aboutsummaryrefslogtreecommitdiffstats
path: root/src/org/bouncycastle/math
diff options
context:
space:
mode:
Diffstat (limited to 'src/org/bouncycastle/math')
-rw-r--r--src/org/bouncycastle/math/ec/ECConstants.java12
-rw-r--r--src/org/bouncycastle/math/ec/ECCurve.java179
-rw-r--r--src/org/bouncycastle/math/ec/ECFieldElement.java780
-rw-r--r--src/org/bouncycastle/math/ec/ECMultiplier.java19
-rw-r--r--src/org/bouncycastle/math/ec/ECPoint.java335
-rw-r--r--src/org/bouncycastle/math/ec/FpNafMultiplier.java39
-rw-r--r--src/org/bouncycastle/math/ec/PreCompInfo.java10
-rw-r--r--src/org/bouncycastle/math/ec/WNafMultiplier.java240
-rw-r--r--src/org/bouncycastle/math/ec/WNafPreCompInfo.java44
9 files changed, 1658 insertions, 0 deletions
diff --git a/src/org/bouncycastle/math/ec/ECConstants.java b/src/org/bouncycastle/math/ec/ECConstants.java
new file mode 100644
index 0000000..864f746
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/ECConstants.java
@@ -0,0 +1,12 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+
+public interface ECConstants
+{
+ public static final BigInteger ZERO = BigInteger.valueOf(0);
+ public static final BigInteger ONE = BigInteger.valueOf(1);
+ public static final BigInteger TWO = BigInteger.valueOf(2);
+ public static final BigInteger THREE = BigInteger.valueOf(3);
+ public static final BigInteger FOUR = BigInteger.valueOf(4);
+}
diff --git a/src/org/bouncycastle/math/ec/ECCurve.java b/src/org/bouncycastle/math/ec/ECCurve.java
new file mode 100644
index 0000000..ee7ddc3
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/ECCurve.java
@@ -0,0 +1,179 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+
+/**
+ * base class for an elliptic curve
+ */
+public abstract class ECCurve
+{
+ ECFieldElement a, b;
+
+ public abstract int getFieldSize();
+
+ public abstract ECFieldElement fromBigInteger(BigInteger x);
+
+ public abstract ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression);
+
+ public abstract ECPoint decodePoint(byte[] encoded);
+
+ public abstract ECPoint getInfinity();
+
+ public ECFieldElement getA()
+ {
+ return a;
+ }
+
+ public ECFieldElement getB()
+ {
+ return b;
+ }
+
+ /**
+ * Elliptic curve over Fp
+ */
+ public static class Fp extends ECCurve
+ {
+ BigInteger q;
+ ECPoint.Fp infinity;
+
+ public Fp(BigInteger q, BigInteger a, BigInteger b)
+ {
+ this.q = q;
+ this.a = fromBigInteger(a);
+ this.b = fromBigInteger(b);
+ this.infinity = new ECPoint.Fp(this, null, null);
+ }
+
+ public BigInteger getQ()
+ {
+ return q;
+ }
+
+ @Override
+ public int getFieldSize()
+ {
+ return q.bitLength();
+ }
+
+ @Override
+ public ECFieldElement fromBigInteger(BigInteger x)
+ {
+ return new ECFieldElement.Fp(this.q, x);
+ }
+
+ @Override
+ public ECPoint createPoint(BigInteger x, BigInteger y, boolean withCompression)
+ {
+ return new ECPoint.Fp(this, fromBigInteger(x), fromBigInteger(y), withCompression);
+ }
+
+ /**
+ * Decode a point on this curve from its ASN.1 encoding. The different
+ * encodings are taken account of, including point compression for
+ * <code>F<sub>p</sub></code> (X9.62 s 4.2.1 pg 17).
+ * @return The decoded point.
+ */
+ @Override
+ public ECPoint decodePoint(byte[] encoded)
+ {
+ ECPoint p = null;
+
+ switch (encoded[0])
+ {
+ // infinity
+ case 0x00:
+ if (encoded.length > 1)
+ {
+ throw new RuntimeException("Invalid point encoding");
+ }
+ p = getInfinity();
+ break;
+ // compressed
+ case 0x02:
+ case 0x03:
+ int ytilde = encoded[0] & 1;
+ byte[] i = new byte[encoded.length - 1];
+
+ System.arraycopy(encoded, 1, i, 0, i.length);
+
+ ECFieldElement x = new ECFieldElement.Fp(this.q, new BigInteger(1, i));
+ ECFieldElement alpha = x.multiply(x.square().add(a)).add(b);
+ ECFieldElement beta = alpha.sqrt();
+
+ //
+ // if we can't find a sqrt we haven't got a point on the
+ // curve - run!
