aboutsummaryrefslogtreecommitdiffstats
path: root/libraries/spongycastle/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/GF2nPolynomialElement.java
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/spongycastle/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/GF2nPolynomialElement.java')
-rw-r--r--libraries/spongycastle/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/GF2nPolynomialElement.java1021
1 files changed, 1021 insertions, 0 deletions
diff --git a/libraries/spongycastle/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/GF2nPolynomialElement.java b/libraries/spongycastle/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/GF2nPolynomialElement.java
new file mode 100644
index 000000000..50e9d7511
--- /dev/null
+++ b/libraries/spongycastle/core/src/main/java/org/spongycastle/pqc/math/linearalgebra/GF2nPolynomialElement.java
@@ -0,0 +1,1021 @@
+package org.spongycastle.pqc.math.linearalgebra;
+
+
+import java.math.BigInteger;
+import java.util.Random;
+
+
+/**
+ * This class implements elements of finite binary fields <i>GF(2<sup>n</sup>)</i>
+ * using polynomial representation. For more information on the arithmetic see
+ * for example IEEE Standard 1363 or <a
+ * href=http://www.certicom.com/research/online.html> Certicom online-tutorial</a>.
+ *
+ * @see "GF2nField"
+ * @see GF2nPolynomialField
+ * @see GF2nONBElement
+ * @see GF2Polynomial
+ */
+public class GF2nPolynomialElement
+ extends GF2nElement
+{
+
+ // pre-computed Bitmask for fast masking, bitMask[a]=0x1 << a
+ private static final int[] bitMask = {0x00000001, 0x00000002, 0x00000004,
+ 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080,
+ 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000,
+ 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000,
+ 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000,
+ 0x00800000, 0x01000000, 0x02000000, 0x04000000, 0x08000000,
+ 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x00000000};
+
+ // the used GF2Polynomial which stores the coefficients
+ private GF2Polynomial polynomial;
+
+ /**
+ * Create a new random GF2nPolynomialElement using the given field and
+ * source of randomness.
+ *
+ * @param f the GF2nField to use
+ * @param rand the source of randomness
+ */
+ public GF2nPolynomialElement(GF2nPolynomialField f, Random rand)
+ {
+ mField = f;
+ mDegree = mField.getDegree();
+ polynomial = new GF2Polynomial(mDegree);
+ randomize(rand);
+ }
+
+ /**
+ * Creates a new GF2nPolynomialElement using the given field and Bitstring.
+ *
+ * @param f the GF2nPolynomialField to use
+ * @param bs the desired value as Bitstring
+ */
+ public GF2nPolynomialElement(GF2nPolynomialField f, GF2Polynomial bs)
+ {
+ mField = f;
+ mDegree = mField.getDegree();
+ polynomial = new GF2Polynomial(bs);
+ polynomial.expandN(mDegree);
+ }
+
+ /**
+ * Creates a new GF2nPolynomialElement using the given field <i>f</i> and
+ * byte[] <i>os</i> as value. The conversion is done according to 1363.
+ *
+ * @param f the GF2nField to use
+ * @param os the octet string to assign to this GF2nPolynomialElement
+ * @see "P1363 5.5.5 p23, OS2FEP/OS2BSP"
+ */
+ public GF2nPolynomialElement(GF2nPolynomialField f, byte[] os)
+ {
+ mField = f;
+ mDegree = mField.getDegree();
+ polynomial = new GF2Polynomial(mDegree, os);
+ polynomial.expandN(mDegree);
+ }
+
+ /**
+ * Creates a new GF2nPolynomialElement using the given field <i>f</i> and
+ * int[] <i>is</i> as value.
+ *
+ * @param f the GF2nField to use
+ * @param is the integer string to assign to this GF2nPolynomialElement
+ */
+ public GF2nPolynomialElement(GF2nPolynomialField f, int[] is)
+ {
+ mField = f;
+ mDegree = mField.getDegree();
+ polynomial = new GF2Polynomial(mDegree, is);
+ polynomial.expandN(f.mDegree);
+ }
+
+ /**
+ * Creates a new GF2nPolynomialElement by cloning the given
+ * GF2nPolynomialElement <i>b</i>.
