aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/zxing/src/com/google/zxing/qrcode/detector/FinderPatternFinder.java
blob: 01b3bde2a54df14de375304fc0e08081fe48f70b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.qrcode.detector;

import com.google.zxing.DecodeHintType;
import com.google.zxing.NotFoundException;
import com.google.zxing.ResultPoint;
import com.google.zxing.ResultPointCallback;
import com.google.zxing.common.BitMatrix;
import com.google.zxing.common.Collections;
import com.google.zxing.common.Comparator;

import java.util.Hashtable;
import java.util.Vector;

/**
 * <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square
 * markers at three corners of a QR Code.</p>
 *
 * <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.
 *
 * @author Sean Owen
 */
public class FinderPatternFinder {

  private static final int CENTER_QUORUM = 2;
  protected static final int MIN_SKIP = 3; // 1 pixel/module times 3 modules/center
  protected static final int MAX_MODULES = 57; // support up to version 10 for mobile clients
  private static final int INTEGER_MATH_SHIFT = 8;

  private final BitMatrix image;
  private final Vector possibleCenters;
  private boolean hasSkipped;
  private final int[] crossCheckStateCount;
  private final ResultPointCallback resultPointCallback;

  /**
   * <p>Creates a finder that will search the image for three finder patterns.</p>
   *
   * @param image image to search
   */
  public FinderPatternFinder(BitMatrix image) {
    this(image, null);
  }

  public FinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) {
    this.image = image;
    this.possibleCenters = new Vector();
    this.crossCheckStateCount = new int[5];
    this.resultPointCallback = resultPointCallback;
  }

  protected BitMatrix getImage() {
    return image;
  }

  protected Vector getPossibleCenters() {
    return possibleCenters;
  }

  FinderPatternInfo find(Hashtable hints) throws NotFoundException {
    boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER);
    int maxI = image.getHeight();
    int maxJ = image.getWidth();
    // We are looking for black/white/black/white/black modules in
    // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far

    // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
    // image, and then account for the center being 3 modules in size. This gives the smallest
    // number of pixels the center could be, so skip this often. When trying harder, look for all
    // QR versions regardless of how dense they are.
    int iSkip = (3 * maxI) / (4 * MAX_MODULES);
    if (iSkip < MIN_SKIP || tryHarder) {
      iSkip = MIN_SKIP;
    }

    boolean done = false;
    int[] stateCount = new int[5];
    for (int i = iSkip - 1; i < maxI && !done; i += iSkip) {
      // Get a row of black/white values
      stateCount[0] = 0;
      stateCount[1] = 0;
      stateCount[2] = 0;
      stateCount[3] = 0;
      stateCount[4] = 0;
      int currentState = 0;
      for (int j = 0; j < maxJ; j++) {
        if (image.get(j, i)) {
          // Black pixel
          if ((currentState & 1) == 1) { // Counting white pixels
            currentState++;
          }
          stateCount[currentState]++;
        } else { // White pixel
          if ((currentState & 1) == 0) { // Counting black pixels
            if (currentState == 4) { // A winner?
              if (foundPatternCross(stateCount)) { // Yes
                boolean confirmed = handlePossibleCenter(stateCount, i, j);
                if (confirmed) {
                  // Start examining every other line. Checking each line turned out to be too
                  // expensive and didn't improve performance.
                  iSkip = 2;
                  if (hasSkipped) {
                    done = haveMultiplyConfirmedCenters();
                  } else {
                    int rowSkip = findRowSkip();
                    if (rowSkip > stateCount[2]) {
                      // Skip rows between row of lower confirmed center
                      // and top of presumed third confirmed center
                      // but back up a bit to get a full chance of detecting
                      // it, entire width of center of finder pattern

                      // Skip by rowSkip, but back off by stateCount[2] (size of last center
                      // of pattern we saw) to be conservative, and also back off by iSkip which
                      // is about to be re-added
                      i += rowSkip - stateCount[2] - iSkip;
                      j = maxJ - 1;
                    }
                  }
                } else {
                  stateCount[0] = stateCount[2];
                  stateCount[1] = stateCount[3];
                  stateCount[2] = stateCount[4];
                  stateCount[3] = 1;
                  stateCount[4] = 0;
                  currentState = 3;
                  continue;
                }
                // Clear state to start looking again
                currentState = 0;
                stateCount[0] = 0;
                stateCount[1] = 0;
                stateCount[2] = 0;
                stateCount[3] = 0;
                stateCount[4] = 0;
              } else { // No, shift counts back by two
                stateCount[0] = stateCount[2];
                stateCount[1] = stateCount[3];
                stateCount[2] = stateCount[4];
                stateCount[3] = 1;
                stateCount[4] = 0;
                currentState = 3;
              }
            } else {
              stateCount[++currentState]++;
            }
          } else { // Counting white pixels
            stateCount[currentState]++;
          }
        }
      }
      if (foundPatternCross(stateCount)) {
        boolean confirmed = handlePossibleCenter(stateCount, i, maxJ);
        if (confirmed) {
          iSkip = stateCount[0];
          if (hasSkipped) {
            // Found a third one
            done = haveMultiplyConfirmedCenters();
          }
        }
      }
    }