+ //
+ if (beta == null)
+ {
+ throw new RuntimeException("Invalid point compression");
+ }
+
+ int bit0 = (beta.toBigInteger().testBit(0) ? 1 : 0);
+
+ if (bit0 == ytilde)
+ {
+ p = new ECPoint.Fp(this, x, beta, true);
+ }
+ else
+ {
+ p = new ECPoint.Fp(this, x,
+ new ECFieldElement.Fp(this.q, q.subtract(beta.toBigInteger())), true);
+ }
+ break;
+ // uncompressed
+ case 0x04:
+ // hybrid
+ case 0x06:
+ case 0x07:
+ byte[] xEnc = new byte[(encoded.length - 1) / 2];
+ byte[] yEnc = new byte[(encoded.length - 1) / 2];
+
+ System.arraycopy(encoded, 1, xEnc, 0, xEnc.length);
+ System.arraycopy(encoded, xEnc.length + 1, yEnc, 0, yEnc.length);
+
+ p = new ECPoint.Fp(this,
+ new ECFieldElement.Fp(this.q, new BigInteger(1, xEnc)),
+ new ECFieldElement.Fp(this.q, new BigInteger(1, yEnc)));
+ break;
+ default:
+ throw new RuntimeException("Invalid point encoding 0x" + Integer.toString(encoded[0], 16));
+ }
+
+ return p;
+ }
+
+ @Override
+ public ECPoint getInfinity()
+ {
+ return infinity;
+ }
+
+ @Override
+ public boolean equals(
+ Object anObject)
+ {
+ if (anObject == this)
+ {
+ return true;
+ }
+
+ if (!(anObject instanceof ECCurve.Fp))
+ {
+ return false;
+ }
+
+ ECCurve.Fp other = (ECCurve.Fp) anObject;
+
+ return this.q.equals(other.q)
+ && a.equals(other.a) && b.equals(other.b);
+ }
+
+ @Override
+ public int hashCode()
+ {
+ return a.hashCode() ^ b.hashCode() ^ q.hashCode();
+ }
+ }
+}
diff --git a/src/org/bouncycastle/math/ec/ECFieldElement.java b/src/org/bouncycastle/math/ec/ECFieldElement.java
new file mode 100644
index 0000000..8c8f96e
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/ECFieldElement.java
@@ -0,0 +1,780 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+import java.util.Random;
+
+public abstract class ECFieldElement
+ implements ECConstants
+{
+
+ public abstract BigInteger toBigInteger();
+ public abstract String getFieldName();
+ public abstract int getFieldSize();
+ public abstract ECFieldElement add(ECFieldElement b);
+ public abstract ECFieldElement subtract(ECFieldElement b);
+ public abstract ECFieldElement multiply(ECFieldElement b);
+ public abstract ECFieldElement divide(ECFieldElement b);
+ public abstract ECFieldElement negate();
+ public abstract ECFieldElement square();
+ public abstract ECFieldElement invert();
+ public abstract ECFieldElement sqrt();
+
+ @Override
+ public String toString()
+ {
+ return this.toBigInteger().toString(2);
+ }
+
+ public static class Fp extends ECFieldElement
+ {
+ BigInteger x;
+
+ BigInteger q;
+
+ public Fp(BigInteger q, BigInteger x)
+ {
+ this.x = x;
+
+ if (x.compareTo(q) >= 0)
+ {
+ throw new IllegalArgumentException("x value too large in field element");
+ }
+
+ this.q = q;
+ }
+
+ @Override
+ public BigInteger toBigInteger()
+ {
+ return x;
+ }
+
+ /**
+ * return the field name for this field.
+ *
+ * @return the string "Fp".
+ */
+ @Override
+ public String getFieldName()
+ {
+ return "Fp";
+ }
+
+ @Override
+ public int getFieldSize()
+ {
+ return q.bitLength();
+ }
+
+ public BigInteger getQ()
+ {
+ return q;
+ }
+
+ @Override
+ public ECFieldElement add(ECFieldElement b)
+ {
+ return new Fp(q, x.add(b.toBigInteger()).mod(q));
+ }
+
+ @Override
+ public ECFieldElement subtract(ECFieldElement b)
+ {
+ return new Fp(q, x.subtract(b.toBigInteger()).mod(q));
+ }
+
+ @Override
+ public ECFieldElement multiply(ECFieldElement b)
+ {
+ return new Fp(q, x.multiply(b.toBigInteger()).mod(q));
+ }
+
+ @Override
+ public ECFieldElement divide(ECFieldElement b)
+ {
+ return new Fp(q, x.multiply(b.toBigInteger().modInverse(q)).mod(q));
+ }
+
+ @Override
+ public ECFieldElement negate()
+ {
+ return new Fp(q, x.negate().mod(q));
+ }
+
+ @Override
+ public ECFieldElement square()
+ {
+ return new Fp(q, x.multiply(x).mod(q));
+ }
+
+ @Override
+ public ECFieldElement invert()
+ {
+ return new Fp(q, x.modInverse(q));
+ }
+
+ // D.1.4 91
+ /**
+ * return a sqrt root - the routine verifies that the calculation
+ * returns the right value - if none exists it returns null.
+ */
+ @Override
+ public ECFieldElement sqrt()
+ {
+ if (!q.testBit(0))
+ {
+ throw new RuntimeException("not done yet");
+ }
+
+ // note: even though this class implements ECConstants don't be tempted to
+ // remove the explicit declaration, some J2ME environments don't cope.
+ // p mod 4 == 3
+ if (q.testBit(1))
+ {
+ // z = g^(u+1) + p, p = 4u + 3
+ ECFieldElement z = new Fp(q, x.modPow(q.shiftRight(2).add(ECConstants.ONE), q));
+
+ return z.square().equals(this) ? z : null;
+ }
+
+ // p mod 4 == 1
+ BigInteger qMinusOne = q.subtract(ECConstants.ONE);
+
+ BigInteger legendreExponent = qMinusOne.shiftRight(1);
+ if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE)))
+ {
+ return null;
+ }
+
+ BigInteger u = qMinusOne.shiftRight(2);
+ BigInteger k = u.shiftLeft(1).add(ECConstants.ONE);
+
+ BigInteger Q = this.x;
+ BigInteger fourQ = Q.shiftLeft(2).mod(q);
+
+ BigInteger U, V;
+ Random rand = new Random();
+ do
+ {
+ BigInteger P;
+ do
+ {
+ P = new BigInteger(q.bitLength(), rand);
+ }
+ while (P.compareTo(q) >= 0
+ || !(P.multiply(P).subtract(fourQ).modPow(legendreExponent, q).equals(qMinusOne)));
+
+ BigInteger[] result = lucasSequence(q, P, Q, k);
+ U = result[0];
+ V = result[1];
+
+ if (V.multiply(V).mod(q).equals(fourQ))
+ {
+ // Integer division by 2, mod q
+ if (V.testBit(0))
+ {
+ V = V.add(q);
+ }
+
+ V = V.shiftRight(1);
+
+ //assert V.multiply(V).mod(q).equals(x);
+
+ return new ECFieldElement.Fp(q, V);
+ }
+ }
+ while (U.equals(ECConstants.ONE) || U.equals(qMinusOne));
+
+ return null;
+
+// BigInteger qMinusOne = q.subtract(ECConstants.ONE);
+// BigInteger legendreExponent = qMinusOne.shiftRight(1); //divide(ECConstants.TWO);
