aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/zxing/src/com/google/zxing/qrcode/decoder/DecodedBitStreamParser.java
blob: ff374ac5044bf062faf374a0a6e487b5ff007e1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.qrcode.decoder;

import com.google.zxing.FormatException;
import com.google.zxing.common.BitSource;
import com.google.zxing.common.CharacterSetECI;
import com.google.zxing.common.DecoderResult;
import com.google.zxing.common.StringUtils;

import java.io.UnsupportedEncodingException;
import java.util.Hashtable;
import java.util.Vector;

/**
 * <p>QR Codes can encode text as bits in one of several modes, and can use multiple modes
 * in one QR Code. This class decodes the bits back into text.</p>
 *
 * <p>See ISO 18004:2006, 6.4.3 - 6.4.7</p>
 *
 * @author Sean Owen
 */
final class DecodedBitStreamParser {

  /**
   * See ISO 18004:2006, 6.4.4 Table 5
   */
  private static final char[] ALPHANUMERIC_CHARS = {
      '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
      'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
      'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
      ' ', '$', '%', '*', '+', '-', '.', '/', ':'
  };
  private static final int GB2312_SUBSET = 1;

  private DecodedBitStreamParser() {
  }

  static DecoderResult decode(byte[] bytes, Version version, ErrorCorrectionLevel ecLevel, Hashtable hints)
      throws FormatException {
    BitSource bits = new BitSource(bytes);
    StringBuffer result = new StringBuffer(50);
    CharacterSetECI currentCharacterSetECI = null;
    boolean fc1InEffect = false;
    Vector byteSegments = new Vector(1);
    Mode mode;
    do {
      // While still another segment to read...
      if (bits.available() < 4) {
        // OK, assume we're done. Really, a TERMINATOR mode should have been recorded here
        mode = Mode.TERMINATOR;
      } else {
        try {
          mode = Mode.forBits(bits.readBits(4)); // mode is encoded by 4 bits
        } catch (IllegalArgumentException iae) {
          throw FormatException.getFormatInstance();
        }
      }
      if (!mode.equals(Mode.TERMINATOR)) {
        if (mode.equals(Mode.FNC1_FIRST_POSITION) || mode.equals(Mode.FNC1_SECOND_POSITION)) {
          // We do little with FNC1 except alter the parsed result a bit according to the spec
          fc1InEffect = true;
        } else if (mode.equals(Mode.STRUCTURED_APPEND)) {
          // not really supported; all we do is ignore it
          // Read next 8 bits (symbol sequence #) and 8 bits (parity data), then continue
          bits.readBits(16);
        } else if (mode.equals(Mode.ECI)) {
          // Count doesn't apply to ECI
          int value = parseECIValue(bits);
          currentCharacterSetECI = CharacterSetECI.getCharacterSetECIByValue(value);
          if (currentCharacterSetECI == null) {
            throw FormatException.getFormatInstance();
          }
        } else {
          // First handle Hanzi mode which does not start with character count
          if (mode.equals(Mode.HANZI)) {
        		//chinese mode contains a sub set indicator right after mode indicator
        		int subset = bits.readBits(4);
        		int countHanzi = bits.readBits(mode.getCharacterCountBits(version));
        		if (subset == GB2312_SUBSET) {
        			decodeHanziSegment(bits, result, countHanzi);
            }
          } else {
            // "Normal" QR code modes:
            // How many characters will follow, encoded in this mode?
            int count = bits.readBits(mode.getCharacterCountBits(version));
            if (mode.equals(Mode.NUMERIC)) {
              decodeNumericSegment(bits, result, count);
            } else if (mode.equals(Mode.ALPHANUMERIC)) {
              decodeAlphanumericSegment(bits, result, count, fc1InEffect);
            } else if (mode.equals(Mode.BYTE)) {
              decodeByteSegment(bits, result, count, currentCharacterSetECI, byteSegments, hints);
            } else if (mode.equals(Mode.KANJI)) {
              decodeKanjiSegment(bits, result, count);
            } else {
              throw FormatException.getFormatInstance();
            }
          }
        }
      }
    } while (!mode.equals(Mode.TERMINATOR));

    return new DecoderResult(bytes,
                             result.toString(),
                             byteSegments.isEmpty() ? null : byteSegments,
                             ecLevel == null ? null : ecLevel.toString());
  }