+ *
+ * @param other the GF2nPolynomialElement to clone
+ */
+ public GF2nPolynomialElement(GF2nPolynomialElement other)
+ {
+ mField = other.mField;
+ mDegree = other.mDegree;
+ polynomial = new GF2Polynomial(other.polynomial);
+ }
+
+ // /////////////////////////////////////////////////////////////////////
+ // pseudo-constructors
+ // /////////////////////////////////////////////////////////////////////
+
+ /**
+ * Creates a new GF2nPolynomialElement by cloning this
+ * GF2nPolynomialElement.
+ *
+ * @return a copy of this element
+ */
+ public Object clone()
+ {
+ return new GF2nPolynomialElement(this);
+ }
+
+ // /////////////////////////////////////////////////////////////////////
+ // assignments
+ // /////////////////////////////////////////////////////////////////////
+
+ /**
+ * Assigns the value 'zero' to this Polynomial.
+ */
+ void assignZero()
+ {
+ polynomial.assignZero();
+ }
+
+ /**
+ * Create the zero element.
+ *
+ * @param f the finite field
+ * @return the zero element in the given finite field
+ */
+ public static GF2nPolynomialElement ZERO(GF2nPolynomialField f)
+ {
+ GF2Polynomial polynomial = new GF2Polynomial(f.getDegree());
+ return new GF2nPolynomialElement(f, polynomial);
+ }
+
+ /**
+ * Create the one element.
+ *
+ * @param f the finite field
+ * @return the one element in the given finite field
+ */
+ public static GF2nPolynomialElement ONE(GF2nPolynomialField f)
+ {
+ GF2Polynomial polynomial = new GF2Polynomial(f.getDegree(),
+ new int[]{1});
+ return new GF2nPolynomialElement(f, polynomial);
+ }
+
+ /**
+ * Assigns the value 'one' to this Polynomial.
+ */
+ void assignOne()
+ {
+ polynomial.assignOne();
+ }
+
+ /**
+ * Assign a random value to this GF2nPolynomialElement using the specified
+ * source of randomness.
+ *
+ * @param rand the source of randomness
+ */
+ private void randomize(Random rand)
+ {
+ polynomial.expandN(mDegree);
+ polynomial.randomize(rand);
+ }
+
+ // /////////////////////////////////////////////////////////////////////
+ // comparison
+ // /////////////////////////////////////////////////////////////////////
+
+ /**
+ * Checks whether this element is zero.
+ *
+ * @return <tt>true</tt> if <tt>this</tt> is the zero element
+ */
+ public boolean isZero()
+ {
+ return polynomial.isZero();
+ }
+
+ /**
+ * Tests if the GF2nPolynomialElement has 'one' as value.
+ *
+ * @return true if <i>this</i> equals one (this == 1)
+ */
+ public boolean isOne()
+ {
+ return polynomial.isOne();
+ }
+
+ /**
+ * Compare this element with another object.
+ *
+ * @param other the other object
+ * @return <tt>true</tt> if the two objects are equal, <tt>false</tt>
+ * otherwise
+ */
+ public boolean equals(Object other)
+ {
+ if (other == null || !(other instanceof GF2nPolynomialElement))
+ {
+ return false;
+ }
+ GF2nPolynomialElement otherElem = (GF2nPolynomialElement)other;
+
+ if (mField != otherElem.mField)
+ {
+ if (!mField.getFieldPolynomial().equals(
+ otherElem.mField.getFieldPolynomial()))
+ {
+ return false;
+ }
+ }
+
+ return polynomial.equals(otherElem.polynomial);
+ }
+
+ /**
+ * @return the hash code of this element
+ */
+ public int hashCode()
+ {
+ return mField.hashCode() + polynomial.hashCode();
+ }
+
+ // /////////////////////////////////////////////////////////////////////
+ // access
+ // /////////////////////////////////////////////////////////////////////
+
+ /**
+ * Returns the value of this GF2nPolynomialElement in a new Bitstring.
