aboutsummaryrefslogtreecommitdiffstats
path: root/Dockerfile
blob: a689ed5e5409bd744a2ea25d0abaece7d58aceb2 (plain)
1
2
3
4
FROM mitmproxy/base:latest-onbuild
EXPOSE 8080
EXPOSE 8081
VOLUME /certs
href='#n111'>111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
/*
 * Copyright (C) 2016 Nikita Mikhailov <nikita.s.mikhailov@gmail.com>
 * Copyright (C) 2013-2015 Dominik Schürmann <dominik@dominikschuermann.de>
 * Copyright (C) 2015 Vincent Breitmoser <v.breitmoser@mugenguild.com>
 * Copyright (C) 2013-2014 Signe Rüsch
 * Copyright (C) 2013-2014 Philipp Jakubeit
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


package org.sufficientlysecure.keychain.securitytoken;

import android.support.annotation.NonNull;

import org.bouncycastle.bcpg.HashAlgorithmTags;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.encoders.Hex;
import org.sufficientlysecure.keychain.Constants;
import org.sufficientlysecure.keychain.pgp.CanonicalizedSecretKey;
import org.sufficientlysecure.keychain.pgp.exception.PgpGeneralException;
import org.sufficientlysecure.keychain.util.Iso7816TLV;
import org.sufficientlysecure.keychain.util.Log;
import org.sufficientlysecure.keychain.util.Passphrase;

import java.io.IOException;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.security.interfaces.RSAPrivateCrtKey;

import nordpol.Apdu;

/**
 * This class provides a communication interface to OpenPGP applications on ISO SmartCard compliant
 * devices.
 * For the full specs, see http://g10code.com/docs/openpgp-card-2.0.pdf
 */
public class SecurityTokenHelper {
    private static final int MAX_APDU_DATAFIELD_SIZE = 254;
    // Fidesmo constants
    private static final String FIDESMO_APPS_AID_PREFIX = "A000000617";

    private static final byte[] BLANK_FINGERPRINT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    private Transport mTransport;

    private Passphrase mPin;
    private Passphrase mAdminPin;
    private boolean mPw1ValidForMultipleSignatures;
    private boolean mPw1ValidatedForSignature;
    private boolean mPw1ValidatedForDecrypt; // Mode 82 does other things; consider renaming?
    private boolean mPw3Validated;

    protected SecurityTokenHelper() {
    }

    public static SecurityTokenHelper getInstance() {
        return LazyHolder.SECURITY_TOKEN_HELPER;
    }

    private static String getHex(byte[] raw) {
        return new String(Hex.encode(raw));
    }

    private String getHolderName(String name) {
        try {
            String slength;
            int ilength;
            name = name.substring(6);
            slength = name.substring(0, 2);
            ilength = Integer.parseInt(slength, 16) * 2;
            name = name.substring(2, ilength + 2);
            name = (new String(Hex.decode(name))).replace('<', ' ');
            return name;
        } catch (IndexOutOfBoundsException e) {
            // try-catch for https://github.com/FluffyKaon/OpenPGP-Card
            // Note: This should not happen, but happens with
            // https://github.com/FluffyKaon/OpenPGP-Card, thus return an empty string for now!

            Log.e(Constants.TAG, "Couldn't get holder name, returning empty string!", e);
            return "";
        }
    }

    public Passphrase getPin() {
        return mPin;
    }

    public void setPin(final Passphrase pin) {
        this.mPin = pin;
    }

    public Passphrase getAdminPin() {
        return mAdminPin;
    }

    public void setAdminPin(final Passphrase adminPin) {
        this.mAdminPin = adminPin;
    }

    public void changeKey(CanonicalizedSecretKey secretKey, Passphrase passphrase) throws IOException {
        long keyGenerationTimestamp = secretKey.getCreationTime().getTime() / 1000;
        byte[] timestampBytes = ByteBuffer.allocate(4).putInt((int) keyGenerationTimestamp).array();
        KeyType keyType = KeyType.from(secretKey);

        if (keyType == null) {
            throw new IOException("Inappropriate key flags for smart card key.");
        }

        // Slot is empty, or contains this key already. PUT KEY operation is safe
        boolean canPutKey = isSlotEmpty(keyType)
                || keyMatchesFingerPrint(keyType, secretKey.getFingerprint());

        if (!canPutKey) {
            throw new IOException(String.format("Key slot occupied; card must be reset to put new %s key.",
                    keyType.toString()));
        }

        putKey(keyType.getmSlot(), secretKey, passphrase);
        putData(keyType.getmFingerprintObjectId(), secretKey.getFingerprint());
        putData(keyType.getTimestampObjectId(), timestampBytes);
    }

    private boolean isSlotEmpty(KeyType keyType) throws IOException {
        // Note: special case: This should not happen, but happens with
        // https://github.com/FluffyKaon/OpenPGP-Card, thus for now assume true
        if (getKeyFingerprint(keyType) == null) return true;

        return keyMatchesFingerPrint(keyType, BLANK_FINGERPRINT);
    }

    public boolean keyMatchesFingerPrint(KeyType keyType, byte[] fingerprint) throws IOException {
        return java.util.Arrays.equals(getKeyFingerprint(keyType), fingerprint);
    }

