aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/zxing/src/com/google/zxing/multi/qrcode/detector/MultiFinderPatternFinder.java
blob: 1162324e2419b5d60ff784e60bb080935652bb72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.multi.qrcode.detector;

import com.google.zxing.DecodeHintType;
import com.google.zxing.NotFoundException;
import com.google.zxing.ResultPoint;
import com.google.zxing.ResultPointCallback;
import com.google.zxing.common.BitMatrix;
import com.google.zxing.common.Collections;
import com.google.zxing.common.Comparator;
import com.google.zxing.qrcode.detector.FinderPattern;
import com.google.zxing.qrcode.detector.FinderPatternFinder;
import com.google.zxing.qrcode.detector.FinderPatternInfo;

import java.util.Hashtable;
import java.util.Vector;

/**
 * <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square
 * markers at three corners of a QR Code.</p>
 *
 * <p>This class is thread-safe but not reentrant. Each thread must allocate its own object.
 *
 * <p>In contrast to {@link FinderPatternFinder}, this class will return an array of all possible
 * QR code locations in the image.</p>
 *
 * <p>Use the TRY_HARDER hint to ask for a more thorough detection.</p>
 *
 * @author Sean Owen
 * @author Hannes Erven
 */
final class MultiFinderPatternFinder extends FinderPatternFinder {

  private static final FinderPatternInfo[] EMPTY_RESULT_ARRAY = new FinderPatternInfo[0];

  // TODO MIN_MODULE_COUNT and MAX_MODULE_COUNT would be great hints to ask the user for
  // since it limits the number of regions to decode

  // max. legal count of modules per QR code edge (177)
  private static final float MAX_MODULE_COUNT_PER_EDGE = 180;
  // min. legal count per modules per QR code edge (11)
  private static final float MIN_MODULE_COUNT_PER_EDGE = 9;

  /**
   * More or less arbitrary cutoff point for determining if two finder patterns might belong
   * to the same code if they differ less than DIFF_MODSIZE_CUTOFF_PERCENT percent in their
   * estimated modules sizes.
   */
  private static final float DIFF_MODSIZE_CUTOFF_PERCENT = 0.05f;

  /**
   * More or less arbitrary cutoff point for determining if two finder patterns might belong
   * to the same code if they differ less than DIFF_MODSIZE_CUTOFF pixels/module in their
   * estimated modules sizes.
   */
  private static final float DIFF_MODSIZE_CUTOFF = 0.5f;


  /**
   * A comparator that orders FinderPatterns by their estimated module size.
   */
  private static class ModuleSizeComparator implements Comparator {
    public int compare(Object center1, Object center2) {
      float value = ((FinderPattern) center2).getEstimatedModuleSize() -
                    ((FinderPattern) center1).getEstimatedModuleSize();
      return value < 0.0 ? -1 : value > 0.0 ? 1 : 0;
    }
  }

  /**
   * <p>Creates a finder that will search the image for three finder patterns.</p>
   *
   * @param image image to search
   */
  MultiFinderPatternFinder(BitMatrix image) {
    super(image);
  }

  MultiFinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) {
    super(image, resultPointCallback);
  }

  /**
   * @return the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
   *         those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
   *         size differs from the average among those patterns the least
   * @throws NotFoundException if 3 such finder patterns do not exist
   */
  private FinderPattern[][] selectBestPatterns() throws NotFoundException {
    Vector possibleCenters = getPossibleCenters();
    int size = possibleCenters.size();

    if (size < 3) {
      // Couldn't find enough finder patterns
      throw NotFoundException.getNotFoundInstance();
    }

    /*
     * Begin HE modifications to safely detect multiple codes of equal size
     */
    if (size == 3) {
      return new FinderPattern[][]{
          new FinderPattern[]{
              (FinderPattern) possibleCenters.elementAt(0),
              (FinderPattern) possibleCenters.elementAt(1),
              (FinderPattern) possibleCenters.elementAt(2)
          }
      };
    }

    // Sort by estimated module size to speed up the upcoming checks
    Collections.insertionSort(possibleCenters, new ModuleSizeComparator());

    /*
     * Now lets start: build a list of tuples of three finder locations that
     *  - feature similar module sizes
     *  - are placed in a distance so the estimated module count is within the QR specification
     *  - have similar distance between upper left/right and left top/bottom finder patterns
     *  - form a triangle with 90° angle (checked by comparing top right/bottom left distance
     *    with pythagoras)
     *
     * Note: we allow each point to be used for more than one code region: this might seem
     * counterintuitive at first, but the performance penalty is not that big. At this point,
     * we cannot make a good quality decision whether the three finders actually represent
     * a QR code, or are just by chance layouted so it looks like there might be a QR code there.
     * So, if the layout seems right, lets have the decoder try to decode.     
     */

    Vector results = new Vector(); // holder for the results

    for (int i1 = 0; i1 < (size - 2); i1++) {
      FinderPattern p1 = (FinderPattern) possibleCenters.elementAt(i1);
      if (p1 == null) {
        continue;
      }

      for (int i2 = i1 + 1; i2 < (size - 1); i2++) {
        FinderPattern p2 = (FinderPattern) possibleCenters.elementAt(i2);
        if (p2 == null) {
          continue;
        }

        // Compare the expected module sizes; if they are really off, skip
        float vModSize12 = (p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize()) /
            Math.min(p1.getEstimatedModuleSize(), p2.getEstimatedModuleSize());
        float vModSize12A = Math.abs(p1.getEstimatedModuleSize() - p2.getEstimatedModuleSize());
        if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
          // break, since elements are ordered by the module size deviation there cannot be
          // any more interesting elements for the given p1.
          break;
        }

        for (int i3 = i2 + 1; i3 < size; i3++) {
          FinderPattern p3 = (FinderPattern) possibleCenters.elementAt(i3);
          if (p3 == null) {
            continue;
          }

