aboutsummaryrefslogtreecommitdiffstats
path: root/app/src/main/java/com/jcraft/jzlib/Tree.java
diff options
context:
space:
mode:
Diffstat (limited to 'app/src/main/java/com/jcraft/jzlib/Tree.java')
-rw-r--r--app/src/main/java/com/jcraft/jzlib/Tree.java365
1 files changed, 365 insertions, 0 deletions
diff --git a/app/src/main/java/com/jcraft/jzlib/Tree.java b/app/src/main/java/com/jcraft/jzlib/Tree.java
new file mode 100644
index 0000000..8103897
--- /dev/null
+++ b/app/src/main/java/com/jcraft/jzlib/Tree.java
@@ -0,0 +1,365 @@
+/* -*-mode:java; c-basic-offset:2; -*- */
+/*
+Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the distribution.
+
+ 3. The names of the authors may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
+INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
+FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
+INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
+OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+/*
+ * This program is based on zlib-1.1.3, so all credit should go authors
+ * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
+ * and contributors of zlib.
+ */
+
+package com.jcraft.jzlib;
+
+final class Tree{
+ static final private int MAX_BITS=15;
+ static final private int BL_CODES=19;
+ static final private int D_CODES=30;
+ static final private int LITERALS=256;
+ static final private int LENGTH_CODES=29;
+ static final private int L_CODES=(LITERALS+1+LENGTH_CODES);
+ static final private int HEAP_SIZE=(2*L_CODES+1);
+
+ // Bit length codes must not exceed MAX_BL_BITS bits
+ static final int MAX_BL_BITS=7;
+
+ // end of block literal code
+ static final int END_BLOCK=256;
+
+ // repeat previous bit length 3-6 times (2 bits of repeat count)
+ static final int REP_3_6=16;
+
+ // repeat a zero length 3-10 times (3 bits of repeat count)
+ static final int REPZ_3_10=17;
+
+ // repeat a zero length 11-138 times (7 bits of repeat count)
+ static final int REPZ_11_138=18;
+
+ // extra bits for each length code
+ static final int[] extra_lbits={
+ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0
+ };
+
+ // extra bits for each distance code
+ static final int[] extra_dbits={
+ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13
+ };
+
+ // extra bits for each bit length code
+ static final int[] extra_blbits={
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7
+ };
+
+ static final byte[] bl_order={
+ 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
+
+
+ // The lengths of the bit length codes are sent in order of decreasing
+ // probability, to avoid transmitting the lengths for unused bit
+ // length codes.
+
+ static final int Buf_size=8*2;
+
+ // see definition of array dist_code below
+ static final int DIST_CODE_LEN=512;
+
+ static final byte[] _dist_code = {
+ 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
+ 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
+ 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
+ 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
+ 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
+ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
+ };
+
+ static final byte[] _length_code={
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
+ 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
+ 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
+ 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
+ };
+
+ static final int[] base_length = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
+ 64, 80, 96, 112, 128, 160, 192, 224, 0
+ };
+
+ static final int[] base_dist = {
+ 0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
+ 32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
+ 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
+ };
+
+ // Mapping from a distance to a distance code. dist is the distance - 1 and
+ // must not have side effects. _dist_code[256] and _dist_code[257] are never
+ // used.
+ static int d_code(int dist){
+ return ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>>7)]);
+ }
+
+ short[] dyn_tree; // the dynamic tree
+ int max_code; // largest code with non zero frequency
+ StaticTree stat_desc; // the corresponding static tree
+
+ // Compute the optimal bit lengths for a tree and update the total bit length
+ // for the current block.
+ // IN assertion: the fields freq and dad are set, heap[heap_max] and
+ // above are the tree nodes sorted by increasing frequency.
+ // OUT assertions: the field len is set to the optimal bit length, the
+ // array bl_count contains the frequencies for each bit length.
+ // The length opt_len is updated; static_len is also updated if stree is
+ // not null.
+ void gen_bitlen(Deflate s){
+ short[] tree = dyn_tree;
+ short[] stree = stat_desc.static_tree;
+ int[] extra = stat_desc.extra_bits;
+ int base = stat_desc.extra_base;
+ int max_length = stat_desc.max_length;
+ int h; // heap index
+ int n, m; // iterate over the tree elements
+ int bits; // bit length
+ int xbits; // extra bits
+ short f; // frequency
+ int overflow = 0; // number of elements with bit length too large
+
+ for (bits = 0; bits <= MAX_BITS; bits++) s.bl_count[bits] = 0;
+
+ // In a first pass, compute the optimal bit lengths (which may
+ // overflow in the case of the bit length tree).
+ tree[s.heap[s.heap_max]*2+1] = 0; // root of the heap
+
+ for(h=s.heap_max+1; h<HEAP_SIZE; h++){
+ n = s.heap[h];
+ bits = tree[tree[n*2+1]*2+1] + 1;
+ if (bits > max_length){ bits = max_length; overflow++; }
+ tree[n*2+1] = (short)bits;
+ // We overwrite tree[n*2+1] which is no longer needed
+
+ if (n > max_code) continue; // not a leaf node
+
+ s.bl_count[bits]++;
+ xbits = 0;
+ if (n >= base) xbits = extra[n-base];
+ f = tree[n*2];
+ s.opt_len += f * (bits + xbits);
+ if (stree!=null) s.static_len += f * (stree[n*2+1] + xbits);
+ }
+ if (overflow == 0) return;
+
+ // This happens for example on obj2 and pic of the Calgary corpus
+ // Find the first bit length which could increase:
+ do {
+ bits = max_length-1;
+ while(s.bl_count[bits]==0) bits--;
+ s.bl_count[bits]--; // move one leaf down the tree
+ s.bl_count[bits+1]+=2; // move one overflow item as its brother
+ s.bl_count[max_length]--;
+ // The brother of the overflow item also moves one step up,
+ // but this does not affect bl_count[max_length]
+ overflow -= 2;
+ }
+ while (overflow > 0);
+
+ for (bits = max_length; bits != 0; bits--) {
+ n = s.bl_count[bits];
+ while (n != 0) {
+ m = s.heap[--h];
+ if (m > max_code) continue;
+ if (tree[m*2+1] != bits) {
+ s.opt_len += ((long)bits - (long)tree[m*2+1])*(long)tree[m*2];
+ tree[m*2+1] = (short)bits;
+ }
+ n--;
+ }
+ }
+ }
+
+ // Construct one Huffman tree and assigns the code bit strings and lengths.
