aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/spongycastle/core/src/main/java/org/spongycastle/crypto/engines/RSACoreEngine.java
blob: 4a98bbdad32c4bec9c286548bb3f3bd69223b095 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
package org.spongycastle.crypto.engines;

import org.spongycastle.crypto.CipherParameters;
import org.spongycastle.crypto.DataLengthException;
import org.spongycastle.crypto.params.ParametersWithRandom;
import org.spongycastle.crypto.params.RSAKeyParameters;
import org.spongycastle.crypto.params.RSAPrivateCrtKeyParameters;

import java.math.BigInteger;

/**
 * this does your basic RSA algorithm.
 */
class RSACoreEngine
{
    private RSAKeyParameters key;
    private boolean          forEncryption;

    /**
     * initialise the RSA engine.
     *
     * @param forEncryption true if we are encrypting, false otherwise.
     * @param param the necessary RSA key parameters.
     */
    public void init(
        boolean          forEncryption,
        CipherParameters param)
    {
        if (param instanceof ParametersWithRandom)
        {
            ParametersWithRandom    rParam = (ParametersWithRandom)param;

            key = (RSAKeyParameters)rParam.getParameters();
        }
        else
        {
            key = (RSAKeyParameters)param;
        }

        this.forEncryption = forEncryption;
    }

    /**
     * Return the maximum size for an input block to this engine.
     * For RSA this is always one byte less than the key size on
     * encryption, and the same length as the key size on decryption.
     *
     * @return maximum size for an input block.
     */
    public int getInputBlockSize()
    {
        int     bitSize = key.getModulus().bitLength();

        if (forEncryption)
        {
            return (bitSize + 7) / 8 - 1;
        }
        else
        {
            return (bitSize + 7) / 8;
        }
    }

    /**
     * Return the maximum size for an output block to this engine.
     * For RSA this is always one byte less than the key size on
     * decryption, and the same length as the key size on encryption.
     *
     * @return maximum size for an output block.
     */
    public int getOutputBlockSize()
    {
        int     bitSize = key.getModulus().bitLength();

        if (forEncryption)
        {
            return (bitSize + 7) / 8;
        }
        else
        {
            return (bitSize + 7) / 8 - 1;
        }
    }

    public BigInteger convertInput(
        byte[]  in,
        int     inOff,
        int     inLen)
    {
        if (inLen > (getInputBlockSize() + 1))
        {
            throw new DataLengthException("input too large for RSA cipher.");
        }
        else if (inLen == (getInputBlockSize() + 1) && !forEncryption)
        {
            throw new DataLengthException("input too large for RSA cipher.");
        }

        byte[]  block;

        if (inOff != 0 || inLen != in.length)
        {
            block = new byte[inLen];

            System.arraycopy(in, inOff, block, 0, inLen);
        }
        else
        {
            block = in;
        }

        BigInteger res = new BigInteger(1, block);
        if (res.compareTo(key.getModulus()) >= 0)
        {
            throw new DataLengthException("input too large for RSA cipher.");
        }

        return res;
    }

    public byte[] convertOutput(
        BigInteger result)
    {
        byte[]      output = result.toByteArray();

        if (forEncryption)
        {
            if (output[0] == 0 && output.length > getOutputBlockSize())        // have ended up with an extra zero byte, copy down.
            {
                byte[]  tmp = new byte[output.length - 1];

                System.arraycopy(output, 1, tmp, 0, tmp.length);

                return tmp;
            }

            if (output.length < getOutputBlockSize())     // have ended up with less bytes than normal, lengthen
            {
                byte[]  tmp = new byte[getOutputBlockSize()];

                System.arraycopy(output, 0, tmp, tmp.length - output.length, output.length);

                return tmp;
            }
        }
        else
        {
            if (output[0] == 0)        // have ended up with an extra zero byte, copy down.
            {
                byte[]  tmp = new byte[output.length - 1];

                System.arraycopy(output, 1, tmp, 0, tmp.length);

                return tmp;
            }
        }

        return output;
    }

    public BigInteger processBlock(BigInteger input)
    {
        if (key instanceof RSAPrivateCrtKeyParameters)
        {
            //
            // we have the extra factors, use the Chinese Remainder Theorem - the author
            // wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
            // advice regarding the expression of this.
            //
            RSAPrivateCrtKeyParameters crtKey = (RSAPrivateCrtKeyParameters)key;

            BigInteger p = crtKey.getP();
            BigInteger q = crtKey.getQ();
            BigInteger dP = crtKey.getDP();
            BigInteger dQ = crtKey.getDQ();
            BigInteger qInv = crtKey.getQInv();

            BigInteger mP, mQ, h, m;

            // mP = ((input mod p) ^ dP)) mod p
            mP = (input.remainder(p)).modPow(dP, p);

            // mQ = ((input mod q) ^ dQ)) mod q
            mQ = (input.remainder(q)).modPow(dQ, q);

            // h = qInv * (mP - mQ) mod p
            h = mP.subtract(mQ);
            h = h.multiply(qInv);
            h = h.mod(p);               // mod (in Java) returns the positive residual

            // m = h * q + mQ
            m = h.multiply(q);
            m = m.add(mQ);

            return m;
        }
        else
        {
            return input.modPow(
                        key.getExponent(), key.getModulus());
        }
    }
}