    /**
     * Connect to device and select pgp applet
     *
     * @throws IOException
     */
    public void connectToDevice() throws IOException {
        // Connect on transport layer
        mTransport.connect();

        // Connect on smartcard layer

        // SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
        // See specification, page 51
        String accepted = "9000";

        // Command APDU (page 51) for SELECT FILE command (page 29)
        String opening =
                "00" // CLA
                        + "A4" // INS
                        + "04" // P1
                        + "00" // P2
                        + "06" // Lc (number of bytes)
                        + "D27600012401" // Data (6 bytes)
                        + "00"; // Le
        String response = communicate(opening);  // activate connection
        if (!response.endsWith(accepted)) {
            throw new CardException("Initialization failed!", parseCardStatus(response));
        }

        byte[] pwStatusBytes = getPwStatusBytes();
        mPw1ValidForMultipleSignatures = (pwStatusBytes[0] == 1);
        mPw1ValidatedForSignature = false;
        mPw1ValidatedForDecrypt = false;
        mPw3Validated = false;
    }

    /**
     * Parses out the status word from a JavaCard response string.
     *
     * @param response A hex string with the response from the card
     * @return A short indicating the SW1/SW2, or 0 if a status could not be determined.
     */
    private short parseCardStatus(String response) {
        if (response.length() < 4) {
            return 0; // invalid input
        }

        try {
            return Short.parseShort(response.substring(response.length() - 4), 16);
        } catch (NumberFormatException e) {
            return 0;
        }
    }

    /**
     * Modifies the user's PW1 or PW3. Before sending, the new PIN will be validated for
     * conformance to the token's requirements for key length.
     *
     * @param pw     For PW1, this is 0x81. For PW3 (Admin PIN), mode is 0x83.
     * @param newPin The new PW1 or PW3.
     */
    public void modifyPin(int pw, byte[] newPin) throws IOException {
        final int MAX_PW1_LENGTH_INDEX = 1;
        final int MAX_PW3_LENGTH_INDEX = 3;

        byte[] pwStatusBytes = getPwStatusBytes();

        if (pw == 0x81) {
            if (newPin.length < 6 || newPin.length > pwStatusBytes[MAX_PW1_LENGTH_INDEX]) {
                throw new IOException("Invalid PIN length");
            }
        } else if (pw == 0x83) {
            if (newPin.length < 8 || newPin.length > pwStatusBytes[MAX_PW3_LENGTH_INDEX]) {
                throw new IOException("Invalid PIN length");
            }
        } else {
            throw new IOException("Invalid PW index for modify PIN operation");
        }

        byte[] pin;
        if (pw == 0x83) {
            pin = mAdminPin.toStringUnsafe().getBytes();
        } else {
            pin = mPin.toStringUnsafe().getBytes();
        }

        // Command APDU for CHANGE REFERENCE DATA command (page 32)
        String changeReferenceDataApdu = "00" // CLA
                + "24" // INS
                + "00" // P1
                + String.format("%02x", pw) // P2
                + String.format("%02x", pin.length + newPin.length) // Lc
                + getHex(pin)
                + getHex(newPin);
        String response = communicate(changeReferenceDataApdu); // change PIN
        if (!response.equals("9000")) {
            throw new CardException("Failed to change PIN", parseCardStatus(response));
        }
    }

    /**
     * Call DECIPHER command
     *
     * @param encryptedSessionKey the encoded session key
     * @return the decoded session key
     */
    public byte[] decryptSessionKey(@NonNull byte[] encryptedSessionKey) throws IOException {
        if (!mPw1ValidatedForDecrypt) {
            verifyPin(0x82); // (Verify PW1 with mode 82 for decryption)
        }

        int offset = 1; // Skip first byte
        String response = "", status = "";

        // Transmit
        while (offset < encryptedSessionKey.length) {
            boolean isLastCommand = offset + MAX_APDU_DATAFIELD_SIZE < encryptedSessionKey.length;
            String cla = isLastCommand ? "10" : "00";

            int len = Math.min(MAX_APDU_DATAFIELD_SIZE, encryptedSessionKey.length - offset);
            response = communicate(cla + "2a8086" + Hex.toHexString(new byte[]{(byte) len})
                            + Hex.toHexString(encryptedSessionKey, offset, len));
            status = response.substring(response.length() - 4);

            if (!isLastCommand && !response.endsWith("9000")) {
                throw new CardException("Deciphering with Security token failed on transmit", parseCardStatus(response));
            }

            offset += MAX_APDU_DATAFIELD_SIZE;
        }

        // Receive
        String result = getDataField(response);
        while (response.endsWith("61")) {
            response = communicate("00C00000" + status.substring(2));
            status = response.substring(response.length() - 4);
            result += getDataField(response);
        }
        if (!status.equals("9000")) {
            throw new CardException("Deciphering with Security token failed on receive", parseCardStatus(response));
        }

        return Hex.decode(result);
    }

    /**
     * Verifies the user's PW1 or PW3 with the appropriate mode.
     *
     * @param mode For PW1, this is 0x81 for signing, 0x82 for everything else.
     *             For PW3 (Admin PIN), mode is 0x83.
     */
    private void verifyPin(int mode) throws IOException {
        if (mPin != null || mode == 0x83) {

            byte[] pin;
            if (mode == 0x83) {
                pin = mAdminPin.toStringUnsafe().getBytes();
            } else {
                pin = mPin.toStringUnsafe().getBytes();
            }