+// if (!(x.modPow(legendreExponent, q).equals(ECConstants.ONE)))
+// {
+// return null;
+// }
+//
+// Random rand = new Random();
+// BigInteger fourX = x.shiftLeft(2);
+//
+// BigInteger r;
+// do
+// {
+// r = new BigInteger(q.bitLength(), rand);
+// }
+// while (r.compareTo(q) >= 0
+// || !(r.multiply(r).subtract(fourX).modPow(legendreExponent, q).equals(qMinusOne)));
+//
+// BigInteger n1 = qMinusOne.shiftRight(2); //.divide(ECConstants.FOUR);
+// BigInteger n2 = n1.add(ECConstants.ONE); //q.add(ECConstants.THREE).divide(ECConstants.FOUR);
+//
+// BigInteger wOne = WOne(r, x, q);
+// BigInteger wSum = W(n1, wOne, q).add(W(n2, wOne, q)).mod(q);
+// BigInteger twoR = r.shiftLeft(1); //ECConstants.TWO.multiply(r);
+//
+// BigInteger root = twoR.modPow(q.subtract(ECConstants.TWO), q)
+// .multiply(x).mod(q)
+// .multiply(wSum).mod(q);
+//
+// return new Fp(q, root);
+ }
+
+// private static BigInteger W(BigInteger n, BigInteger wOne, BigInteger p)
+// {
+// if (n.equals(ECConstants.ONE))
+// {
+// return wOne;
+// }
+// boolean isEven = !n.testBit(0);
+// n = n.shiftRight(1);//divide(ECConstants.TWO);
+// if (isEven)
+// {
+// BigInteger w = W(n, wOne, p);
+// return w.multiply(w).subtract(ECConstants.TWO).mod(p);
+// }
+// BigInteger w1 = W(n.add(ECConstants.ONE), wOne, p);
+// BigInteger w2 = W(n, wOne, p);
+// return w1.multiply(w2).subtract(wOne).mod(p);
+// }
+//
+// private BigInteger WOne(BigInteger r, BigInteger x, BigInteger p)
+// {
+// return r.multiply(r).multiply(x.modPow(q.subtract(ECConstants.TWO), q)).subtract(ECConstants.TWO).mod(p);
+// }
+
+ private static BigInteger[] lucasSequence(
+ BigInteger p,
+ BigInteger P,
+ BigInteger Q,
+ BigInteger k)
+ {
+ int n = k.bitLength();
+ int s = k.getLowestSetBit();
+
+ BigInteger Uh = ECConstants.ONE;
+ BigInteger Vl = ECConstants.TWO;
+ BigInteger Vh = P;
+ BigInteger Ql = ECConstants.ONE;
+ BigInteger Qh = ECConstants.ONE;
+
+ for (int j = n - 1; j >= s + 1; --j)
+ {
+ Ql = Ql.multiply(Qh).mod(p);
+
+ if (k.testBit(j))
+ {
+ Qh = Ql.multiply(Q).mod(p);
+ Uh = Uh.multiply(Vh).mod(p);
+ Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
+ Vh = Vh.multiply(Vh).subtract(Qh.shiftLeft(1)).mod(p);
+ }
+ else
+ {
+ Qh = Ql;
+ Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
+ Vh = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
+ Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
+ }
+ }
+
+ Ql = Ql.multiply(Qh).mod(p);
+ Qh = Ql.multiply(Q).mod(p);
+ Uh = Uh.multiply(Vl).subtract(Ql).mod(p);
+ Vl = Vh.multiply(Vl).subtract(P.multiply(Ql)).mod(p);
+ Ql = Ql.multiply(Qh).mod(p);
+
+ for (int j = 1; j <= s; ++j)
+ {
+ Uh = Uh.multiply(Vl).mod(p);
+ Vl = Vl.multiply(Vl).subtract(Ql.shiftLeft(1)).mod(p);
+ Ql = Ql.multiply(Ql).mod(p);
+ }
+
+ return new BigInteger[]{ Uh, Vl };
+ }
+
+ @Override
+ public boolean equals(Object other)
+ {
+ if (other == this)
+ {
+ return true;
+ }
+
+ if (!(other instanceof ECFieldElement.Fp))
+ {
+ return false;
+ }
+
+ ECFieldElement.Fp o = (ECFieldElement.Fp)other;
+ return q.equals(o.q) && x.equals(o.x);
+ }
+
+ @Override
+ public int hashCode()
+ {
+ return q.hashCode() ^ x.hashCode();
+ }
+ }
+
+// /**
+// * Class representing the Elements of the finite field
+// * <code>F<sub>2<sup>m</sup></sub></code> in polynomial basis (PB)
+// * representation. Both trinomial (TPB) and pentanomial (PPB) polynomial
+// * basis representations are supported. Gaussian normal basis (GNB)
+// * representation is not supported.
+// */
+// public static class F2m extends ECFieldElement
+// {
+// BigInteger x;
+//
+// /**
+// * Indicates gaussian normal basis representation (GNB). Number chosen
+// * according to X9.62. GNB is not implemented at present.
+// */
+// public static final int GNB = 1;
+//
+// /**
+// * Indicates trinomial basis representation (TPB). Number chosen
+// * according to X9.62.
+// */
+// public static final int TPB = 2;
+//
+// /**
+// * Indicates pentanomial basis representation (PPB). Number chosen
+// * according to X9.62.
+// */
+// public static final int PPB = 3;
+//
+// /**
+// * TPB or PPB.
+// */
+// private int representation;
+//
+// /**
+// * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
+// */
+// private int m;
+//
+// /**
+// * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction polynomial
+// * <code>f(z)</code>.<br>
+// * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// private int k1;
+//
+// /**
+// * TPB: Always set to <code>0</code><br>
+// * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// private int k2;
+//
+// /**
+// * TPB: Always set to <code>0</code><br>
+// * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// private int k3;
+//
+// /**
+// * Constructor for PPB.
+// * @param m The exponent <code>m</code> of
+// * <code>F<sub>2<sup>m</sup></sub></code>.
+// * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.
+// * @param x The BigInteger representing the value of the field element.
+// */
+// public F2m(
+// int m,
+// int k1,
+// int k2,
+// int k3,
+// BigInteger x)
+// {
+//// super(x);
+// this.x = x;
+//
+// if ((k2 == 0) && (k3 == 0))
+// {
+// this.representation = TPB;
+// }
+// else
+// {
+// if (k2 >= k3)
+// {
+// throw new IllegalArgumentException(
+// "k2 must be smaller than k3");
+// }
+// if (k2 <= 0)
+// {
+// throw new IllegalArgumentException(
+// "k2 must be larger than 0");
+// }
+// this.representation = PPB;
+// }
+//
+// if (x.signum() < 0)
+// {
+// throw new IllegalArgumentException("x value cannot be negative");
+// }
+//
+// this.m = m;
+// this.k1 = k1;
+// this.k2 = k2;
+// this.k3 = k3;
+// }
+//
+// /**
+// * Constructor for TPB.
