{vs1,vsX,vs1,vs0}, // cube 14 | 2 | | 6 | |
{vs1,vsX,vs1,vs1}, // cube 15 | 3 | | 7 | 7 |
{vs0,vs0,vsX,vs0}, // cube 16 | | | | |
{vs0,vs0,vsX,vs1}, // cube 17 | | | | 8 |
{vs0,vs1,vsX,vs0}, // cube 18 | | 4 | | |
{vs0,vs1,vsX,vs1}, // cube 19 | | 5 | | 9 |
{vs1,vs0,vsX,vs0}, // cube 20 | 4 | | | |
{vs1,vs0,vsX,vs1}, // cube 21 | 5 | | | 10|
{vs1,vs1,vsX,vs0}, // cube 22 | 6 | 6 | | |
{vs1,vs1,vsX,vs1}, // cube 23 | 7 | 7 | | 11|
{vs0,vs0,vs0,vsX}, // cube 24 | | | | |
{vs0,vs0,vs1,vsX}, // cube 25 | | | 8 | |
{vs0,vs1,vs0,vsX}, // cube 26 | | 8 | | |
{vs0,vs1,vs1,vsX}, // cube 27 | | 9 | 9 | |
{vs1,vs0,vs0,vsX}, // cube 28 | 8 | | | |
{vs1,vs0,vs1,vsX}, // cube 29 | 9 | | 10| |
{vs1,vs1,vs0,vsX}, // cube 30 | 10| 10| | |
{vs1,vs1,vs1,vsX} // cube 31 | 11| 11| 11| |
}
};
// these cubes are combined into groups
static int s_ELGroupRules[3][24][4] = {
{ // ExorLink-2 Group Forming Rules
{0,3}, // group 0 - section 0
{2,1} // group 1 - section 1
},
{ // ExorLink-3 Group Forming Rules
{0,6,11}, // group 0 - section 0
{0,7,10}, // group 1
{4,2,11}, // group 2 - section 1
{4,3,9}, // group 3
{8,1,7}, // group 4 - section 2
{8,3,5} // group 5
},
{ // ExorLink-4 Group Forming Rules
// section 0: (0-12)(1-13)(2-14)(3-15)(4-20)(5-21)(6-22)(7-23)(8-28)(9-29)(10-30)(11-31)
{0,12,22,31}, // group 0 // {0,6,11}, // group 0 - section 0
{0,12,23,30}, // group 1 // {0,7,10}, // group 1
{0,20,14,31}, // group 2 // {4,2,11}, // group 2
{0,20,15,29}, // group 3 // {4,3,9}, // group 3
{0,28,13,23}, // group 4 // {8,1,7}, // group 4
{0,28,15,21}, // group 5 // {8,3,5} // group 5
// section 1: (0-4)(1-5)(2-6)(3-7)(4-18)(5-19)(6-22)(7-23)(8-26)(9-27)(10-30)(11-31)
{8,4,22,31}, // group 6
{8,4,23,30}, // group 7
{8,18,6,31}, // group 8
{8,18,7,27}, // group 9
{8,26,5,23}, // group 10
{8,26,7,19}, // group 11
// section 2: (0-2)(1-3)(2-6)(3-7)(4-10)(5-11)(6-14)(7-15)(8-25)(9-27)(10-29)(11-31)
{16,2,14,31}, // group 12
{16,2,15,29}, // group 13
{16,10,6,31}, // group 14
{16,10,7,27}, // group 15
{16,25,3,15}, // group 16
{16,25,7,11}, // group 17
// section 3: (0-1)(1-3)(2-5)(3-7)(4-9)(5-11)(6-13)(7-15)(8-17)(9-19)(10-21)(11-23)
{24,1,13,23}, // group 18
{24,1,15,21}, // group 19
{24,9, 5,23}, // group 20
{24,9, 7,19}, // group 21
{24,17,3,15}, // group 22
{24,17,7,11} // group 23
}
};
// it is assumed that if literals in the first cube, second cube
// and their EXOR are 0 or 1 (as opposed to -), they are written
// into a mask, which is used to count the number of literals in
// the cube groups cubes
//
// below is the set of masks selecting literals belonging
// to the given cube of the group
static drow s_CubeLitMasks[3][32] = {
{ // ExorLink-2 Literal Counting Masks
// v3 v2 v1 v0
// -xBA -xBA -xBA -xBA
// -------------------
0x14, // cube 0 <0000 0000 0001 0100> {vsX,vs0}
0x24, // cube 1 <0000 0000 0010 0100> {vsX,vs1}
0x41, // cube 2 <0000 0000 0100 0001> {vs0,vsX}
0x42, // cube 3 <0000 0000 0100 0010> {vs1,vsX}
},
{ // ExorLink-3 Literal Counting Masks
0x114, // cube 0 <0000 0001 0001 0100> {vsX,vs0,vs0}