  /**
   * See specification GBT 18284-2000
   */
  private static void decodeHanziSegment(BitSource bits,
                                         StringBuffer result,
                                         int count) throws FormatException {
    // Don't crash trying to read more bits than we have available.
    if (count * 13 > bits.available()) {
      throw FormatException.getFormatInstance();
    }

    // Each character will require 2 bytes. Read the characters as 2-byte pairs
    // and decode as GB2312 afterwards
    byte[] buffer = new byte[2 * count];
    int offset = 0;
    while (count > 0) {
      // Each 13 bits encodes a 2-byte character
      int twoBytes = bits.readBits(13);
      int assembledTwoBytes = ((twoBytes / 0x060) << 8) | (twoBytes % 0x060);
      if (assembledTwoBytes < 0x003BF) {
        // In the 0xA1A1 to 0xAAFE range
        assembledTwoBytes += 0x0A1A1;
      } else {
        // In the 0xB0A1 to 0xFAFE range
        assembledTwoBytes += 0x0A6A1;
      }
      buffer[offset] = (byte) ((assembledTwoBytes >> 8) & 0xFF);
      buffer[offset + 1] = (byte) (assembledTwoBytes & 0xFF);
      offset += 2;
      count--;
    }

    try {
      result.append(new String(buffer, StringUtils.GB2312));
    } catch (UnsupportedEncodingException uee) {
      throw FormatException.getFormatInstance();
    }
  }

  private static void decodeKanjiSegment(BitSource bits,
                                         StringBuffer result,
                                         int count) throws FormatException {
    // Don't crash trying to read more bits than we have available.
    if (count * 13 > bits.available()) {
      throw FormatException.getFormatInstance();
    }

    // Each character will require 2 bytes. Read the characters as 2-byte pairs
    // and decode as Shift_JIS afterwards
    byte[] buffer = new byte[2 * count];
    int offset = 0;
    while (count > 0) {
      // Each 13 bits encodes a 2-byte character
      int twoBytes = bits.readBits(13);
      int assembledTwoBytes = ((twoBytes / 0x0C0) << 8) | (twoBytes % 0x0C0);
      if (assembledTwoBytes < 0x01F00) {
        // In the 0x8140 to 0x9FFC range
        assembledTwoBytes += 0x08140;
      } else {
        // In the 0xE040 to 0xEBBF range
        assembledTwoBytes += 0x0C140;
      }
      buffer[offset] = (byte) (assembledTwoBytes >> 8);
      buffer[offset + 1] = (byte) assembledTwoBytes;
      offset += 2;
      count--;
    }
    // Shift_JIS may not be supported in some environments:
    try {
      result.append(new String(buffer, StringUtils.SHIFT_JIS));
    } catch (UnsupportedEncodingException uee) {
      throw FormatException.getFormatInstance();
    }
  }

  private static void decodeByteSegment(BitSource bits,
                                        StringBuffer result,
                                        int count,
                                        CharacterSetECI currentCharacterSetECI,
                                        Vector byteSegments,
                                        Hashtable hints) throws FormatException {
    // Don't crash trying to read more bits than we have available.
    if (count << 3 > bits.available()) {
      throw FormatException.getFormatInstance();
    }