+// * @param m The exponent <code>m</code> of
+// * <code>F<sub>2<sup>m</sup></sub></code>.
+// * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction
+// * polynomial <code>f(z)</code>.
+// * @param x The BigInteger representing the value of the field element.
+// */
+// public F2m(int m, int k, BigInteger x)
+// {
+// // Set k1 to k, and set k2 and k3 to 0
+// this(m, k, 0, 0, x);
+// }
+//
+// public BigInteger toBigInteger()
+// {
+// return x;
+// }
+//
+// public String getFieldName()
+// {
+// return "F2m";
+// }
+//
+// public int getFieldSize()
+// {
+// return m;
+// }
+//
+// /**
+// * Checks, if the ECFieldElements <code>a</code> and <code>b</code>
+// * are elements of the same field <code>F<sub>2<sup>m</sup></sub></code>
+// * (having the same representation).
+// * @param a field element.
+// * @param b field element to be compared.
+// * @throws IllegalArgumentException if <code>a</code> and <code>b</code>
+// * are not elements of the same field
+// * <code>F<sub>2<sup>m</sup></sub></code> (having the same
+// * representation).
+// */
+// public static void checkFieldElements(
+// ECFieldElement a,
+// ECFieldElement b)
+// {
+// if ((!(a instanceof F2m)) || (!(b instanceof F2m)))
+// {
+// throw new IllegalArgumentException("Field elements are not "
+// + "both instances of ECFieldElement.F2m");
+// }
+//
+// if ((a.toBigInteger().signum() < 0) || (b.toBigInteger().signum() < 0))
+// {
+// throw new IllegalArgumentException(
+// "x value may not be negative");
+// }
+//
+// ECFieldElement.F2m aF2m = (ECFieldElement.F2m)a;
+// ECFieldElement.F2m bF2m = (ECFieldElement.F2m)b;
+//
+// if ((aF2m.m != bF2m.m) || (aF2m.k1 != bF2m.k1)
+// || (aF2m.k2 != bF2m.k2) || (aF2m.k3 != bF2m.k3))
+// {
+// throw new IllegalArgumentException("Field elements are not "
+// + "elements of the same field F2m");
+// }
+//
+// if (aF2m.representation != bF2m.representation)
+// {
+// // Should never occur
+// throw new IllegalArgumentException(
+// "One of the field "
+// + "elements are not elements has incorrect representation");
+// }
+// }
+//
+// /**
+// * Computes <code>z * a(z) mod f(z)</code>, where <code>f(z)</code> is
+// * the reduction polynomial of <code>this</code>.
+// * @param a The polynomial <code>a(z)</code> to be multiplied by
+// * <code>z mod f(z)</code>.
+// * @return <code>z * a(z) mod f(z)</code>
+// */
+// private BigInteger multZModF(final BigInteger a)
+// {
+// // Left-shift of a(z)
+// BigInteger az = a.shiftLeft(1);
+// if (az.testBit(this.m))
+// {
+// // If the coefficient of z^m in a(z) equals 1, reduction
+// // modulo f(z) is performed: Add f(z) to to a(z):
+// // Step 1: Unset mth coeffient of a(z)
+// az = az.clearBit(this.m);
+//
+// // Step 2: Add r(z) to a(z), where r(z) is defined as
+// // f(z) = z^m + r(z), and k1, k2, k3 are the positions of
+// // the non-zero coefficients in r(z)
+// az = az.flipBit(0);
+// az = az.flipBit(this.k1);
+// if (this.representation == PPB)
+// {
+// az = az.flipBit(this.k2);
+// az = az.flipBit(this.k3);
+// }
+// }
+// return az;
+// }
+//
+// public ECFieldElement add(final ECFieldElement b)
+// {
+// // No check performed here for performance reasons. Instead the
+// // elements involved are checked in ECPoint.F2m
+// // checkFieldElements(this, b);
+// if (b.toBigInteger().signum() == 0)
+// {
+// return this;
+// }
+//
+// return new F2m(this.m, this.k1, this.k2, this.k3, this.x.xor(b.toBigInteger()));
+// }
+//
+// public ECFieldElement subtract(final ECFieldElement b)
+// {
+// // Addition and subtraction are the same in F2m
+// return add(b);
+// }
+//
+//
+// public ECFieldElement multiply(final ECFieldElement b)
+// {
+// // Left-to-right shift-and-add field multiplication in F2m
+// // Input: Binary polynomials a(z) and b(z) of degree at most m-1
+// // Output: c(z) = a(z) * b(z) mod f(z)
+//
+// // No check performed here for performance reasons. Instead the
+// // elements involved are checked in ECPoint.F2m
+// // checkFieldElements(this, b);
+// final BigInteger az = this.x;
+// BigInteger bz = b.toBigInteger();
+// BigInteger cz;
+//
+// // Compute c(z) = a(z) * b(z) mod f(z)
+// if (az.testBit(0))
+// {
+// cz = bz;
+// }
+// else
+// {
+// cz = ECConstants.ZERO;
+// }
+//
+// for (int i = 1; i < this.m; i++)
+// {
+// // b(z) := z * b(z) mod f(z)
+// bz = multZModF(bz);
+//
+// if (az.testBit(i))
+// {
+// // If the coefficient of x^i in a(z) equals 1, b(z) is added
+// // to c(z)
+// cz = cz.xor(bz);
+// }
+// }
+// return new ECFieldElement.F2m(m, this.k1, this.k2, this.k3, cz);
+// }
+//
+//
+// public ECFieldElement divide(final ECFieldElement b)
+// {
+// // There may be more efficient implementations
+// ECFieldElement bInv = b.invert();
+// return multiply(bInv);
+// }
+//
+// public ECFieldElement negate()
+// {
+// // -x == x holds for all x in F2m
+// return this;
+// }
+//