    FinderPattern[] patternInfo = selectBestPatterns();
    ResultPoint.orderBestPatterns(patternInfo);

    return new FinderPatternInfo(patternInfo);
  }

  /**
   * Given a count of black/white/black/white/black pixels just seen and an end position,
   * figures the location of the center of this run.
   */
  private static float centerFromEnd(int[] stateCount, int end) {
    return (float) (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f;
  }

  /**
   * @param stateCount count of black/white/black/white/black pixels just read
   * @return true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios
   *         used by finder patterns to be considered a match
   */
  protected static boolean foundPatternCross(int[] stateCount) {
    int totalModuleSize = 0;
    for (int i = 0; i < 5; i++) {
      int count = stateCount[i];
      if (count == 0) {
        return false;
      }
      totalModuleSize += count;
    }
    if (totalModuleSize < 7) {
      return false;
    }
    int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7;
    int maxVariance = moduleSize / 2;
    // Allow less than 50% variance from 1-1-3-1-1 proportions
    return Math.abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance &&
        Math.abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance &&
        Math.abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance &&
        Math.abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance &&
        Math.abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance;
  }

  private int[] getCrossCheckStateCount() {
    crossCheckStateCount[0] = 0;
    crossCheckStateCount[1] = 0;
    crossCheckStateCount[2] = 0;
    crossCheckStateCount[3] = 0;
    crossCheckStateCount[4] = 0;
    return crossCheckStateCount;
  }

  /**
   * <p>After a horizontal scan finds a potential finder pattern, this method
   * "cross-checks" by scanning down vertically through the center of the possible
   * finder pattern to see if the same proportion is detected.</p>
   *
   * @param startI row where a finder pattern was detected
   * @param centerJ center of the section that appears to cross a finder pattern
   * @param maxCount maximum reasonable number of modules that should be
   * observed in any reading state, based on the results of the horizontal scan
   * @return vertical center of finder pattern, or {@link Float#NaN} if not found
   */
  private float crossCheckVertical(int startI, int centerJ, int maxCount,
      int originalStateCountTotal) {
    BitMatrix image = this.image;

    int maxI = image.getHeight();
    int[] stateCount = getCrossCheckStateCount();

    // Start counting up from center
    int i = startI;
    while (i >= 0 && image.get(centerJ, i)) {
      stateCount[2]++;
      i--;
    }
    if (i < 0) {
      return Float.NaN;
    }
    while (i >= 0 && !image.get(centerJ, i) && stateCount[1] <= maxCount) {
      stateCount[1]++;
      i--;
    }
    // If already too many modules in this state or ran off the edge:
    if (i < 0 || stateCount[1] > maxCount) {
      return Float.NaN;
    }
    while (i >= 0 && image.get(centerJ, i) && stateCount[0] <= maxCount) {
      stateCount[0]++;
      i--;
    }
    if (stateCount[0] > maxCount) {
      return Float.NaN;
    }

    // Now also count down from center
    i = startI + 1;
    while (i < maxI && image.get(centerJ, i)) {
      stateCount[2]++;
      i++;
    }
    if (i == maxI) {
      return Float.NaN;
    }
    while (i < maxI && !image.get(centerJ, i) && stateCount[3] < maxCount) {
      stateCount[3]++;
      i++;
    }
    if (i == maxI || stateCount[3] >= maxCount) {
      return Float.NaN;
    }
    while (i < maxI && image.get(centerJ, i) && stateCount[4] < maxCount) {
      stateCount[4]++;
      i++;
    }
    if (stateCount[4] >= maxCount) {
      return Float.NaN;
    }

