aboutsummaryrefslogtreecommitdiffstats
path: root/OpenPGP-Keychain/src/com/google/zxing/common/HybridBinarizer.java
blob: b482c1a228300f6c9d610a1790643f4b588366c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright 2009 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.common;

import com.google.zxing.Binarizer;
import com.google.zxing.LuminanceSource;
import com.google.zxing.NotFoundException;

/**
 * This class implements a local thresholding algorithm, which while slower than the
 * GlobalHistogramBinarizer, is fairly efficient for what it does. It is designed for
 * high frequency images of barcodes with black data on white backgrounds. For this application,
 * it does a much better job than a global blackpoint with severe shadows and gradients.
 * However it tends to produce artifacts on lower frequency images and is therefore not
 * a good general purpose binarizer for uses outside ZXing.
 *
 * This class extends GlobalHistogramBinarizer, using the older histogram approach for 1D readers,
 * and the newer local approach for 2D readers. 1D decoding using a per-row histogram is already
 * inherently local, and only fails for horizontal gradients. We can revisit that problem later,
 * but for now it was not a win to use local blocks for 1D.
 *
 * This Binarizer is the default for the unit tests and the recommended class for library users.
 *
 * @author dswitkin@google.com (Daniel Switkin)
 */
public final class HybridBinarizer extends GlobalHistogramBinarizer {

  // This class uses 5x5 blocks to compute local luminance, where each block is 8x8 pixels.
  // So this is the smallest dimension in each axis we can accept.
  private static final int MINIMUM_DIMENSION = 40;

  private BitMatrix matrix = null;

  public HybridBinarizer(LuminanceSource source) {
    super(source);
  }

  public BitMatrix getBlackMatrix() throws NotFoundException {
    binarizeEntireImage();
    return matrix;
  }

  public Binarizer createBinarizer(LuminanceSource source) {
    return new HybridBinarizer(source);
  }

  // Calculates the final BitMatrix once for all requests. This could be called once from the
  // constructor instead, but there are some advantages to doing it lazily, such as making
  // profiling easier, and not doing heavy lifting when callers don't expect it.
  private void binarizeEntireImage() throws NotFoundException {
    if (matrix == null) {
      LuminanceSource source = getLuminanceSource();
      if (source.getWidth() >= MINIMUM_DIMENSION && source.getHeight() >= MINIMUM_DIMENSION) {
        byte[] luminances = source.getMatrix();
        int width = source.getWidth();
        int height = source.getHeight();
        int subWidth = width >> 3;
        if ((width & 0x07) != 0) {
          subWidth++;
        }
        int subHeight = height >> 3;
        if ((height & 0x07) != 0) {
          subHeight++;
        }
        int[][] blackPoints = calculateBlackPoints(luminances, subWidth, subHeight, width, height);

        matrix = new BitMatrix(width, height);
        calculateThresholdForBlock(luminances, subWidth, subHeight, width, height, blackPoints, matrix);
      } else {
        // If the image is too small, fall back to the global histogram approach.
        matrix = super.getBlackMatrix();
      }
    }
  }

  // For each 8x8 block in the image, calculate the average black point using a 5x5 grid
  // of the blocks around it. Also handles the corner cases (fractional blocks are computed based
  // on the last 8 pixels in the row/column which are also used in the previous block).
  private static void calculateThresholdForBlock(byte[] luminances, int subWidth, int subHeight,
      int width, int height, int[][] blackPoints, BitMatrix matrix) {
    for (int y = 0; y < subHeight; y++) {
      int yoffset = y << 3;
      if ((yoffset + 8) >= height) {
        yoffset = height - 8;
      }
      for (int x = 0; x < subWidth; x++) {
        int xoffset = x << 3;
        if ((xoffset + 8) >= width) {
            xoffset = width - 8;
        }
        int left = x > 1 ? x : 2;
        left = left < subWidth - 2 ? left : subWidth - 3;
        int top = y > 1 ? y : 2;
        top = top < subHeight - 2 ? top : subHeight - 3;
        int sum = 0;
        for (int z = -2; z <= 2; z++) {
          int[] blackRow = blackPoints[top + z];
          sum += blackRow[left - 2];
          sum += blackRow[left - 1];
          sum += blackRow[left];
          sum += blackRow[left + 1];
          sum += blackRow[left + 2];
        }
        int average = sum / 25;
        threshold8x8Block(luminances, xoffset, yoffset, average, width, matrix);
      }
    }
  }

  // Applies a single threshold to an 8x8 block of pixels.
  private static void threshold8x8Block(byte[] luminances, int xoffset, int yoffset, int threshold,
      int stride, BitMatrix matrix) {
    for (int y = 0; y < 8; y++) {
      int offset = (yoffset + y) * stride + xoffset;
      for (int x = 0; x < 8; x++) {
        int pixel = luminances[offset + x] & 0xff;
        if (pixel < threshold) {
          matrix.set(xoffset + x, yoffset + y);
        }
      }
    }
  }

  // Calculates a single black point for each 8x8 block of pixels and saves it away.
  private static int[][] calculateBlackPoints(byte[] luminances, int subWidth, int subHeight,
      int width, int height) {
    int[][] blackPoints = new int[subHeight][subWidth];
    for (int y = 0; y < subHeight; y++) {
      int yoffset = y << 3;
      if ((yoffset + 8) >= height) {
        yoffset = height - 8;
      }
      for (int x = 0; x < subWidth; x++) {
        int xoffset = x << 3;
        if ((xoffset + 8) >= width) {
            xoffset = width - 8;
        }
        int sum = 0;
        int min = 255;
        int max = 0;
        for (int yy = 0; yy < 8; yy++) {
          int offset = (yoffset + yy) * width + xoffset;
          for (int xx = 0; xx < 8; xx++) {
            int pixel = luminances[offset + xx] & 0xff;
            sum += pixel;
            if (pixel < min) {
              min = pixel;
            }
            if (pixel > max) {
              max = pixel;
            }
          }
        }

        // If the contrast is inadequate, use half the minimum, so that this block will be
        // treated as part of the white background, but won't drag down neighboring blocks
        // too much.
        int average;
        if (max - min > 24) {
          average = sum >> 6;
        } else {
          // When min == max == 0, let average be 1 so all is black
          average = max == 0 ? 1 : min >> 1;
        }
        blackPoints[y][x] = average;
      }
    }
    return blackPoints;
  }

}