0x214, // cube 1 <0000 0010 0001 0100> {vsX,vs0,vs1}
0x124, // cube 2 <0000 0001 0010 0100> {vsX,vs1,vs0}
0x224, // cube 3 <0000 0010 0010 0100> {vsX,vs1,vs1}
0x141, // cube 4 <0000 0001 0100 0001> {vs0,vsX,vs0}
0x241, // cube 5 <0000 0010 0100 0001> {vs0,vsX,vs1}
0x142, // cube 6 <0000 0001 0100 0010> {vs1,vsX,vs0}
0x242, // cube 7 <0000 0010 0100 0010> {vs1,vsX,vs1}
0x411, // cube 8 <0000 0100 0001 0001> {vs0,vs0,vsX}
0x421, // cube 9 <0000 0100 0010 0001> {vs0,vs1,vsX}
0x412, // cube 10 <0000 0100 0001 0010> {vs1,vs0,vsX}
0x422, // cube 11 <0000 0100 0010 0010> {vs1,vs1,vsX}
},
{ // ExorLink-4 Literal Counting Masks
0x1114, // cube 0 <0001 0001 0001 0100> {vsX,vs0,vs0,vs0}
0x2114, // cube 1 <0010 0001 0001 0100> {vsX,vs0,vs0,vs1}
0x1214, // cube 2 <0001 0010 0001 0100> {vsX,vs0,vs1,vs0}
0x2214, // cube 3 <0010 0010 0001 0100> {vsX,vs0,vs1,vs1}
0x1124, // cube 4 <0001 0001 0010 0100> {vsX,vs1,vs0,vs0}
0x2124, // cube 5 <0010 0001 0010 0100> {vsX,vs1,vs0,vs1}
0x1224, // cube 6 <0001 0010 0010 0100> {vsX,vs1,vs1,vs0}
0x2224, // cube 7 <0010 0010 0010 0100> {vsX,vs1,vs1,vs1}
0x1141, // cube 8 <0001 0001 0100 0001> {vs0,vsX,vs0,vs0}
0x2141, // cube 9 <0010 0001 0100 0001> {vs0,vsX,vs0,vs1}
0x1241, // cube 10 <0001 0010 0100 0001> {vs0,vsX,vs1,vs0}
0x2241, // cube 11 <0010 0010 0100 0001> {vs0,vsX,vs1,vs1}
0x1142, // cube 12 <0001 0001 0100 0010> {vs1,vsX,vs0,vs0}
0x2142, // cube 13 <0010 0001 0100 0010> {vs1,vsX,vs0,vs1}
0x1242, // cube 14 <0001 0010 0100 0010> {vs1,vsX,vs1,vs0}
0x2242, // cube 15 <0010 0010 0100 0010> {vs1,vsX,vs1,vs1}
0x1411, // cube 16 <0001 0100 0001 0001> {vs0,vs0,vsX,vs0}
0x2411, // cube 17 <0010 0100 0001 0001> {vs0,vs0,vsX,vs1}
0x1421, // cube 18 <0001 0100 0010 0001> {vs0,vs1,vsX,vs0}
0x2421, // cube 19 <0010 0100 0010 0001> {vs0,vs1,vsX,vs1}
0x1412, // cube 20 <0001 0100 0001 0010> {vs1,vs0,vsX,vs0}
0x2412, // cube 21 <0010 0100 0001 0010> {vs1,vs0,vsX,vs1}
0x1422, // cube 22 <0001 0100 0010 0010> {vs1,vs1,vsX,vs0}
0x2422, // cube 23 <0010 0100 0010 0010> {vs1,vs1,vsX,vs1}
0x4111, // cube 24 <0100 0001 0001 0001> {vs0,vs0,vs0,vsX}
0x4211, // cube 25 <0100 0010 0001 0001> {vs0,vs0,vs1,vsX}
0x4121, // cube 26 <0100 0001 0010 0001> {vs0,vs1,vs0,vsX}
0x4221, // cube 27 <0100 0010 0010 0001> {vs0,vs1,vs1,vsX}
0x4112, // cube 28 <0100 0001 0001 0010> {vs1,vs0,vs0,vsX}
0x4212, // cube 29 <0100 0010 0001 0010> {vs1,vs0,vs1,vsX}
0x4122, // cube 30 <0100 0001 0010 0010> {vs1,vs1,vs0,vsX}
0x4222, // cube 31 <0100 0010 0010 0010> {vs1,vs1,vs1,vsX}
}
};
static drow s_BitMasks[32] =
{
0x00000001,0x00000002,0x00000004,0x00000008,
0x00000010,0x00000020,0x00000040,0x00000080,
0x00000100,0x00000200,0x00000400,0x00000800,
0x00001000,0x00002000,0x00004000,0x00008000,
0x00010000,0x00020000,0x00040000,0x00080000,
0x00100000,0x00200000,0x00400000,0x00800000,
0x01000000,0x02000000,0x04000000,0x08000000,
0x10000000,0x20000000,0x40000000,0x80000000
};
////////////////////////////////////////////////////////////////////////
/// STATIC VARIABLES ///
////////////////////////////////////////////////////////////////////////