    // If we found a finder-pattern-like section, but its size is more than 40% different than
    // the original, assume it's a false positive
    int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
        stateCount[4];
    if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) {
      return Float.NaN;
    }

    return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : Float.NaN;
  }

  /**
   * <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical,
   * except it reads horizontally instead of vertically. This is used to cross-cross
   * check a vertical cross check and locate the real center of the alignment pattern.</p>
   */
  private float crossCheckHorizontal(int startJ, int centerI, int maxCount,
      int originalStateCountTotal) {
    BitMatrix image = this.image;

    int maxJ = image.getWidth();
    int[] stateCount = getCrossCheckStateCount();

    int j = startJ;
    while (j >= 0 && image.get(j, centerI)) {
      stateCount[2]++;
      j--;
    }
    if (j < 0) {
      return Float.NaN;
    }
    while (j >= 0 && !image.get(j, centerI) && stateCount[1] <= maxCount) {
      stateCount[1]++;
      j--;
    }
    if (j < 0 || stateCount[1] > maxCount) {
      return Float.NaN;
    }
    while (j >= 0 && image.get(j, centerI) && stateCount[0] <= maxCount) {
      stateCount[0]++;
      j--;
    }
    if (stateCount[0] > maxCount) {
      return Float.NaN;
    }

    j = startJ + 1;
    while (j < maxJ && image.get(j, centerI)) {
      stateCount[2]++;
      j++;
    }
    if (j == maxJ) {
      return Float.NaN;
    }
    while (j < maxJ && !image.get(j, centerI) && stateCount[3] < maxCount) {
      stateCount[3]++;
      j++;
    }
    if (j == maxJ || stateCount[3] >= maxCount) {
      return Float.NaN;
    }
    while (j < maxJ && image.get(j, centerI) && stateCount[4] < maxCount) {
      stateCount[4]++;
      j++;
    }
    if (stateCount[4] >= maxCount) {
      return Float.NaN;
    }

    // If we found a finder-pattern-like section, but its size is significantly different than
    // the original, assume it's a false positive
    int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
        stateCount[4];
    if (5 * Math.abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) {
      return Float.NaN;
    }

    return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : Float.NaN;
  }

  /**
   * <p>This is called when a horizontal scan finds a possible alignment pattern. It will
   * cross check with a vertical scan, and if successful, will, ah, cross-cross-check
   * with another horizontal scan. This is needed primarily to locate the real horizontal
   * center of the pattern in cases of extreme skew.</p>
   *
   * <p>If that succeeds the finder pattern location is added to a list that tracks
   * the number of times each location has been nearly-matched as a finder pattern.
   * Each additional find is more evidence that the location is in fact a finder
   * pattern center
   *
   * @param stateCount reading state module counts from horizontal scan
   * @param i row where finder pattern may be found
   * @param j end of possible finder pattern in row
   * @return true if a finder pattern candidate was found this time
   */
  protected boolean handlePossibleCenter(int[] stateCount, int i, int j) {
    int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] +
        stateCount[4];
    float centerJ = centerFromEnd(stateCount, j);
    float centerI = crossCheckVertical(i, (int) centerJ, stateCount[2], stateCountTotal);
    if (!Float.isNaN(centerI)) {
      // Re-cross check
      centerJ = crossCheckHorizontal((int) centerJ, (int) centerI, stateCount[2], stateCountTotal);
      if (!Float.isNaN(centerJ)) {
        float estimatedModuleSize = (float) stateCountTotal / 7.0f;
        boolean found = false;
        int max = possibleCenters.size();
        for (int index = 0; index < max; index++) {
          FinderPattern center = (FinderPattern) possibleCenters.elementAt(index);
          // Look for about the same center and module size:
          if (center.aboutEquals(estimatedModuleSize, centerI, centerJ)) {
            center.incrementCount();
            found = true;
            break;
          }
        }
        if (!found) {
          ResultPoint point = new FinderPattern(centerJ, centerI, estimatedModuleSize);
          possibleCenters.addElement(point);
          if (resultPointCallback != null) {
            resultPointCallback.foundPossibleResultPoint(point);
          }
        }
        return true;
      }
    }
    return false;
  }

  /**
   * @return number of rows we could safely skip during scanning, based on the first
   *         two finder patterns that have been located. In some cases their position will
   *         allow us to infer that the third pattern must lie below a certain point farther
   *         down in the image.
   */
  private int findRowSkip() {
    int max = possibleCenters.size();
    if (max <= 1) {
      return 0;
    }
    FinderPattern firstConfirmedCenter = null;
    for (int i = 0; i < max; i++) {
      FinderPattern center = (FinderPattern) possibleCenters.elementAt(i);
      if (center.getCount() >= CENTER_QUORUM) {
        if (firstConfirmedCenter == null) {
          firstConfirmedCenter = center;
        } else {
          // We have two confirmed centers
          // How far down can we skip before resuming looking for the next
          // pattern? In the worst case, only the difference between the
          // difference in the x / y coordinates of the two centers.
          // This is the case where you find top left last.
          hasSkipped = true;
          return (int) (Math.abs(firstConfirmedCenter.getX() - center.getX()) -
              Math.abs(firstConfirmedCenter.getY() - center.getY())) / 2;
        }
      }
    }
    return 0;
  }

