summaryrefslogtreecommitdiffstats
path: root/boiler-monster/stm32/app/adc.c
blob: 2cfc4e38477adad448c8a5653495fb3c97905f07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#include "project.h"

#define T do { printf("%s:%d\r\n",__FILE__,__LINE__); } while (0)

void adc_dump (void)
{
  printf ("ADC_SR %x ADC_CR1 %x ADC_CR2 %x\r\n", (unsigned) ADC_SR (ADC1),
          (unsigned) ADC_CR1 (ADC1),
          (unsigned) ADC_CR2 (ADC1));

}


volatile unsigned timeout;


void adc_tick (void)
{
  if (timeout) timeout--;
}


static int adc_wait (volatile uint32_t *reg, uint32_t wait_while_set, uint32_t  wait_while_clear, unsigned ms)
{
  timeout = MS_TO_TICKS (ms);


  while ((*reg) & wait_while_set)
    if (!timeout) {
      printf ("QADC timeout\r\n");
      return -1;
    }


  while ((~ (*reg)) & wait_while_clear)
    if (!timeout) {
      printf ("QADC timeout\r\n");
      return -1;
    }


  return 0;
}



int adc_calibrate (void)
{
  adc_off (ADC1);
  adc_power_on (ADC1);
  delay_ms (5);

  ADC_CR2 (ADC1) |= ADC_CR2_RSTCAL;

  if (adc_wait (&ADC_CR2 (ADC1), ADC_CR2_CAL, 0, 2)) return -1;

  ADC_CR2 (ADC1) |= ADC_CR2_CAL;

  if (adc_wait (&ADC_CR2 (ADC1), ADC_CR2_CAL, 0, 2)) return -1;

  return 0;
}



int adc_convert_start (unsigned channel)
{
  uint8_t ch = channel;

  adc_set_regular_sequence (ADC1, 1, &ch);

  /* Start conversion on regular channels. */
  ADC_CR2 (ADC1) |= ADC_CR2_SWSTART;

#if 0
  if (adc_wait (&ADC_CR2 (ADC1), ADC_CR2_SWSTART, 0, 2))
    return -1;
#endif

  return 0;
}



int adc_convert_done(void)
{

  if (ADC_SR(ADC1) & ADC_SR_EOC) 
	return 1;

  return 0;
}

unsigned adc_convert_get(void)
{
  return adc_read_regular (ADC1);
}


unsigned adc_convert (unsigned channel)
{
  uint8_t ch = channel;

  adc_calibrate();

  adc_set_regular_sequence (ADC1, 1, &ch);

  /* Start conversion on regular channels. */
  ADC_CR2 (ADC1) |= ADC_CR2_SWSTART;

  if (adc_wait (&ADC_CR2 (ADC1), ADC_CR2_SWSTART, 0, 2))
    return 0;

  if (adc_wait (&ADC_SR (ADC1), 0, ADC_SR_EOC, 2))
    return 0;

  return adc_read_regular (ADC1);
}

void adc_init (void)
{
  /* main set ADC clock is 9Mhz */

  adc_dump();

  adc_off (ADC1);
  rcc_periph_clock_enable (RCC_ADC1);
#if 0
  rcc_peripheral_reset (&RCC_APB2RSTR, RCC_APB2RSTR_ADC1RST);
  rcc_peripheral_clear_reset (&RCC_APB2RSTR, RCC_APB2RSTR_ADC1RST);
#endif

  adc_set_dual_mode (ADC_CR1_DUALMOD_IND);
  adc_disable_scan_mode (ADC1);
  adc_enable_temperature_sensor (ADC1);
  adc_set_single_conversion_mode (ADC1);

  adc_set_sample_time (ADC1, ADC_CHANNEL0, ADC_SMPR_SMP_239DOT5CYC);
  adc_set_sample_time (ADC1, ADC_CHANNEL17, ADC_SMPR_SMP_239DOT5CYC); /*Want 17.1uS , which is 154 cycles */
  adc_enable_external_trigger_regular (ADC1, ADC_CR2_EXTSEL_SWSTART);

  adc_set_right_aligned (ADC1);


  adc_dump();

  adc_calibrate();

  adc_dump();



}