aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/zxing/src/com/google/zxing/common/GlobalHistogramBinarizer.java
blob: 4fa2a887b12da67cba00cd4b88bf1a3285ccaaae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.common;

import com.google.zxing.Binarizer;
import com.google.zxing.LuminanceSource;
import com.google.zxing.NotFoundException;

/**
 * This Binarizer implementation uses the old ZXing global histogram approach. It is suitable
 * for low-end mobile devices which don't have enough CPU or memory to use a local thresholding
 * algorithm. However, because it picks a global black point, it cannot handle difficult shadows
 * and gradients.
 *
 * Faster mobile devices and all desktop applications should probably use HybridBinarizer instead.
 *
 * @author dswitkin@google.com (Daniel Switkin)
 * @author Sean Owen
 */
public class GlobalHistogramBinarizer extends Binarizer {

  private static final int LUMINANCE_BITS = 5;
  private static final int LUMINANCE_SHIFT = 8 - LUMINANCE_BITS;
  private static final int LUMINANCE_BUCKETS = 1 << LUMINANCE_BITS;

  private byte[] luminances = null;
  private int[] buckets = null;

  public GlobalHistogramBinarizer(LuminanceSource source) {
    super(source);
  }

  // Applies simple sharpening to the row data to improve performance of the 1D Readers.
  public BitArray getBlackRow(int y, BitArray row) throws NotFoundException {
    LuminanceSource source = getLuminanceSource();
    int width = source.getWidth();
    if (row == null || row.getSize() < width) {
      row = new BitArray(width);
    } else {
      row.clear();
    }

    initArrays(width);
    byte[] localLuminances = source.getRow(y, luminances);
    int[] localBuckets = buckets;
    for (int x = 0; x < width; x++) {
      int pixel = localLuminances[x] & 0xff;
      localBuckets[pixel >> LUMINANCE_SHIFT]++;
    }
    int blackPoint = estimateBlackPoint(localBuckets);

    int left = localLuminances[0] & 0xff;
    int center = localLuminances[1] & 0xff;
    for (int x = 1; x < width - 1; x++) {
      int right = localLuminances[x + 1] & 0xff;
      // A simple -1 4 -1 box filter with a weight of 2.
      int luminance = ((center << 2) - left - right) >> 1;
      if (luminance < blackPoint) {
        row.set(x);
      }
      left = center;
      center = right;
    }
    return row;
  }

  // Does not sharpen the data, as this call is intended to only be used by 2D Readers.
  public BitMatrix getBlackMatrix() throws NotFoundException {
    LuminanceSource source = getLuminanceSource();
    int width = source.getWidth();
    int height = source.getHeight();
    BitMatrix matrix = new BitMatrix(width, height);

    // Quickly calculates the histogram by sampling four rows from the image. This proved to be
    // more robust on the blackbox tests than sampling a diagonal as we used to do.
    initArrays(width);
    int[] localBuckets = buckets;
    for (int y = 1; y < 5; y++) {
      int row = height * y / 5;
      byte[] localLuminances = source.getRow(row, luminances);
      int right = (width << 2) / 5;
      for (int x = width / 5; x < right; x++) {
        int pixel = localLuminances[x] & 0xff;
        localBuckets[pixel >> LUMINANCE_SHIFT]++;
      }
    }
    int blackPoint = estimateBlackPoint(localBuckets);

    // We delay reading the entire image luminance until the black point estimation succeeds.
    // Although we end up reading four rows twice, it is consistent with our motto of
    // "fail quickly" which is necessary for continuous scanning.
    byte[] localLuminances = source.getMatrix();
    for (int y = 0; y < height; y++) {
      int offset = y * width;
      for (int x = 0; x< width; x++) {
        int pixel = localLuminances[offset + x] & 0xff;
        if (pixel < blackPoint) {
          matrix.set(x, y);
        }
      }
    }

    return matrix;
  }

  public Binarizer createBinarizer(LuminanceSource source) {
    return new GlobalHistogramBinarizer(source);
  }

  private void initArrays(int luminanceSize) {
    if (luminances == null || luminances.length < luminanceSize) {
      luminances = new byte[luminanceSize];
    }
    if (buckets == null) {
      buckets = new int[LUMINANCE_BUCKETS];
    } else {
      for (int x = 0; x < LUMINANCE_BUCKETS; x++) {
        buckets[x] = 0;
      }
    }
  }

  private static int estimateBlackPoint(int[] buckets) throws NotFoundException {
    // Find the tallest peak in the histogram.
    int numBuckets = buckets.length;
    int maxBucketCount = 0;
    int firstPeak = 0;
    int firstPeakSize = 0;
    for (int x = 0; x < numBuckets; x++) {
      if (buckets[x] > firstPeakSize) {
        firstPeak = x;
        firstPeakSize = buckets[x];
      }
      if (buckets[x] > maxBucketCount) {
        maxBucketCount = buckets[x];
      }
    }

    // Find the second-tallest peak which is somewhat far from the tallest peak.
    int secondPeak = 0;
    int secondPeakScore = 0;
    for (int x = 0; x < numBuckets; x++) {
      int distanceToBiggest = x - firstPeak;
      // Encourage more distant second peaks by multiplying by square of distance.
      int score = buckets[x] * distanceToBiggest * distanceToBiggest;
      if (score > secondPeakScore) {
        secondPeak = x;
        secondPeakScore = score;
      }
    }

    // Make sure firstPeak corresponds to the black peak.
    if (firstPeak > secondPeak) {
      int temp = firstPeak;
      firstPeak = secondPeak;
      secondPeak = temp;
    }

    // If there is too little contrast in the image to pick a meaningful black point, throw rather
    // than waste time trying to decode the image, and risk false positives.
    if (secondPeak - firstPeak <= numBuckets >> 4) {
      throw NotFoundException.getNotFoundInstance();
    }

    // Find a valley between them that is low and closer to the white peak.
    int bestValley = secondPeak - 1;
    int bestValleyScore = -1;
    for (int x = secondPeak - 1; x > firstPeak; x--) {
      int fromFirst = x - firstPeak;
      int score = fromFirst * fromFirst * (secondPeak - x) * (maxBucketCount - buckets[x]);
      if (score > bestValleyScore) {
        bestValley = x;
        bestValleyScore = score;
      }
    }

    return bestValley << LUMINANCE_SHIFT;
  }

}