  /**
   * @return true iff we have found at least 3 finder patterns that have been detected
   *         at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the
   *         candidates is "pretty similar"
   */
  private boolean haveMultiplyConfirmedCenters() {
    int confirmedCount = 0;
    float totalModuleSize = 0.0f;
    int max = possibleCenters.size();
    for (int i = 0; i < max; i++) {
      FinderPattern pattern = (FinderPattern) possibleCenters.elementAt(i);
      if (pattern.getCount() >= CENTER_QUORUM) {
        confirmedCount++;
        totalModuleSize += pattern.getEstimatedModuleSize();
      }
    }
    if (confirmedCount < 3) {
      return false;
    }
    // OK, we have at least 3 confirmed centers, but, it's possible that one is a "false positive"
    // and that we need to keep looking. We detect this by asking if the estimated module sizes
    // vary too much. We arbitrarily say that when the total deviation from average exceeds
    // 5% of the total module size estimates, it's too much.
    float average = totalModuleSize / (float) max;
    float totalDeviation = 0.0f;
    for (int i = 0; i < max; i++) {
      FinderPattern pattern = (FinderPattern) possibleCenters.elementAt(i);
      totalDeviation += Math.abs(pattern.getEstimatedModuleSize() - average);
    }
    return totalDeviation <= 0.05f * totalModuleSize;
  }

  /**
   * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
   *         those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
   *         size differs from the average among those patterns the least
   * @throws NotFoundException if 3 such finder patterns do not exist
   */
  private FinderPattern[] selectBestPatterns() throws NotFoundException {

    int startSize = possibleCenters.size();
    if (startSize < 3) {
      // Couldn't find enough finder patterns
      throw NotFoundException.getNotFoundInstance();
    }

    // Filter outlier possibilities whose module size is too different
    if (startSize > 3) {
      // But we can only afford to do so if we have at least 4 possibilities to choose from
      float totalModuleSize = 0.0f;
      float square = 0.0f;
      for (int i = 0; i < startSize; i++) {
        float size = ((FinderPattern) possibleCenters.elementAt(i)).getEstimatedModuleSize();
        totalModuleSize += size;
        square += size * size;
      }
      float average = totalModuleSize / (float) startSize;
      float stdDev = (float) Math.sqrt(square / startSize - average * average);

      Collections.insertionSort(possibleCenters, new FurthestFromAverageComparator(average));

      float limit = Math.max(0.2f * average, stdDev);

      for (int i = 0; i < possibleCenters.size() && possibleCenters.size() > 3; i++) {
        FinderPattern pattern = (FinderPattern) possibleCenters.elementAt(i);
        if (Math.abs(pattern.getEstimatedModuleSize() - average) > limit) {
          possibleCenters.removeElementAt(i);
          i--;
        }
      }
    }

    if (possibleCenters.size() > 3) {
      // Throw away all but those first size candidate points we found.

      float totalModuleSize = 0.0f;
      for (int i = 0; i < possibleCenters.size(); i++) {
        totalModuleSize += ((FinderPattern) possibleCenters.elementAt(i)).getEstimatedModuleSize();
      }

      float average = totalModuleSize / (float) possibleCenters.size();

      Collections.insertionSort(possibleCenters, new CenterComparator(average));

      possibleCenters.setSize(3);
    }

    return new FinderPattern[]{
        (FinderPattern) possibleCenters.elementAt(0),
        (FinderPattern) possibleCenters.elementAt(1),
        (FinderPattern) possibleCenters.elementAt(2)
    };
  }

  /**
   * <p>Orders by furthest from average</p>
   */
  private static class FurthestFromAverageComparator implements Comparator {
    private final float average;
    private FurthestFromAverageComparator(float f) {
      average = f;
    }
    public int compare(Object center1, Object center2) {
      float dA = Math.abs(((FinderPattern) center2).getEstimatedModuleSize() - average);
      float dB = Math.abs(((FinderPattern) center1).getEstimatedModuleSize() - average);
      return dA < dB ? -1 : dA == dB ? 0 : 1;
    }
  }

  /**
   * <p>Orders by {@link FinderPattern#getCount()}, descending.</p>
   */
  private static class CenterComparator implements Comparator {
    private final float average;
    private CenterComparator(float f) {
      average = f;
    }
    public int compare(Object center1, Object center2) {
      if (((FinderPattern) center2).getCount() == ((FinderPattern) center1).getCount()) {
        float dA = Math.abs(((FinderPattern) center2).getEstimatedModuleSize() - average);
        float dB = Math.abs(((FinderPattern) center1).getEstimatedModuleSize() - average);
        return dA < dB ? 1 : dA == dB ? 0 : -1;
      } else {
        return ((FinderPattern) center2).getCount() - ((FinderPattern) center1).getCount();
      }
    }
  }

}