+// public ECFieldElement square()
+// {
+// // Naive implementation, can probably be speeded up using modular
+// // reduction
+// return multiply(this);
+// }
+//
+// public ECFieldElement invert()
+// {
+// // Inversion in F2m using the extended Euclidean algorithm
+// // Input: A nonzero polynomial a(z) of degree at most m-1
+// // Output: a(z)^(-1) mod f(z)
+//
+// // u(z) := a(z)
+// BigInteger uz = this.x;
+// if (uz.signum() <= 0)
+// {
+// throw new ArithmeticException("x is zero or negative, " +
+// "inversion is impossible");
+// }
+//
+// // v(z) := f(z)
+// BigInteger vz = ECConstants.ZERO.setBit(m);
+// vz = vz.setBit(0);
+// vz = vz.setBit(this.k1);
+// if (this.representation == PPB)
+// {
+// vz = vz.setBit(this.k2);
+// vz = vz.setBit(this.k3);
+// }
+//
+// // g1(z) := 1, g2(z) := 0
+// BigInteger g1z = ECConstants.ONE;
+// BigInteger g2z = ECConstants.ZERO;
+//
+// // while u != 1
+// while (!(uz.equals(ECConstants.ZERO)))
+// {
+// // j := deg(u(z)) - deg(v(z))
+// int j = uz.bitLength() - vz.bitLength();
+//
+// // If j < 0 then: u(z) <-> v(z), g1(z) <-> g2(z), j := -j
+// if (j < 0)
+// {
+// final BigInteger uzCopy = uz;
+// uz = vz;
+// vz = uzCopy;
+//
+// final BigInteger g1zCopy = g1z;
+// g1z = g2z;
+// g2z = g1zCopy;
+//
+// j = -j;
+// }
+//
+// // u(z) := u(z) + z^j * v(z)
+// // Note, that no reduction modulo f(z) is required, because
+// // deg(u(z) + z^j * v(z)) <= max(deg(u(z)), j + deg(v(z)))
+// // = max(deg(u(z)), deg(u(z)) - deg(v(z)) + deg(v(z))
+// // = deg(u(z))
+// uz = uz.xor(vz.shiftLeft(j));
+//
+// // g1(z) := g1(z) + z^j * g2(z)
+// g1z = g1z.xor(g2z.shiftLeft(j));
+//// if (g1z.bitLength() > this.m) {
+//// throw new ArithmeticException(
+//// "deg(g1z) >= m, g1z = " + g1z.toString(2));
+//// }
+// }
+// return new ECFieldElement.F2m(
+// this.m, this.k1, this.k2, this.k3, g2z);
+// }
+//
+// public ECFieldElement sqrt()
+// {
+// throw new RuntimeException("Not implemented");
+// }
+//
+// /**
+// * @return the representation of the field
+// * <code>F<sub>2<sup>m</sup></sub></code>, either of
+// * TPB (trinomial
+// * basis representation) or
+// * PPB (pentanomial
+// * basis representation).
+// */
+// public int getRepresentation()
+// {
+// return this.representation;
+// }
+//
+// /**
+// * @return the degree <code>m</code> of the reduction polynomial
+// * <code>f(z)</code>.
+// */
+// public int getM()
+// {
+// return this.m;
+// }
+//
+// /**
+// * @return TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
+// * x<sup>k</sup> + 1</code> represents the reduction polynomial
+// * <code>f(z)</code>.<br>
+// * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// public int getK1()
+// {
+// return this.k1;
+// }
+//
+// /**
+// * @return TPB: Always returns <code>0</code><br>
+// * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// public int getK2()
+// {
+// return this.k2;
+// }
+//
+// /**
+// * @return TPB: Always set to <code>0</code><br>
+// * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
+// * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
+// * represents the reduction polynomial <code>f(z)</code>.<br>
+// */
+// public int getK3()
+// {
+// return this.k3;
+// }
+//
+// public boolean equals(Object anObject)
+// {
+// if (anObject == this)
+// {
+// return true;
+// }
+//
+// if (!(anObject instanceof ECFieldElement.F2m))
+// {
+// return false;
+// }
+//
+// ECFieldElement.F2m b = (ECFieldElement.F2m)anObject;
+//
+// return ((this.m == b.m) && (this.k1 == b.k1) && (this.k2 == b.k2)
+// && (this.k3 == b.k3)
+// && (this.representation == b.representation)
+// && (this.x.equals(b.x)));
+// }
+//
+// public int hashCode()
+// {
+// return x.hashCode() ^ m ^ k1 ^ k2 ^ k3;
+// }
+// }
+}
diff --git a/src/org/bouncycastle/math/ec/ECMultiplier.java b/src/org/bouncycastle/math/ec/ECMultiplier.java
new file mode 100644
index 0000000..4d72e33
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/ECMultiplier.java
@@ -0,0 +1,19 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+
+/**
+ * Interface for classes encapsulating a point multiplication algorithm
+ * for <code>ECPoint</code>s.
+ */
+interface ECMultiplier
+{
+ /**
+ * Multiplies the <code>ECPoint p</code> by <code>k</code>, i.e.
+ * <code>p</code> is added <code>k</code> times to itself.
+ * @param p The <code>ECPoint</code> to be multiplied.
+ * @param k The factor by which <code>p</code> i multiplied.
+ * @return <code>p</code> multiplied by <code>k</code>.
+ */
+ ECPoint multiply(ECPoint p, BigInteger k, PreCompInfo preCompInfo);
+}
diff --git a/src/org/bouncycastle/math/ec/ECPoint.java b/src/org/bouncycastle/math/ec/ECPoint.java
new file mode 100644
index 0000000..f4056bb
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/ECPoint.java
@@ -0,0 +1,335 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+
+/**
+ * base class for points on elliptic curves.