// this flag is TRUE as long as the storage is allocated
static int fWorking;
// set these flags to have minimum literal groups generated first
static int fMinLitGroupsFirst[4] = { 0 /*dist2*/, 0 /*dist3*/, 0 /*dist4*/};
static int nDist;
static int nCubes;
static int nCubesInGroup;
static int nGroups;
static Cube *pCA, *pCB;
// storage for variable numbers that are different in the cubes
static int DiffVars[5];
static int* pDiffVars;
static int nDifferentVars;
// storage for the bits and words of different input variables
static int nDiffVarsIn;
static int DiffVarWords[5];
static int DiffVarBits[5];
// literal mask used to count the number of literals in the cubes
static drow MaskLiterals;
// the base for counting literals
static int StartingLiterals;
// the number of literals in each cube
static int CubeLiterals[32];
static int BitShift;
static int DiffVarValues[4][3];
static int Value;
// the sorted array of groups in the increasing order of costs
static int GroupCosts[32];
static int GroupCostBest;
static int GroupCostBestNum;
static int CubeNum;
static int NewZ;
static drow Temp;
// the cubes currently created
static Cube* ELCubes[32];
// the bit string with 1's corresponding to cubes in ELCubes[]
// that constitute the last group
static drow LastGroup;
static int GroupOrder[24];
static drow VisitedGroups;
static int nVisitedGroups;
//int RemainderBits = (nVars*2)%(sizeof(drow)*8);
//int TotalWords = (nVars*2)/(sizeof(drow)*8) + (RemainderBits > 0);
static drow DammyBitData[(MAXVARS*2)/(sizeof(drow)*8)+(MAXVARS*2)%(sizeof(drow)*8)];
////////////////////////////////////////////////////////////////////////
/// FUNCTION DEFINTIONS ///
////////////////////////////////////////////////////////////////////////
// IDEA! if we already used a cube to count distances and it did not improve
// there is no need to try it again with other group
// (this idea works only for ExorLink-2 and -3)
int ExorLinkCubeIteratorStart( Cube** pGroup, Cube* pC1, Cube* pC2, cubedist Dist )
// this function starts the Exor-Link iterator, which iterates
// through the cube groups starting from the group with min literals
// returns 1 on success, returns 0 if the cubes have wrong distance
{
int i, c;
// check that everything is okey
assert( pC1 != NULL );
assert( pC2 != NULL );
assert( !fWorking );
nDist = Dist;
nCubes = Dist + 2;
nCubesInGroup = s_ELnCubes[nDist];
nGroups = s_ELnGroups[Dist];
pCA = pC1;
pCB = pC2;
// find what variables are different in these two cubes
// FindDiffVars returns DiffVars[0] < 0, if the output is different
nDifferentVars = FindDiffVars( DiffVars, pCA, pCB );
if ( nCubes != nDifferentVars )
{
// cout << "ExorLinkCubeIterator(): Distance mismatch";
// cout << " nCubes = " << nCubes << " nDiffVars = " << nDifferentVars << endl;
fWorking = 0;
return 0;
}
// copy the input variable cube data into DammyBitData[]
for ( i = 0; i < g_CoverInfo.nWordsIn; i++ )
DammyBitData[i] = pCA->pCubeDataIn[i];
// find the number of different input variables
nDiffVarsIn = ( DiffVars[0] >= 0 )? nCubes: nCubes-1;