+ *
+ * @return the value of this GF2nPolynomialElement in a new Bitstring
+ */
+ private GF2Polynomial getGF2Polynomial()
+ {
+ return new GF2Polynomial(polynomial);
+ }
+
+ /**
+ * Checks whether the indexed bit of the bit representation is set.
+ *
+ * @param index the index of the bit to test
+ * @return <tt>true</tt> if the indexed bit is set
+ */
+ boolean testBit(int index)
+ {
+ return polynomial.testBit(index);
+ }
+
+ /**
+ * Returns whether the rightmost bit of the bit representation is set. This
+ * is needed for data conversion according to 1363.
+ *
+ * @return true if the rightmost bit of this element is set
+ */
+ public boolean testRightmostBit()
+ {
+ return polynomial.testBit(0);
+ }
+
+ /**
+ * Compute the sum of this element and <tt>addend</tt>.
+ *
+ * @param addend the addend
+ * @return <tt>this + other</tt> (newly created)
+ * @throws DifferentFieldsException if the elements are of different fields.
+ */
+ public GFElement add(GFElement addend)
+ throws RuntimeException
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.addToThis(addend);
+ return result;
+ }
+
+ /**
+ * Compute <tt>this + addend</tt> (overwrite <tt>this</tt>).
+ *
+ * @param addend the addend
+ * @throws DifferentFieldsException if the elements are of different fields.
+ */
+ public void addToThis(GFElement addend)
+ throws RuntimeException
+ {
+ if (!(addend instanceof GF2nPolynomialElement))
+ {
+ throw new RuntimeException();
+ }
+ if (!mField.equals(((GF2nPolynomialElement)addend).mField))
+ {
+ throw new RuntimeException();
+ }
+ polynomial.addToThis(((GF2nPolynomialElement)addend).polynomial);
+ }
+
+ /**
+ * Returns <tt>this</tt> element + 'one".
+ *
+ * @return <tt>this</tt> + 'one'
+ */
+ public GF2nElement increase()
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.increaseThis();
+ return result;
+ }
+
+ /**
+ * Increases this element by 'one'.
+ */
+ public void increaseThis()
+ {
+ polynomial.increaseThis();
+ }
+
+ /**
+ * Compute the product of this element and <tt>factor</tt>.
+ *
+ * @param factor the factor
+ * @return <tt>this * factor</tt> (newly created)
+ * @throws DifferentFieldsException if the elements are of different fields.
+ */
+ public GFElement multiply(GFElement factor)
+ throws RuntimeException
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.multiplyThisBy(factor);
+ return result;
+ }
+
+ /**
+ * Compute <tt>this * factor</tt> (overwrite <tt>this</tt>).
+ *
+ * @param factor the factor
+ * @throws DifferentFieldsException if the elements are of different fields.
+ */
+ public void multiplyThisBy(GFElement factor)
+ throws RuntimeException
+ {
+ if (!(factor instanceof GF2nPolynomialElement))
+ {
+ throw new RuntimeException();
+ }
+ if (!mField.equals(((GF2nPolynomialElement)factor).mField))
+ {
+ throw new RuntimeException();
+ }
+ if (equals(factor))
+ {
+ squareThis();
+ return;
+ }
+ polynomial = polynomial
+ .multiply(((GF2nPolynomialElement)factor).polynomial);
+ reduceThis();
+ }
+
+ /**
+ * Compute the multiplicative inverse of this element.
+ *
+ * @return <tt>this<sup>-1</sup></tt> (newly created)
+ * @throws ArithmeticException if <tt>this</tt> is the zero element.