          // Compare the expected module sizes; if they are really off, skip
          float vModSize23 = (p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize()) /
              Math.min(p2.getEstimatedModuleSize(), p3.getEstimatedModuleSize());
          float vModSize23A = Math.abs(p2.getEstimatedModuleSize() - p3.getEstimatedModuleSize());
          if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT) {
            // break, since elements are ordered by the module size deviation there cannot be
            // any more interesting elements for the given p1.
            break;
          }

          FinderPattern[] test = {p1, p2, p3};
          ResultPoint.orderBestPatterns(test);

          // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal
          FinderPatternInfo info = new FinderPatternInfo(test);
          float dA = ResultPoint.distance(info.getTopLeft(), info.getBottomLeft());
          float dC = ResultPoint.distance(info.getTopRight(), info.getBottomLeft());
          float dB = ResultPoint.distance(info.getTopLeft(), info.getTopRight());

          // Check the sizes
          float estimatedModuleCount = (dA + dB) / (p1.getEstimatedModuleSize() * 2.0f);
          if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE ||
              estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE) {
            continue;
          }

          // Calculate the difference of the edge lengths in percent
          float vABBC = Math.abs((dA - dB) / Math.min(dA, dB));
          if (vABBC >= 0.1f) {
            continue;
          }

          // Calculate the diagonal length by assuming a 90° angle at topleft
          float dCpy = (float) Math.sqrt(dA * dA + dB * dB);
          // Compare to the real distance in %
          float vPyC = Math.abs((dC - dCpy) / Math.min(dC, dCpy));

          if (vPyC >= 0.1f) {
            continue;
          }

          // All tests passed!
          results.addElement(test);
        } // end iterate p3
      } // end iterate p2
    } // end iterate p1

    if (!results.isEmpty()) {
      FinderPattern[][] resultArray = new FinderPattern[results.size()][];
      for (int i = 0; i < results.size(); i++) {
        resultArray[i] = (FinderPattern[]) results.elementAt(i);
      }
      return resultArray;
    }

    // Nothing found!
    throw NotFoundException.getNotFoundInstance();
  }

  public FinderPatternInfo[] findMulti(Hashtable hints) throws NotFoundException {
    boolean tryHarder = hints != null && hints.containsKey(DecodeHintType.TRY_HARDER);
    BitMatrix image = getImage();
    int maxI = image.getHeight();
    int maxJ = image.getWidth();
    // We are looking for black/white/black/white/black modules in
    // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far

    // Let's assume that the maximum version QR Code we support takes up 1/4 the height of the
    // image, and then account for the center being 3 modules in size. This gives the smallest
    // number of pixels the center could be, so skip this often. When trying harder, look for all
    // QR versions regardless of how dense they are.
    int iSkip = (int) (maxI / (MAX_MODULES * 4.0f) * 3);
    if (iSkip < MIN_SKIP || tryHarder) {
      iSkip = MIN_SKIP;
    }

    int[] stateCount = new int[5];
    for (int i = iSkip - 1; i < maxI; i += iSkip) {
      // Get a row of black/white values
      stateCount[0] = 0;
      stateCount[1] = 0;
      stateCount[2] = 0;
      stateCount[3] = 0;
      stateCount[4] = 0;
      int currentState = 0;
      for (int j = 0; j < maxJ; j++) {
        if (image.get(j, i)) {
          // Black pixel
          if ((currentState & 1) == 1) { // Counting white pixels
            currentState++;
          }
          stateCount[currentState]++;
        } else { // White pixel
          if ((currentState & 1) == 0) { // Counting black pixels
            if (currentState == 4) { // A winner?
              if (foundPatternCross(stateCount)) { // Yes
                boolean confirmed = handlePossibleCenter(stateCount, i, j);
                if (!confirmed) {
                  do { // Advance to next black pixel
                    j++;
                  } while (j < maxJ && !image.get(j, i));
                  j--; // back up to that last white pixel
                }
                // Clear state to start looking again
                currentState = 0;
                stateCount[0] = 0;
                stateCount[1] = 0;
                stateCount[2] = 0;
                stateCount[3] = 0;
                stateCount[4] = 0;
              } else { // No, shift counts back by two
                stateCount[0] = stateCount[2];
                stateCount[1] = stateCount[3];
                stateCount[2] = stateCount[4];
                stateCount[3] = 1;
                stateCount[4] = 0;
                currentState = 3;
              }
            } else {
              stateCount[++currentState]++;
            }
          } else { // Counting white pixels
            stateCount[currentState]++;
          }
        }
      } // for j=...

      if (foundPatternCross(stateCount)) {
        handlePossibleCenter(stateCount, i, maxJ);
      } // end if foundPatternCross
    } // for i=iSkip-1 ...
    FinderPattern[][] patternInfo = selectBestPatterns();
    Vector result = new Vector();
    for (int i = 0; i < patternInfo.length; i++) {
      FinderPattern[] pattern = patternInfo[i];
      ResultPoint.orderBestPatterns(pattern);
      result.addElement(new FinderPatternInfo(pattern));
    }

    if (result.isEmpty()) {
      return EMPTY_RESULT_ARRAY;
    } else {
      FinderPatternInfo[] resultArray = new FinderPatternInfo[result.size()];
      for (int i = 0; i < result.size(); i++) {
        resultArray[i] = (FinderPatternInfo) result.elementAt(i);
      }
      return resultArray;
    }
  }

}