// assign the pointer to the place where the number of diff input vars is stored
pDiffVars = ( DiffVars[0] >= 0 )? DiffVars: DiffVars+1;
// find the bit offsets and remove different variables
for ( i = 0; i < nDiffVarsIn; i++ )
{
DiffVarWords[i] = ((2*pDiffVars[i]) >> LOGBPI) ;
DiffVarBits[i] = ((2*pDiffVars[i]) & BPIMASK);
// clear this position
DammyBitData[ DiffVarWords[i] ] &= ~( 3 << DiffVarBits[i] );
}
// extract the values from the cubes and create the mask of literals
MaskLiterals = 0;
// initialize the base for literal counts
StartingLiterals = pCA->a;
for ( i = 0, BitShift = 0; i < nDiffVarsIn; i++, BitShift++ )
{
DiffVarValues[i][0] = ( pCA->pCubeDataIn[DiffVarWords[i]] >> DiffVarBits[i] ) & 3;
if ( DiffVarValues[i][0] != VAR_ABS )
{
MaskLiterals |= ( 1 << BitShift );
// update the base for literal counts
StartingLiterals--;
}
BitShift++;
DiffVarValues[i][1] = ( pCB->pCubeDataIn[DiffVarWords[i]] >> DiffVarBits[i] ) & 3;
if ( DiffVarValues[i][1] != VAR_ABS )
MaskLiterals |= ( 1 << BitShift );
BitShift++;
DiffVarValues[i][2] = DiffVarValues[i][0] ^ DiffVarValues[i][1];
if ( DiffVarValues[i][2] != VAR_ABS )
MaskLiterals |= ( 1 << BitShift );
BitShift++;
}
// count the number of additional literals in each cube of the group
for ( i = 0; i < nCubesInGroup; i++ )
CubeLiterals[i] = BitCount[ MaskLiterals & s_CubeLitMasks[Dist][i] ];
// compute the costs of all groups
for ( i = 0; i < nGroups; i++ )
// go over all cubes in the group
for ( GroupCosts[i] = 0, c = 0; c < nCubes; c++ )
GroupCosts[i] += CubeLiterals[ s_ELGroupRules[Dist][i][c] ];
// find the best cost group
if ( fMinLitGroupsFirst[Dist] )
{ // find the minimum cost group
GroupCostBest = LARGE_NUM;
for ( i = 0; i < nGroups; i++ )
if ( GroupCostBest > GroupCosts[i] )
{
GroupCostBest = GroupCosts[i];
GroupCostBestNum = i;
}
}
else
{ // find the maximum cost group
GroupCostBest = -1;
for ( i = 0; i < nGroups; i++ )
if ( GroupCostBest < GroupCosts[i] )
{
GroupCostBest = GroupCosts[i];
GroupCostBestNum = i;
}
}
// create the cubes with min number of literals needed for the group
LastGroup = 0;
for ( c = 0; c < nCubes; c++ )
{
CubeNum = s_ELGroupRules[Dist][GroupCostBestNum][c];
LastGroup |= s_BitMasks[CubeNum];
// bring a cube from the free cube list
ELCubes[CubeNum] = GetFreeCube();
// copy the input bit data into the cube
for ( i = 0; i < g_CoverInfo.nWordsIn; i++ )
ELCubes[CubeNum]->pCubeDataIn[i] = DammyBitData[i];
// copy the output bit data into the cube
NewZ = 0;
if ( DiffVars[0] >= 0 ) // the output is not involved in ExorLink
{
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
ELCubes[CubeNum]->pCubeDataOut[i] = pCA->pCubeDataOut[i];
NewZ = pCA->z;
}
else // the output is involved
{ // determine where the output information comes from
Value = s_ELCubeRules[Dist][CubeNum][nDiffVarsIn];
if ( Value == vs0 )
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
{
Temp = pCA->pCubeDataOut[i];
ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
NewZ += BIT_COUNT(Temp);
}
else if ( Value == vs1 )