+ // Update the total bit length for the current block.
+ // IN assertion: the field freq is set for all tree elements.
+ // OUT assertions: the fields len and code are set to the optimal bit length
+ // and corresponding code. The length opt_len is updated; static_len is
+ // also updated if stree is not null. The field max_code is set.
+ void build_tree(Deflate s){
+ short[] tree=dyn_tree;
+ short[] stree=stat_desc.static_tree;
+ int elems=stat_desc.elems;
+ int n, m; // iterate over heap elements
+ int max_code=-1; // largest code with non zero frequency
+ int node; // new node being created
+
+ // Construct the initial heap, with least frequent element in
+ // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
+ // heap[0] is not used.
+ s.heap_len = 0;
+ s.heap_max = HEAP_SIZE;
+
+ for(n=0; n<elems; n++) {
+ if(tree[n*2] != 0) {
+ s.heap[++s.heap_len] = max_code = n;
+ s.depth[n] = 0;
+ }
+ else{
+ tree[n*2+1] = 0;
+ }
+ }
+
+ // The pkzip format requires that at least one distance code exists,
+ // and that at least one bit should be sent even if there is only one
+ // possible code. So to avoid special checks later on we force at least
+ // two codes of non zero frequency.
+ while (s.heap_len < 2) {
+ node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
+ tree[node*2] = 1;
+ s.depth[node] = 0;
+ s.opt_len--; if (stree!=null) s.static_len -= stree[node*2+1];
+ // node is 0 or 1 so it does not have extra bits
+ }
+ this.max_code = max_code;
+
+ // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
+ // establish sub-heaps of increasing lengths:
+
+ for(n=s.heap_len/2;n>=1; n--)
+ s.pqdownheap(tree, n);
+
+ // Construct the Huffman tree by repeatedly combining the least two
+ // frequent nodes.
+
+ node=elems; // next internal node of the tree
+ do{
+ // n = node of least frequency
+ n=s.heap[1];
+ s.heap[1]=s.heap[s.heap_len--];
+ s.pqdownheap(tree, 1);
+ m=s.heap[1]; // m = node of next least frequency
+
+ s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
+ s.heap[--s.heap_max] = m;
+
+ // Create a new node father of n and m
+ tree[node*2] = (short)(tree[n*2] + tree[m*2]);
+ s.depth[node] = (byte)(Math.max(s.depth[n],s.depth[m])+1);
+ tree[n*2+1] = tree[m*2+1] = (short)node;
+
+ // and insert the new node in the heap
+ s.heap[1] = node++;
+ s.pqdownheap(tree, 1);
+ }
+ while(s.heap_len>=2);
+
+ s.heap[--s.heap_max] = s.heap[1];
+
+ // At this point, the fields freq and dad are set. We can now
+ // generate the bit lengths.
+
+ gen_bitlen(s);
+
+ // The field len is now set, we can generate the bit codes
+ gen_codes(tree, max_code, s.bl_count);
+ }
+
+ // Generate the codes for a given tree and bit counts (which need not be
+ // optimal).
+ // IN assertion: the array bl_count contains the bit length statistics for
+ // the given tree and the field len is set for all tree elements.
+ // OUT assertion: the field code is set for all tree elements of non
+ // zero code length.
+ static void gen_codes(short[] tree, // the tree to decorate
+ int max_code, // largest code with non zero frequency
+ short[] bl_count // number of codes at each bit length
+ ){
+ short[] next_code=new short[MAX_BITS+1]; // next code value for each bit length
+ short code = 0; // running code value
+ int bits; // bit index
+ int n; // code index
+
+ // The distribution counts are first used to generate the code values
+ // without bit reversal.
+ for (bits = 1; bits <= MAX_BITS; bits++) {
+ next_code[bits] = code = (short)((code + bl_count[bits-1]) << 1);
+ }
+
+ // Check that the bit counts in bl_count are consistent. The last code
+ // must be all ones.
+ //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
+ // "inconsistent bit counts");
+ //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
+
+ for (n = 0; n <= max_code; n++) {
+ int len = tree[n*2+1];
+ if (len == 0) continue;
+ // Now reverse the bits
+ tree[n*2] = (short)(bi_reverse(next_code[len]++, len));
+ }
+ }
+
+ // Reverse the first len bits of a code, using straightforward code (a faster
+ // method would use a table)
+ // IN assertion: 1 <= len <= 15
+ static int bi_reverse(int code, // the value to invert
+ int len // its bit length
+ ){
+ int res = 0;
+ do{
+ res|=code&1;
+ code>>>=1;
+ res<<=1;
+ }
+ while(--len>0);
+ return res>>>1;
+ }
+}
+