    byte[] readBytes = new byte[count];
    for (int i = 0; i < count; i++) {
      readBytes[i] = (byte) bits.readBits(8);
    }
    String encoding;
    if (currentCharacterSetECI == null) {
    // The spec isn't clear on this mode; see
    // section 6.4.5: t does not say which encoding to assuming
    // upon decoding. I have seen ISO-8859-1 used as well as
    // Shift_JIS -- without anything like an ECI designator to
    // give a hint.
      encoding = StringUtils.guessEncoding(readBytes, hints);
    } else {
      encoding = currentCharacterSetECI.getEncodingName();
    }
    try {
      result.append(new String(readBytes, encoding));
    } catch (UnsupportedEncodingException uce) {
      throw FormatException.getFormatInstance();
    }
    byteSegments.addElement(readBytes);
  }

  private static char toAlphaNumericChar(int value) throws FormatException {
    if (value >= ALPHANUMERIC_CHARS.length) {
      throw FormatException.getFormatInstance();
    }
    return ALPHANUMERIC_CHARS[value];
  }

  private static void decodeAlphanumericSegment(BitSource bits,
                                                StringBuffer result,
                                                int count,
                                                boolean fc1InEffect) throws FormatException {
    // Read two characters at a time
    int start = result.length();
    while (count > 1) {
      int nextTwoCharsBits = bits.readBits(11);
      result.append(toAlphaNumericChar(nextTwoCharsBits / 45));
      result.append(toAlphaNumericChar(nextTwoCharsBits % 45));
      count -= 2;
    }
    if (count == 1) {
      // special case: one character left
      result.append(toAlphaNumericChar(bits.readBits(6)));
    }
    // See section 6.4.8.1, 6.4.8.2
    if (fc1InEffect) {
      // We need to massage the result a bit if in an FNC1 mode:
      for (int i = start; i < result.length(); i++) {
        if (result.charAt(i) == '%') {
          if (i < result.length() - 1 && result.charAt(i + 1) == '%') {
            // %% is rendered as %
            result.deleteCharAt(i + 1);
          } else {
            // In alpha mode, % should be converted to FNC1 separator 0x1D
            result.setCharAt(i, (char) 0x1D);
          }
        }
      }
    }
  }

  private static void decodeNumericSegment(BitSource bits,
                                           StringBuffer result,
                                           int count) throws FormatException {
    // Read three digits at a time
    while (count >= 3) {
      // Each 10 bits encodes three digits
      int threeDigitsBits = bits.readBits(10);
      if (threeDigitsBits >= 1000) {
        throw FormatException.getFormatInstance();
      }
      result.append(toAlphaNumericChar(threeDigitsBits / 100));
      result.append(toAlphaNumericChar((threeDigitsBits / 10) % 10));
      result.append(toAlphaNumericChar(threeDigitsBits % 10));
      count -= 3;
    }
    if (count == 2) {
      // Two digits left over to read, encoded in 7 bits
      int twoDigitsBits = bits.readBits(7);
      if (twoDigitsBits >= 100) {
        throw FormatException.getFormatInstance();
      }
      result.append(toAlphaNumericChar(twoDigitsBits / 10));
      result.append(toAlphaNumericChar(twoDigitsBits % 10));
    } else if (count == 1) {
      // One digit left over to read
      int digitBits = bits.readBits(4);
      if (digitBits >= 10) {
        throw FormatException.getFormatInstance();
      }
      result.append(toAlphaNumericChar(digitBits));
    }
  }

  private static int parseECIValue(BitSource bits) {
    int firstByte = bits.readBits(8);
    if ((firstByte & 0x80) == 0) {
      // just one byte
      return firstByte & 0x7F;
    } else if ((firstByte & 0xC0) == 0x80) {
      // two bytes
      int secondByte = bits.readBits(8);
      return ((firstByte & 0x3F) << 8) | secondByte;
    } else if ((firstByte & 0xE0) == 0xC0) {
      // three bytes
      int secondThirdBytes = bits.readBits(16);
      return ((firstByte & 0x1F) << 16) | secondThirdBytes;
    }
    throw new IllegalArgumentException("Bad ECI bits starting with byte " + firstByte);
  }

}