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
{
Temp = pCB->pCubeDataOut[i];
ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
NewZ += BIT_COUNT(Temp);
}
else if ( Value == vsX )
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
{
Temp = pCA->pCubeDataOut[i] ^ pCB->pCubeDataOut[i];
ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
NewZ += BIT_COUNT(Temp);
}
}
// set the variables that should be there
for ( i = 0; i < nDiffVarsIn; i++ )
{
Value = DiffVarValues[i][ s_ELCubeRules[Dist][CubeNum][i] ];
ELCubes[CubeNum]->pCubeDataIn[ DiffVarWords[i] ] |= ( Value << DiffVarBits[i] );
}
// set the number of literals
ELCubes[CubeNum]->a = StartingLiterals + CubeLiterals[CubeNum];
ELCubes[CubeNum]->z = NewZ;
ELCubes[CubeNum]->q = ComputeQCostBits( ELCubes[CubeNum] );
// assign the ID
ELCubes[CubeNum]->ID = g_CoverInfo.cIDs++;
// skip through zero-ID
if ( g_CoverInfo.cIDs == 256 )
g_CoverInfo.cIDs = 1;
// prepare the return array
pGroup[c] = ELCubes[CubeNum];
}
// mark this group as visited
VisitedGroups |= s_BitMasks[ GroupCostBestNum ];
// set the first visited group number
GroupOrder[0] = GroupCostBestNum;
// increment the counter of visited groups
nVisitedGroups = 1;
fWorking = 1;
return 1;
}
int ExorLinkCubeIteratorNext( Cube** pGroup )
// give the next group in the decreasing order of sum of literals
// returns 1 on success, returns 0 if there are no more groups
{
int i, c;
// check that everything is okey
assert( fWorking );
if ( nVisitedGroups == nGroups )
// we have iterated through all groups
return 0;
// find the min/max cost group
if ( fMinLitGroupsFirst[nDist] )
// if ( nCubes == 4 )
{ // find the minimum cost
// go through all groups
GroupCostBest = LARGE_NUM;
for ( i = 0; i < nGroups; i++ )
if ( !(VisitedGroups & s_BitMasks[i]) && GroupCostBest > GroupCosts[i] )
{
GroupCostBest = GroupCosts[i];
GroupCostBestNum = i;
}
assert( GroupCostBest != LARGE_NUM );
}
else
{ // find the maximum cost
// go through all groups
GroupCostBest = -1;
for ( i = 0; i < nGroups; i++ )
if ( !(VisitedGroups & s_BitMasks[i]) && GroupCostBest < GroupCosts[i] )
{
GroupCostBest = GroupCosts[i];
GroupCostBestNum = i;
}
assert( GroupCostBest != -1 );
}
// create the cubes needed for the group, if they are not created already
LastGroup = 0;
for ( c = 0; c < nCubes; c++ )
{
CubeNum = s_ELGroupRules[nDist][GroupCostBestNum][c];
LastGroup |= s_BitMasks[CubeNum];
if ( ELCubes[CubeNum] == NULL ) // this cube does not exist
{
// bring a cube from the free cube list
ELCubes[CubeNum] = GetFreeCube();
// copy the input bit data into the cube
for ( i = 0; i < g_CoverInfo.nWordsIn; i++ )
ELCubes[CubeNum]->pCubeDataIn[i] = DammyBitData[i];
// copy the output bit data into the cube
NewZ = 0;
if ( DiffVars[0] >= 0 ) // the output is not involved in ExorLink
{
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
ELCubes[CubeNum]->pCubeDataOut[i] = pCA->pCubeDataOut[i];
NewZ = pCA->z;
}
else // the output is involved
{ // determine where the output information comes from
Value = s_ELCubeRules[nDist][CubeNum][nDiffVarsIn];
if ( Value == vs0 )