+ */
+public abstract class ECPoint
+{
+ ECCurve curve;
+ ECFieldElement x;
+ ECFieldElement y;
+
+ protected boolean withCompression;
+
+ protected ECMultiplier multiplier = null;
+
+ protected PreCompInfo preCompInfo = null;
+
+// private static X9IntegerConverter converter = new X9IntegerConverter();
+
+ protected ECPoint(ECCurve curve, ECFieldElement x, ECFieldElement y)
+ {
+ this.curve = curve;
+ this.x = x;
+ this.y = y;
+ }
+
+ public ECCurve getCurve()
+ {
+ return curve;
+ }
+
+ public ECFieldElement getX()
+ {
+ return x;
+ }
+
+ public ECFieldElement getY()
+ {
+ return y;
+ }
+
+ public boolean isInfinity()
+ {
+ return x == null && y == null;
+ }
+
+ public boolean isCompressed()
+ {
+ return withCompression;
+ }
+
+ @Override
+ public boolean equals(
+ Object other)
+ {
+ if (other == this)
+ {
+ return true;
+ }
+
+ if (!(other instanceof ECPoint))
+ {
+ return false;
+ }
+
+ ECPoint o = (ECPoint)other;
+
+ if (this.isInfinity())
+ {
+ return o.isInfinity();
+ }
+
+ return x.equals(o.x) && y.equals(o.y);
+ }
+
+ @Override
+ public int hashCode()
+ {
+ if (this.isInfinity())
+ {
+ return 0;
+ }
+
+ return x.hashCode() ^ y.hashCode();
+ }
+
+// /**
+// * Mainly for testing. Explicitly set the <code>ECMultiplier</code>.
+// * @param multiplier The <code>ECMultiplier</code> to be used to multiply
+// * this <code>ECPoint</code>.
+// */
+// public void setECMultiplier(ECMultiplier multiplier)
+// {
+// this.multiplier = multiplier;
+// }
+
+ /**
+ * Sets the <code>PreCompInfo</code>. Used by <code>ECMultiplier</code>s
+ * to save the precomputation for this <code>ECPoint</code> to store the
+ * precomputation result for use by subsequent multiplication.
+ * @param preCompInfo The values precomputed by the
+ * <code>ECMultiplier</code>.
+ */
+ void setPreCompInfo(PreCompInfo preCompInfo)
+ {
+ this.preCompInfo = preCompInfo;
+ }
+
+ public abstract byte[] getEncoded();
+
+ public abstract ECPoint add(ECPoint b);
+ public abstract ECPoint subtract(ECPoint b);
+ public abstract ECPoint negate();
+ public abstract ECPoint twice();
+
+ /**
+ * Sets the default <code>ECMultiplier</code>, unless already set.
+ */
+ synchronized void assertECMultiplier()
+ {
+ if (this.multiplier == null)
+ {
+ this.multiplier = new FpNafMultiplier();
+ }
+ }
+
+ /**
+ * Multiplies this <code>ECPoint</code> by the given number.
+ * @param k The multiplicator.
+ * @return <code>k * this</code>.
+ */
+ public ECPoint multiply(BigInteger k)
+ {
+ if (k.signum() < 0)
+ {
+ throw new IllegalArgumentException("The multiplicator cannot be negative");
+ }
+
+ if (this.isInfinity())
+ {
+ return this;
+ }
+
+ if (k.signum() == 0)
+ {
+ return this.curve.getInfinity();
+ }
+
+ assertECMultiplier();
+ return this.multiplier.multiply(this, k, preCompInfo);
+ }
+
+ /**
+ * Elliptic curve points over Fp
+ */
+ public static class Fp extends ECPoint
+ {
+
+ /**
+ * Create a point which encodes with point compression.
+ *
+ * @param curve the curve to use
+ * @param x affine x co-ordinate
+ * @param y affine y co-ordinate
+ */
+ public Fp(ECCurve curve, ECFieldElement x, ECFieldElement y)
+ {
+ this(curve, x, y, false);
+ }
+
+ /**
+ * Create a point that encodes with or without point compresion.
+ *
+ * @param curve the curve to use
+ * @param x affine x co-ordinate
+ * @param y affine y co-ordinate
+ * @param withCompression if true encode with point compression
+ */
+ public Fp(ECCurve curve, ECFieldElement x, ECFieldElement y, boolean withCompression)
+ {
+ super(curve, x, y);
+
+ if ((x != null && y == null) || (x == null && y != null))
+ {
+ throw new IllegalArgumentException("Exactly one of the field elements is null");
+ }
+
+ this.withCompression = withCompression;
+ }
+
+ /**
+ * return the field element encoded with point compression. (S 4.3.6)
+ */
+ public byte[] getEncoded()
+ {
+ return null;
+ // BEGIN connectbot-removed
+// if (this.isInfinity())
+// {
+// return new byte[1];
+// }
+//
+// int qLength = converter.getByteLength(x);
+//
+// if (withCompression)
+// {
+// byte PC;
+//
+// if (this.getY().toBigInteger().testBit(0))
+// {
+// PC = 0x03;
+// }
+// else
+// {
+// PC = 0x02;
+// }
+//
+// byte[] X = converter.integerToBytes(this.getX().toBigInteger(), qLength);
+// byte[] PO = new byte[X.length + 1];
+//
+// PO[0] = PC;
+// System.arraycopy(X, 0, PO, 1, X.length);
+//
+// return PO;
+// }
+// else
+// {
+// byte[] X = converter.integerToBytes(this.getX().toBigInteger(), qLength);
+// byte[] Y = converter.integerToBytes(this.getY().toBigInteger(), qLength);
+// byte[] PO = new byte[X.length + Y.length + 1];
+//
+// PO[0] = 0x04;
+// System.arraycopy(X, 0, PO, 1, X.length);
+// System.arraycopy(Y, 0, PO, X.length + 1, Y.length);
+//
+// return PO;
+// }
+ }
+
+ // B.3 pg 62
+ @Override
+ public ECPoint add(ECPoint b)
+ {
+ if (this.isInfinity())
+ {
+ return b;
+ }
+
+ if (b.isInfinity())
+ {
+ return this;
+ }
+
+ // Check if b = this or b = -this
+ if (this.x.equals(b.x))
+ {
+ if (this.y.equals(b.y))
+ {
+ // this = b, i.e. this must be doubled
+ return this.twice();
+ }
+
+ // this = -b, i.e. the result is the point at infinity
+ return this.curve.getInfinity();
+ }
+
+ ECFieldElement gamma = b.y.subtract(this.y).divide(b.x.subtract(this.x));
+
+ ECFieldElement x3 = gamma.square().subtract(this.x).subtract(b.x);
+ ECFieldElement y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
+
+ return new ECPoint.Fp(curve, x3, y3);
+ }
+
+ // B.3 pg 62
+ @Override
+ public ECPoint twice()
+ {
+ if (this.isInfinity())
+ {
+ // Twice identity element (point at infinity) is identity
+ return this;
+ }
+
+ if (this.y.toBigInteger().signum() == 0)
+ {
+ // if y1 == 0, then (x1, y1) == (x1, -y1)
+ // and hence this = -this and thus 2(x1, y1) == infinity
+ return this.curve.getInfinity();
+ }
+
+ ECFieldElement TWO = this.curve.fromBigInteger(BigInteger.valueOf(2));
+ ECFieldElement THREE = this.curve.fromBigInteger(BigInteger.valueOf(3));
+ ECFieldElement gamma = this.x.square().multiply(THREE).add(curve.a).divide(y.multiply(TWO));
+
+ ECFieldElement x3 = gamma.square().subtract(this.x.multiply(TWO));
+ ECFieldElement y3 = gamma.multiply(this.x.subtract(x3)).subtract(this.y);
+
+ return new ECPoint.Fp(curve, x3, y3, this.withCompression);
+ }
+
+ // D.3.2 pg 102 (see Note:)
+ @Override
+ public ECPoint subtract(ECPoint b)
+ {
+ if (b.isInfinity())
+ {
+ return this;
+ }
+
+ // Add -b
+ return add(b.negate());
+ }
+
+ @Override
+ public ECPoint negate()
+ {
+ return new ECPoint.Fp(curve, this.x, this.y.negate(), this.withCompression);
+ }
+
+ /**
+ * Sets the default <code>ECMultiplier</code>, unless already set.