+ * @see GF2nPolynomialElement#invertMAIA
+ * @see GF2nPolynomialElement#invertEEA
+ * @see GF2nPolynomialElement#invertSquare
+ */
+ public GFElement invert()
+ throws ArithmeticException
+ {
+ return invertMAIA();
+ }
+
+ /**
+ * Calculates the multiplicative inverse of <i>this</i> and returns the
+ * result in a new GF2nPolynomialElement.
+ *
+ * @return <i>this</i>^(-1)
+ * @throws ArithmeticException if <i>this</i> equals zero
+ */
+ public GF2nPolynomialElement invertEEA()
+ throws ArithmeticException
+ {
+ if (isZero())
+ {
+ throw new ArithmeticException();
+ }
+ GF2Polynomial b = new GF2Polynomial(mDegree + 32, "ONE");
+ b.reduceN();
+ GF2Polynomial c = new GF2Polynomial(mDegree + 32);
+ c.reduceN();
+ GF2Polynomial u = getGF2Polynomial();
+ GF2Polynomial v = mField.getFieldPolynomial();
+ GF2Polynomial h;
+ int j;
+ u.reduceN();
+ while (!u.isOne())
+ {
+ u.reduceN();
+ v.reduceN();
+ j = u.getLength() - v.getLength();
+ if (j < 0)
+ {
+ h = u;
+ u = v;
+ v = h;
+ h = b;
+ b = c;
+ c = h;
+ j = -j;
+ c.reduceN(); // this increases the performance
+ }
+ u.shiftLeftAddThis(v, j);
+ b.shiftLeftAddThis(c, j);
+ }
+ b.reduceN();
+ return new GF2nPolynomialElement((GF2nPolynomialField)mField, b);
+ }
+
+ /**
+ * Calculates the multiplicative inverse of <i>this</i> and returns the
+ * result in a new GF2nPolynomialElement.
+ *
+ * @return <i>this</i>^(-1)
+ * @throws ArithmeticException if <i>this</i> equals zero
+ */
+ public GF2nPolynomialElement invertSquare()
+ throws ArithmeticException
+ {
+ GF2nPolynomialElement n;
+ GF2nPolynomialElement u;
+ int i, j, k, b;
+
+ if (isZero())
+ {
+ throw new ArithmeticException();
+ }
+ // b = (n-1)
+ b = mField.getDegree() - 1;
+ // n = a
+ n = new GF2nPolynomialElement(this);
+ n.polynomial.expandN((mDegree << 1) + 32); // increase performance
+ n.polynomial.reduceN();
+ // k = 1
+ k = 1;
+
+ // for i = (r-1) downto 0 do, r=bitlength(b)
+ for (i = IntegerFunctions.floorLog(b) - 1; i >= 0; i--)
+ {
+ // u = n
+ u = new GF2nPolynomialElement(n);
+ // for j = 1 to k do
+ for (j = 1; j <= k; j++)
+ {
+ // u = u^2
+ u.squareThisPreCalc();
+ }
+ // n = nu
+ n.multiplyThisBy(u);
+ // k = 2k
+ k <<= 1;
+ // if b(i)==1
+ if ((b & bitMask[i]) != 0)
+ {
+ // n = n^2 * b
+ n.squareThisPreCalc();
+ n.multiplyThisBy(this);
+ // k = k+1
+ k += 1;
+ }
+ }
+
+ // outpur n^2
+ n.squareThisPreCalc();
+ return n;
+ }
+
+ /**
+ * Calculates the multiplicative inverse of <i>this</i> using the modified
+ * almost inverse algorithm and returns the result in a new
+ * GF2nPolynomialElement.
