aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/zxing/src/com/google/zxing/common/reedsolomon/ReedSolomonDecoder.java
blob: b523fd34b4e5b3ea90617cca7558679f7aeb4a2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.common.reedsolomon;

/**
 * <p>Implements Reed-Solomon decoding, as the name implies.</p>
 *
 * <p>The algorithm will not be explained here, but the following references were helpful
 * in creating this implementation:</p>
 *
 * <ul>
 * <li>Bruce Maggs.
 * <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps">
 * "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li>
 * <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf">
 * "Chapter 5. Generalized Reed-Solomon Codes"</a>
 * (see discussion of Euclidean algorithm)</li>
 * </ul>
 *
 * <p>Much credit is due to William Rucklidge since portions of this code are an indirect
 * port of his C++ Reed-Solomon implementation.</p>
 *
 * @author Sean Owen
 * @author William Rucklidge
 * @author sanfordsquires
 */
public final class ReedSolomonDecoder {

  private final GenericGF field;

  public ReedSolomonDecoder(GenericGF field) {
    this.field = field;
  }

  /**
   * <p>Decodes given set of received codewords, which include both data and error-correction
   * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
   * in the input.</p>
   *
   * @param received data and error-correction codewords
   * @param twoS number of error-correction codewords available
   * @throws ReedSolomonException if decoding fails for any reason
   */
  public void decode(int[] received, int twoS) throws ReedSolomonException {
    GenericGFPoly poly = new GenericGFPoly(field, received);
    int[] syndromeCoefficients = new int[twoS];
    boolean dataMatrix = field.equals(GenericGF.DATA_MATRIX_FIELD_256);
    boolean noError = true;
    for (int i = 0; i < twoS; i++) {
      // Thanks to sanfordsquires for this fix:
      int eval = poly.evaluateAt(field.exp(dataMatrix ? i + 1 : i));
      syndromeCoefficients[syndromeCoefficients.length - 1 - i] = eval;
      if (eval != 0) {
        noError = false;
      }
    }
    if (noError) {
      return;
    }
    GenericGFPoly syndrome = new GenericGFPoly(field, syndromeCoefficients);
    GenericGFPoly[] sigmaOmega =
        runEuclideanAlgorithm(field.buildMonomial(twoS, 1), syndrome, twoS);
    GenericGFPoly sigma = sigmaOmega[0];
    GenericGFPoly omega = sigmaOmega[1];
    int[] errorLocations = findErrorLocations(sigma);
    int[] errorMagnitudes = findErrorMagnitudes(omega, errorLocations, dataMatrix);
    for (int i = 0; i < errorLocations.length; i++) {
      int position = received.length - 1 - field.log(errorLocations[i]);
      if (position < 0) {
        throw new ReedSolomonException("Bad error location");
      }
      received[position] = GenericGF.addOrSubtract(received[position], errorMagnitudes[i]);
    }
  }

  private GenericGFPoly[] runEuclideanAlgorithm(GenericGFPoly a, GenericGFPoly b, int R)
      throws ReedSolomonException {
    // Assume a's degree is >= b's
    if (a.getDegree() < b.getDegree()) {
      GenericGFPoly temp = a;
      a = b;
      b = temp;
    }

    GenericGFPoly rLast = a;
    GenericGFPoly r = b;
    GenericGFPoly sLast = field.getOne();
    GenericGFPoly s = field.getZero();
    GenericGFPoly tLast = field.getZero();
    GenericGFPoly t = field.getOne();

    // Run Euclidean algorithm until r's degree is less than R/2
    while (r.getDegree() >= R / 2) {
      GenericGFPoly rLastLast = rLast;
      GenericGFPoly sLastLast = sLast;
      GenericGFPoly tLastLast = tLast;
      rLast = r;
      sLast = s;
      tLast = t;

      // Divide rLastLast by rLast, with quotient in q and remainder in r
      if (rLast.isZero()) {
        // Oops, Euclidean algorithm already terminated?
        throw new ReedSolomonException("r_{i-1} was zero");
      }
      r = rLastLast;
      GenericGFPoly q = field.getZero();
      int denominatorLeadingTerm = rLast.getCoefficient(rLast.getDegree());
      int dltInverse = field.inverse(denominatorLeadingTerm);
      while (r.getDegree() >= rLast.getDegree() && !r.isZero()) {
        int degreeDiff = r.getDegree() - rLast.getDegree();
        int scale = field.multiply(r.getCoefficient(r.getDegree()), dltInverse);
        q = q.addOrSubtract(field.buildMonomial(degreeDiff, scale));
        r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
      }

      s = q.multiply(sLast).addOrSubtract(sLastLast);
      t = q.multiply(tLast).addOrSubtract(tLastLast);
    }

    int sigmaTildeAtZero = t.getCoefficient(0);
    if (sigmaTildeAtZero == 0) {
      throw new ReedSolomonException("sigmaTilde(0) was zero");
    }

    int inverse = field.inverse(sigmaTildeAtZero);
    GenericGFPoly sigma = t.multiply(inverse);
    GenericGFPoly omega = r.multiply(inverse);
    return new GenericGFPoly[]{sigma, omega};
  }

  private int[] findErrorLocations(GenericGFPoly errorLocator) throws ReedSolomonException {
    // This is a direct application of Chien's search
    int numErrors = errorLocator.getDegree();
    if (numErrors == 1) { // shortcut
      return new int[] { errorLocator.getCoefficient(1) };
    }
    int[] result = new int[numErrors];
    int e = 0;
    for (int i = 1; i < field.getSize() && e < numErrors; i++) {
      if (errorLocator.evaluateAt(i) == 0) {
        result[e] = field.inverse(i);
        e++;
      }
    }
    if (e != numErrors) {
      throw new ReedSolomonException("Error locator degree does not match number of roots");
    }
    return result;
  }

  private int[] findErrorMagnitudes(GenericGFPoly errorEvaluator, int[] errorLocations, boolean dataMatrix) {
    // This is directly applying Forney's Formula
    int s = errorLocations.length;
    int[] result = new int[s];
    for (int i = 0; i < s; i++) {
      int xiInverse = field.inverse(errorLocations[i]);
      int denominator = 1;
      for (int j = 0; j < s; j++) {
        if (i != j) {
          //denominator = field.multiply(denominator,
          //    GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
          // Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug.
          // Below is a funny-looking workaround from Steven Parkes
          int term = field.multiply(errorLocations[j], xiInverse);
          int termPlus1 = (term & 0x1) == 0 ? term | 1 : term & ~1;
          denominator = field.multiply(denominator, termPlus1);
        }
      }
      result[i] = field.multiply(errorEvaluator.evaluateAt(xiInverse),
          field.inverse(denominator));
      // Thanks to sanfordsquires for this fix:
      if (dataMatrix) {
        result[i] = field.multiply(result[i], xiInverse);
      }
    }
    return result;
  }

}