+ */
+ @Override
+ synchronized void assertECMultiplier()
+ {
+ if (this.multiplier == null)
+ {
+ this.multiplier = new WNafMultiplier();
+ }
+ }
+ }
+}
diff --git a/src/org/bouncycastle/math/ec/FpNafMultiplier.java b/src/org/bouncycastle/math/ec/FpNafMultiplier.java
new file mode 100644
index 0000000..35e601d
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/FpNafMultiplier.java
@@ -0,0 +1,39 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+
+/**
+ * Class implementing the NAF (Non-Adjacent Form) multiplication algorithm.
+ */
+class FpNafMultiplier implements ECMultiplier
+{
+ /**
+ * D.3.2 pg 101
+ * @see org.bouncycastle.math.ec.ECMultiplier#multiply(org.bouncycastle.math.ec.ECPoint, java.math.BigInteger)
+ */
+ public ECPoint multiply(ECPoint p, BigInteger k, PreCompInfo preCompInfo)
+ {
+ // TODO Probably should try to add this
+ // BigInteger e = k.mod(n); // n == order of p
+ BigInteger e = k;
+ BigInteger h = e.multiply(BigInteger.valueOf(3));
+
+ ECPoint neg = p.negate();
+ ECPoint R = p;
+
+ for (int i = h.bitLength() - 2; i > 0; --i)
+ {
+ R = R.twice();
+
+ boolean hBit = h.testBit(i);
+ boolean eBit = e.testBit(i);
+
+ if (hBit != eBit)
+ {
+ R = R.add(hBit ? p : neg);
+ }
+ }
+
+ return R;
+ }
+}
diff --git a/src/org/bouncycastle/math/ec/PreCompInfo.java b/src/org/bouncycastle/math/ec/PreCompInfo.java
new file mode 100644
index 0000000..804dcf7
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/PreCompInfo.java
@@ -0,0 +1,10 @@
+package org.bouncycastle.math.ec;
+
+/**
+ * Interface for classes storing precomputation data for multiplication
+ * algorithms. Used as a Memento (see GOF patterns) for
+ * <code>WNafMultiplier</code>.
+ */
+interface PreCompInfo
+{
+}
diff --git a/src/org/bouncycastle/math/ec/WNafMultiplier.java b/src/org/bouncycastle/math/ec/WNafMultiplier.java
new file mode 100644
index 0000000..10c8ed2
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/WNafMultiplier.java
@@ -0,0 +1,240 @@
+package org.bouncycastle.math.ec;
+
+import java.math.BigInteger;
+
+/**
+ * Class implementing the WNAF (Window Non-Adjacent Form) multiplication
+ * algorithm.
+ */
+class WNafMultiplier implements ECMultiplier
+{
+ /**
+ * Computes the Window NAF (non-adjacent Form) of an integer.
+ * @param width The width <code>w</code> of the Window NAF. The width is
+ * defined as the minimal number <code>w</code>, such that for any
+ * <code>w</code> consecutive digits in the resulting representation, at
+ * most one is non-zero.
+ * @param k The integer of which the Window NAF is computed.
+ * @return The Window NAF of the given width, such that the following holds:
+ * <code>k = &sum;<sub>i=0</sub><sup>l-1</sup> k<sub>i</sub>2<sup>i</sup>
+ * </code>, where the <code>k<sub>i</sub></code> denote the elements of the
+ * returned <code>byte[]</code>.
+ */
+ public byte[] windowNaf(byte width, BigInteger k)
+ {
+ // The window NAF is at most 1 element longer than the binary
+ // representation of the integer k. byte can be used instead of short or
+ // int unless the window width is larger than 8. For larger width use
+ // short or int. However, a width of more than 8 is not efficient for
+ // m = log2(q) smaller than 2305 Bits. Note: Values for m larger than
+ // 1000 Bits are currently not used in practice.
+ byte[] wnaf = new byte[k.bitLength() + 1];
+
+ // 2^width as short and BigInteger
+ short pow2wB = (short)(1 << width);
+ BigInteger pow2wBI = BigInteger.valueOf(pow2wB);
+
+ int i = 0;
+
+ // The actual length of the WNAF
+ int length = 0;
+
+ // while k >= 1
+ while (k.signum() > 0)
+ {
+ // if k is odd
+ if (k.testBit(0))
+ {
+ // k mod 2^width
+ BigInteger remainder = k.mod(pow2wBI);
+
+ // if remainder > 2^(width - 1) - 1
+ if (remainder.testBit(width - 1))
+ {
+ wnaf[i] = (byte)(remainder.intValue() - pow2wB);
+ }
+ else
+ {
+ wnaf[i] = (byte)remainder.intValue();
+ }
+ // wnaf[i] is now in [-2^(width-1), 2^(width-1)-1]
+
+ k = k.subtract(BigInteger.valueOf(wnaf[i]));
+ length = i;
+ }
+ else
+ {
+ wnaf[i] = 0;
+ }
+
+ // k = k/2
+ k = k.shiftRight(1);
+ i++;
+ }
+
+ length++;
+
+ // Reduce the WNAF array to its actual length
+ byte[] wnafShort = new byte[length];
+ System.arraycopy(wnaf, 0, wnafShort, 0, length);
+ return wnafShort;
+ }
+
+ /**
+ * Multiplies <code>this</code> by an integer <code>k</code> using the
+ * Window NAF method.