+ *
+ * @return <i>this</i>^(-1)
+ * @throws ArithmeticException if <i>this</i> equals zero
+ */
+ public GF2nPolynomialElement invertMAIA()
+ throws ArithmeticException
+ {
+ if (isZero())
+ {
+ throw new ArithmeticException();
+ }
+ GF2Polynomial b = new GF2Polynomial(mDegree, "ONE");
+ GF2Polynomial c = new GF2Polynomial(mDegree);
+ GF2Polynomial u = getGF2Polynomial();
+ GF2Polynomial v = mField.getFieldPolynomial();
+ GF2Polynomial h;
+ while (true)
+ {
+ while (!u.testBit(0))
+ { // x|u (x divides u)
+ u.shiftRightThis(); // u = u / x
+ if (!b.testBit(0))
+ {
+ b.shiftRightThis();
+ }
+ else
+ {
+ b.addToThis(mField.getFieldPolynomial());
+ b.shiftRightThis();
+ }
+ }
+ if (u.isOne())
+ {
+ return new GF2nPolynomialElement((GF2nPolynomialField)mField,
+ b);
+ }
+ u.reduceN();
+ v.reduceN();
+ if (u.getLength() < v.getLength())
+ {
+ h = u;
+ u = v;
+ v = h;
+ h = b;
+ b = c;
+ c = h;
+ }
+ u.addToThis(v);
+ b.addToThis(c);
+ }
+ }
+
+ /**
+ * This method is used internally to map the square()-calls within
+ * GF2nPolynomialElement to one of the possible squaring methods.
+ *
+ * @return <tt>this<sup>2</sup></tt> (newly created)
+ * @see GF2nPolynomialElement#squarePreCalc
+ */
+ public GF2nElement square()
+ {
+ return squarePreCalc();
+ }
+
+ /**
+ * This method is used internally to map the square()-calls within
+ * GF2nPolynomialElement to one of the possible squaring methods.
+ */
+ public void squareThis()
+ {
+ squareThisPreCalc();
+ }
+
+ /**
+ * Squares this GF2nPolynomialElement using GF2nField's squaring matrix.
+ * This is supposed to be fast when using a polynomial (no tri- or
+ * pentanomial) as fieldpolynomial. Use squarePreCalc when using a tri- or
+ * pentanomial as fieldpolynomial instead.
+ *
+ * @return <tt>this<sup>2</sup></tt> (newly created)
+ * @see GF2Polynomial#vectorMult
+ * @see GF2nPolynomialElement#squarePreCalc
+ * @see GF2nPolynomialElement#squareBitwise
+ */
+ public GF2nPolynomialElement squareMatrix()
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.squareThisMatrix();
+ result.reduceThis();
+ return result;
+ }
+
+ /**
+ * Squares this GF2nPolynomialElement using GF2nFields squaring matrix. This
+ * is supposed to be fast when using a polynomial (no tri- or pentanomial)
+ * as fieldpolynomial. Use squarePreCalc when using a tri- or pentanomial as
+ * fieldpolynomial instead.
+ *
+ * @see GF2Polynomial#vectorMult
+ * @see GF2nPolynomialElement#squarePreCalc
+ * @see GF2nPolynomialElement#squareBitwise
+ */
+ public void squareThisMatrix()
+ {
+ GF2Polynomial result = new GF2Polynomial(mDegree);
+ for (int i = 0; i < mDegree; i++)
+ {
+ if (polynomial
+ .vectorMult(((GF2nPolynomialField)mField).squaringMatrix[mDegree
+ - i - 1]))
+ {
+ result.setBit(i);
+
+ }
+ }
+ polynomial = result;
+ }
+
+ /**
+ * Squares this GF2nPolynomialElement by shifting left its Bitstring and
+ * reducing. This is supposed to be the slowest method. Use squarePreCalc or
+ * squareMatrix instead.
+ *
+ * @return <tt>this<sup>2</sup></tt> (newly created)
+ * @see GF2nPolynomialElement#squareMatrix
+ * @see GF2nPolynomialElement#squarePreCalc
+ * @see GF2Polynomial#squareThisBitwise
+ */
+ public GF2nPolynomialElement squareBitwise()
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.squareThisBitwise();
+ result.reduceThis();
+ return result;
+ }
+
+ /**
+ * Squares this GF2nPolynomialElement by shifting left its Bitstring and
+ * reducing. This is supposed to be the slowest method. Use squarePreCalc or
+ * squareMatrix instead.