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
{
Temp = pCA->pCubeDataOut[i];
ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
NewZ += BIT_COUNT(Temp);
}
else if ( Value == vs1 )
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
{
Temp = pCB->pCubeDataOut[i];
ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
NewZ += BIT_COUNT(Temp);
}
else if ( Value == vsX )
for ( i = 0; i < g_CoverInfo.nWordsOut; i++ )
{
Temp = pCA->pCubeDataOut[i] ^ pCB->pCubeDataOut[i];
ELCubes[CubeNum]->pCubeDataOut[i] = Temp;
NewZ += BIT_COUNT(Temp);
}
}
// set the variables that should be there
for ( i = 0; i < nDiffVarsIn; i++ )
{
Value = DiffVarValues[i][ s_ELCubeRules[nDist][CubeNum][i] ];
ELCubes[CubeNum]->pCubeDataIn[ DiffVarWords[i] ] |= ( Value << DiffVarBits[i] );
}
// set the number of literals and output ones
ELCubes[CubeNum]->a = StartingLiterals + CubeLiterals[CubeNum];
ELCubes[CubeNum]->z = NewZ;
ELCubes[CubeNum]->q = ComputeQCostBits( ELCubes[CubeNum] );
assert( NewZ != 255 );
// assign the ID
ELCubes[CubeNum]->ID = g_CoverInfo.cIDs++;
// skip through zero-ID
if ( g_CoverInfo.cIDs == 256 )
g_CoverInfo.cIDs = 1;
}
// prepare the return array
pGroup[c] = ELCubes[CubeNum];
}
// mark this group as visited
VisitedGroups |= s_BitMasks[ GroupCostBestNum ];
// set the next visited group number and
// increment the counter of visited groups
GroupOrder[ nVisitedGroups++ ] = GroupCostBestNum;
return 1;
}
int ExorLinkCubeIteratorPick( Cube** pGroup, int g )
// gives the group #g in the order in which the groups were given
// during iteration
// returns 1 on success, returns 0 if something is wrong (g is too large)
{
int GroupNum, c;
assert( fWorking );
assert( g >= 0 && g < nGroups );
assert( VisitedGroups & s_BitMasks[g] );
GroupNum = GroupOrder[g];
// form the group
LastGroup = 0;
for ( c = 0; c < nCubes; c++ )
{
CubeNum = s_ELGroupRules[nDist][GroupNum][c];
// remember this group as the last one
LastGroup |= s_BitMasks[CubeNum];
assert( ELCubes[CubeNum] != NULL ); // this cube should exist
// prepare the return array
pGroup[c] = ELCubes[CubeNum];
}
return 1;
}
void ExorLinkCubeIteratorCleanUp( int fTakeLastGroup )
// removes the cubes from the store back into the list of free cubes
// if fTakeLastGroup is 0, removes all cubes
// if fTakeLastGroup is 1, does not store the last group
{
int c;
assert( fWorking );
// put cubes back
// set the cube pointers to zero
if ( fTakeLastGroup == 0 )
for ( c = 0; c < nCubesInGroup; c++ )
{
ELCubes[c]->fMark = 0;
AddToFreeCubes( ELCubes[c] );
ELCubes[c] = NULL;
}
else
for ( c = 0; c < nCubesInGroup; c++ )
if ( ELCubes[c] )
{
ELCubes[c]->fMark = 0;
if ( (LastGroup & s_BitMasks[c]) == 0 ) // does not belong to the last group
AddToFreeCubes( ELCubes[c] );
ELCubes[c] = NULL;
}
// set the cube groups to zero
VisitedGroups = 0;
// shut down the iterator
fWorking = 0;
}
///////////////////////////////////////////////////////////////////
//////////// End of File /////////////////
///////////////////////////////////////////////////////////////////
ABC_NAMESPACE_IMPL_END
|