+ * @param k The integer by which <code>this</code> is multiplied.
+ * @return A new <code>ECPoint</code> which equals <code>this</code>
+ * multiplied by <code>k</code>.
+ */
+ public ECPoint multiply(ECPoint p, BigInteger k, PreCompInfo preCompInfo)
+ {
+ WNafPreCompInfo wnafPreCompInfo;
+
+ if ((preCompInfo != null) && (preCompInfo instanceof WNafPreCompInfo))
+ {
+ wnafPreCompInfo = (WNafPreCompInfo)preCompInfo;
+ }
+ else
+ {
+ // Ignore empty PreCompInfo or PreCompInfo of incorrect type
+ wnafPreCompInfo = new WNafPreCompInfo();
+ }
+
+ // floor(log2(k))
+ int m = k.bitLength();
+
+ // width of the Window NAF
+ byte width;
+
+ // Required length of precomputation array
+ int reqPreCompLen;
+
+ // Determine optimal width and corresponding length of precomputation
+ // array based on literature values
+ if (m < 13)
+ {
+ width = 2;
+ reqPreCompLen = 1;
+ }
+ else
+ {
+ if (m < 41)
+ {
+ width = 3;
+ reqPreCompLen = 2;
+ }
+ else
+ {
+ if (m < 121)
+ {
+ width = 4;
+ reqPreCompLen = 4;
+ }
+ else
+ {
+ if (m < 337)
+ {
+ width = 5;
+ reqPreCompLen = 8;
+ }
+ else
+ {
+ if (m < 897)
+ {
+ width = 6;
+ reqPreCompLen = 16;
+ }
+ else
+ {
+ if (m < 2305)
+ {
+ width = 7;
+ reqPreCompLen = 32;
+ }
+ else
+ {
+ width = 8;
+ reqPreCompLen = 127;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // The length of the precomputation array
+ int preCompLen = 1;
+
+ ECPoint[] preComp = wnafPreCompInfo.getPreComp();
+ ECPoint twiceP = wnafPreCompInfo.getTwiceP();
+
+ // Check if the precomputed ECPoints already exist
+ if (preComp == null)
+ {
+ // Precomputation must be performed from scratch, create an empty
+ // precomputation array of desired length
+ preComp = new ECPoint[]{ p };
+ }
+ else
+ {
+ // Take the already precomputed ECPoints to start with
+ preCompLen = preComp.length;
+ }
+
+ if (twiceP == null)
+ {
+ // Compute twice(p)
+ twiceP = p.twice();
+ }
+
+ if (preCompLen < reqPreCompLen)
+ {
+ // Precomputation array must be made bigger, copy existing preComp
+ // array into the larger new preComp array
+ ECPoint[] oldPreComp = preComp;
+ preComp = new ECPoint[reqPreCompLen];
+ System.arraycopy(oldPreComp, 0, preComp, 0, preCompLen);
+
+ for (int i = preCompLen; i < reqPreCompLen; i++)
+ {
+ // Compute the new ECPoints for the precomputation array.
+ // The values 1, 3, 5, ..., 2^(width-1)-1 times p are
+ // computed
+ preComp[i] = twiceP.add(preComp[i - 1]);
+ }
+ }
+
+ // Compute the Window NAF of the desired width
+ byte[] wnaf = windowNaf(width, k);
+ int l = wnaf.length;
+
+ // Apply the Window NAF to p using the precomputed ECPoint values.
+ ECPoint q = p.getCurve().getInfinity();
+ for (int i = l - 1; i >= 0; i--)
+ {
+ q = q.twice();
+
+ if (wnaf[i] != 0)
+ {
+ if (wnaf[i] > 0)
+ {
+ q = q.add(preComp[(wnaf[i] - 1)/2]);
+ }
+ else
+ {
+ // wnaf[i] < 0
+ q = q.subtract(preComp[(-wnaf[i] - 1)/2]);
+ }
+ }
+ }
+
+ // Set PreCompInfo in ECPoint, such that it is available for next
+ // multiplication.
+ wnafPreCompInfo.setPreComp(preComp);
+ wnafPreCompInfo.setTwiceP(twiceP);
+ p.setPreCompInfo(wnafPreCompInfo);
+ return q;
+ }
+
+}
diff --git a/src/org/bouncycastle/math/ec/WNafPreCompInfo.java b/src/org/bouncycastle/math/ec/WNafPreCompInfo.java
new file mode 100644
index 0000000..fc0d5fe
--- /dev/null
+++ b/src/org/bouncycastle/math/ec/WNafPreCompInfo.java
@@ -0,0 +1,44 @@
+package org.bouncycastle.math.ec;
+
+/**
+ * Class holding precomputation data for the WNAF (Window Non-Adjacent Form)
+ * algorithm.
+ */
+class WNafPreCompInfo implements PreCompInfo
+{
+ /**
+ * Array holding the precomputed <code>ECPoint</code>s used for the Window
+ * NAF multiplication in <code>
+ * {@link org.bouncycastle.math.ec.multiplier.WNafMultiplier.multiply()
+ * WNafMultiplier.multiply()}</code>.
+ */
+ private ECPoint[] preComp = null;
+
+ /**
+ * Holds an <code>ECPoint</code> representing twice(this). Used for the
+ * Window NAF multiplication in <code>
+ * {@link org.bouncycastle.math.ec.multiplier.WNafMultiplier.multiply()
+ * WNafMultiplier.multiply()}</code>.
+ */
+ private ECPoint twiceP = null;
+
+ protected ECPoint[] getPreComp()
+ {
+ return preComp;
+ }
+
+ protected void setPreComp(ECPoint[] preComp)
+ {
+ this.preComp = preComp;
+ }
+
+ protected ECPoint getTwiceP()
+ {
+ return twiceP;
+ }
+
+ protected void setTwiceP(ECPoint twiceThis)
+ {
+ this.twiceP = twiceThis;
+ }
+}