+ *
+ * @see GF2nPolynomialElement#squareMatrix
+ * @see GF2nPolynomialElement#squarePreCalc
+ * @see GF2Polynomial#squareThisBitwise
+ */
+ public void squareThisBitwise()
+ {
+ polynomial.squareThisBitwise();
+ reduceThis();
+ }
+
+ /**
+ * Squares this GF2nPolynomialElement by using precalculated values and
+ * reducing. This is supposed to de fastest when using a trinomial or
+ * pentanomial as field polynomial. Use squareMatrix when using a ordinary
+ * polynomial as field polynomial.
+ *
+ * @return <tt>this<sup>2</sup></tt> (newly created)
+ * @see GF2nPolynomialElement#squareMatrix
+ * @see GF2Polynomial#squareThisPreCalc
+ */
+ public GF2nPolynomialElement squarePreCalc()
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.squareThisPreCalc();
+ result.reduceThis();
+ return result;
+ }
+
+ /**
+ * Squares this GF2nPolynomialElement by using precalculated values and
+ * reducing. This is supposed to de fastest when using a tri- or pentanomial
+ * as fieldpolynomial. Use squareMatrix when using a ordinary polynomial as
+ * fieldpolynomial.
+ *
+ * @see GF2nPolynomialElement#squareMatrix
+ * @see GF2Polynomial#squareThisPreCalc
+ */
+ public void squareThisPreCalc()
+ {
+ polynomial.squareThisPreCalc();
+ reduceThis();
+ }
+
+ /**
+ * Calculates <i>this</i> to the power of <i>k</i> and returns the result
+ * in a new GF2nPolynomialElement.
+ *
+ * @param k the power
+ * @return <i>this</i>^<i>k</i> in a new GF2nPolynomialElement
+ */
+ public GF2nPolynomialElement power(int k)
+ {
+ if (k == 1)
+ {
+ return new GF2nPolynomialElement(this);
+ }
+
+ GF2nPolynomialElement result = GF2nPolynomialElement
+ .ONE((GF2nPolynomialField)mField);
+ if (k == 0)
+ {
+ return result;
+ }
+
+ GF2nPolynomialElement x = new GF2nPolynomialElement(this);
+ x.polynomial.expandN((x.mDegree << 1) + 32); // increase performance
+ x.polynomial.reduceN();
+
+ for (int i = 0; i < mDegree; i++)
+ {
+ if ((k & (1 << i)) != 0)
+ {
+ result.multiplyThisBy(x);
+ }
+ x.square();
+ }
+
+ return result;
+ }
+
+ /**
+ * Compute the square root of this element and return the result in a new
+ * {@link GF2nPolynomialElement}.
+ *
+ * @return <tt>this<sup>1/2</sup></tt> (newly created)
+ */
+ public GF2nElement squareRoot()
+ {
+ GF2nPolynomialElement result = new GF2nPolynomialElement(this);
+ result.squareRootThis();
+ return result;
+ }
+
+ /**
+ * Compute the square root of this element.
+ */
+ public void squareRootThis()
+ {
+ // increase performance
+ polynomial.expandN((mDegree << 1) + 32);
+ polynomial.reduceN();
+ for (int i = 0; i < mField.getDegree() - 1; i++)
+ {
+ squareThis();
+ }
+ }
+
+ /**
+ * Solves the quadratic equation <tt>z<sup>2</sup> + z = this</tt> if
+ * such a solution exists. This method returns one of the two possible
+ * solutions. The other solution is <tt>z + 1</tt>. Use z.increase() to
+ * compute this solution.
+ *
+ * @return a GF2nPolynomialElement representing one z satisfying the
+ * equation <tt>z<sup>2</sup> + z = this</tt>
+ * @throws NoSolutionException if no solution exists
+ * @see "IEEE 1363, Annex A.4.7"
+ */
+ public GF2nElement solveQuadraticEquation()
+ throws RuntimeException
+ {
+ if (isZero())
+ {
+ return ZERO((GF2nPolynomialField)mField);
+ }
+
+ if ((mDegree & 1) == 1)
+ {
+ return halfTrace();
+ }
+
+ // TODO this can be sped-up by precomputation of p and w's
+ GF2nPolynomialElement z, w;
+ do
+ {
+ // step 1.
+ GF2nPolynomialElement p = new GF2nPolynomialElement(
+ (GF2nPolynomialField)mField, new Random());
+ // step 2.
+ z = ZERO((GF2nPolynomialField)mField);
+ w = (GF2nPolynomialElement)p.clone();
+ // step 3.
+ for (int i = 1; i < mDegree; i++)
+ {
+ // compute z = z^2 + w^2 * this
+ // and w = w^2 + p
+ z.squareThis();
+ w.squareThis();
+ z.addToThis(w.multiply(this));
+ w.addToThis(p);
+ }
+ }
+ while (w.isZero()); // step 4.
+
+ if (!equals(z.square().add(z)))
+ {
+ throw new RuntimeException();
+ }
+
+ // step 5.
+ return z;
+ }
+
+ /**
+ * Returns the trace of this GF2nPolynomialElement.
+ *
+ * @return the trace of this GF2nPolynomialElement
+ */
+ public int trace()
+ {
+ GF2nPolynomialElement t = new GF2nPolynomialElement(this);
+ int i;
+
+ for (i = 1; i < mDegree; i++)
+ {
+ t.squareThis();
+ t.addToThis(this);
+ }
+
+ if (t.isOne())
+ {
+ return 1;
+ }
+ return 0;
+ }
+
+ /**
+ * Returns the half-trace of this GF2nPolynomialElement.
+ *
+ * @return a GF2nPolynomialElement representing the half-trace of this
+ * GF2nPolynomialElement.
+ * @throws DegreeIsEvenException if the degree of this GF2nPolynomialElement is even.
+ */
+ private GF2nPolynomialElement halfTrace()
+ throws RuntimeException
+ {
+ if ((mDegree & 0x01) == 0)
+ {
+ throw new RuntimeException();
+ }
+ int i;
+ GF2nPolynomialElement h = new GF2nPolynomialElement(this);
+
+ for (i = 1; i <= ((mDegree - 1) >> 1); i++)
+ {
+ h.squareThis();
+ h.squareThis();
+ h.addToThis(this);
+ }
+
+ return h;
+ }
+
+ /**
+ * Reduces this GF2nPolynomialElement modulo the field-polynomial.
+ *
+ * @see GF2Polynomial#reduceTrinomial
+ * @see GF2Polynomial#reducePentanomial
+ */
+ private void reduceThis()
+ {
+ if (polynomial.getLength() > mDegree)
+ { // really reduce ?
+ if (((GF2nPolynomialField)mField).isTrinomial())
+ { // fieldpolonomial
+ // is trinomial
+ int tc;
+ try
+ {
+ tc = ((GF2nPolynomialField)mField).getTc();
+ }
+ catch (RuntimeException NATExc)
+ {
+ throw new RuntimeException(
+ "GF2nPolynomialElement.reduce: the field"
+ + " polynomial is not a trinomial");
+ }
+ if (((mDegree - tc) <= 32) // do we have to use slow
+ // bitwise reduction ?
+ || (polynomial.getLength() > (mDegree << 1)))
+ {
+ reduceTrinomialBitwise(tc);
+ return;
+ }
+ polynomial.reduceTrinomial(mDegree, tc);
+ return;
+ }
+ else if (((GF2nPolynomialField)mField).isPentanomial())
+ { // fieldpolynomial
+ // is
+ // pentanomial
+ int[] pc;
+ try
+ {
+ pc = ((GF2nPolynomialField)mField).getPc();
+ }
+ catch (RuntimeException NATExc)
+ {
+ throw new RuntimeException(
+ "GF2nPolynomialElement.reduce: the field"
+ + " polynomial is not a pentanomial");
+ }
+ if (((mDegree - pc[2]) <= 32) // do we have to use slow
+ // bitwise reduction ?
+ || (polynomial.getLength() > (mDegree << 1)))
+ {
+ reducePentanomialBitwise(pc);
+ return;
+ }
+ polynomial.reducePentanomial(mDegree, pc);
+ return;
+ }
+ else
+ { // fieldpolynomial is something else
+ polynomial = polynomial.remainder(mField.getFieldPolynomial());
+ polynomial.expandN(mDegree);
+ return;
+ }
+ }
+ if (polynomial.getLength() < mDegree)
+ {
+ polynomial.expandN(mDegree);
+ }
+ }
+
+ /**
+ * Reduce this GF2nPolynomialElement using the trinomial x^n + x^tc + 1 as
+ * fieldpolynomial. The coefficients are reduced bit by bit.
+ */
+ private void reduceTrinomialBitwise(int tc)
+ {
+ int i;
+ int k = mDegree - tc;
+ for (i = polynomial.getLength() - 1; i >= mDegree; i--)
+ {
+ if (polynomial.testBit(i))
+ {
+
+ polynomial.xorBit(i);
+ polynomial.xorBit(i - k);
+ polynomial.xorBit(i - mDegree);
+
+ }
+ }
+ polynomial.reduceN();
+ polynomial.expandN(mDegree);
+ }
+
+ /**
+ * Reduce this GF2nPolynomialElement using the pentanomial x^n + x^pc[2] +
+ * x^pc[1] + x^pc[0] + 1 as fieldpolynomial. The coefficients are reduced
+ * bit by bit.
+ */
+ private void reducePentanomialBitwise(int[] pc)
+ {
+ int i;
+ int k = mDegree - pc[2];
+ int l = mDegree - pc[1];
+ int m = mDegree - pc[0];
+ for (i = polynomial.getLength() - 1; i >= mDegree; i--)
+ {
+ if (polynomial.testBit(i))
+ {
+ polynomial.xorBit(i);
+ polynomial.xorBit(i - k);
+ polynomial.xorBit(i - l);
+ polynomial.xorBit(i - m);
+ polynomial.xorBit(i - mDegree);
+
+ }
+ }
+ polynomial.reduceN();
+ polynomial.expandN(mDegree);
+ }
+
+ // /////////////////////////////////////////////////////////////////////
+ // conversion
+ // /////////////////////////////////////////////////////////////////////
+
+ /**
+ * Returns a string representing this Bitstrings value using hexadecimal
+ * radix in MSB-first order.
+ *
+ * @return a String representing this Bitstrings value.
+ */
+ public String toString()
+ {
+ return polynomial.toString(16);
+ }
+
+ /**
+ * Returns a string representing this Bitstrings value using hexadecimal or
+ * binary radix in MSB-first order.
+ *
+ * @param radix the radix to use (2 or 16, otherwise 2 is used)
+ * @return a String representing this Bitstrings value.
+ */
+ public String toString(int radix)
+ {
+ return polynomial.toString(radix);
+ }
+
+ /**
+ * Converts this GF2nPolynomialElement to a byte[] according to 1363.
+ *
+ * @return a byte[] representing the value of this GF2nPolynomialElement
+ * @see "P1363 5.5.2 p22f BS2OSP, FE2OSP"
+ */
+ public byte[] toByteArray()
+ {
+ return polynomial.toByteArray();
+ }
+
+ /**
+ * Converts this GF2nPolynomialElement to an integer according to 1363.
+ *
+ * @return a BigInteger representing the value of this
+ * GF2nPolynomialElement
+ * @see "P1363 5.5.1 p22 BS2IP"
+ */
+ public BigInteger toFlexiBigInt()
+ {
+ return polynomial.toFlexiBigInt();
+ }
+
+}