            // SW1/2 0x9000 is the generic "ok" response, which we expect most of the time.
            // See specification, page 51
            String accepted = "9000";
            String response = tryPin(mode, pin); // login
            if (!response.equals(accepted)) {
                throw new CardException("Bad PIN!", parseCardStatus(response));
            }

            if (mode == 0x81) {
                mPw1ValidatedForSignature = true;
            } else if (mode == 0x82) {
                mPw1ValidatedForDecrypt = true;
            } else if (mode == 0x83) {
                mPw3Validated = true;
            }
        }
    }

    /**
     * Stores a data object on the token. Automatically validates the proper PIN for the operation.
     * Supported for all data objects < 255 bytes in length. Only the cardholder certificate
     * (0x7F21) can exceed this length.
     *
     * @param dataObject The data object to be stored.
     * @param data       The data to store in the object
     */
    private void putData(int dataObject, byte[] data) throws IOException {
        if (data.length > 254) {
            throw new IOException("Cannot PUT DATA with length > 254");
        }
        if (dataObject == 0x0101 || dataObject == 0x0103) {
            if (!mPw1ValidatedForDecrypt) {
                verifyPin(0x82); // (Verify PW1 for non-signing operations)
            }
        } else if (!mPw3Validated) {
            verifyPin(0x83); // (Verify PW3)
        }

        String putDataApdu = "00" // CLA
                + "DA" // INS
                + String.format("%02x", (dataObject & 0xFF00) >> 8) // P1
                + String.format("%02x", dataObject & 0xFF) // P2
                + String.format("%02x", data.length) // Lc
                + getHex(data);

        String response = communicate(putDataApdu); // put data
        if (!response.equals("9000")) {
            throw new CardException("Failed to put data.", parseCardStatus(response));
        }
    }

    /**
     * Puts a key on the token in the given slot.
     *
     * @param slot The slot on the token where the key should be stored:
     *             0xB6: Signature Key
     *             0xB8: Decipherment Key
     *             0xA4: Authentication Key
     */
    private void putKey(int slot, CanonicalizedSecretKey secretKey, Passphrase passphrase)
            throws IOException {
        if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
            throw new IOException("Invalid key slot");
        }

        RSAPrivateCrtKey crtSecretKey;
        try {
            secretKey.unlock(passphrase);
            crtSecretKey = secretKey.getCrtSecretKey();
        } catch (PgpGeneralException e) {
            throw new IOException(e.getMessage());
        }

        // Shouldn't happen; the UI should block the user from getting an incompatible key this far.
        if (crtSecretKey.getModulus().bitLength() > 2048) {
            throw new IOException("Key too large to export to Security Token.");
        }

        // Should happen only rarely; all GnuPG keys since 2006 use public exponent 65537.
        if (!crtSecretKey.getPublicExponent().equals(new BigInteger("65537"))) {
            throw new IOException("Invalid public exponent for smart Security Token.");
        }

        if (!mPw3Validated) {
            verifyPin(0x83); // (Verify PW3 with mode 83)
        }

        byte[] header = Hex.decode(
                "4D82" + "03A2"      // Extended header list 4D82, length of 930 bytes. (page 23)
                        + String.format("%02x", slot) + "00" // CRT to indicate targeted key, no length
                        + "7F48" + "15"      // Private key template 0x7F48, length 21 (decimal, 0x15 hex)
                        + "9103"             // Public modulus, length 3
                        + "928180"           // Prime P, length 128
                        + "938180"           // Prime Q, length 128
                        + "948180"           // Coefficient (1/q mod p), length 128
                        + "958180"           // Prime exponent P (d mod (p - 1)), length 128
                        + "968180"           // Prime exponent Q (d mod (1 - 1)), length 128
                        + "97820100"         // Modulus, length 256, last item in private key template
                        + "5F48" + "820383");// DO 5F48; 899 bytes of concatenated key data will follow
        byte[] dataToSend = new byte[934];
        byte[] currentKeyObject;
        int offset = 0;

        System.arraycopy(header, 0, dataToSend, offset, header.length);
        offset += header.length;
        currentKeyObject = crtSecretKey.getPublicExponent().toByteArray();
        System.arraycopy(currentKeyObject, 0, dataToSend, offset, 3);
        offset += 3;
        // NOTE: For a 2048-bit key, these lengths are fixed. However, bigint includes a leading 0
        // in the array to represent sign, so we take care to set the offset to 1 if necessary.
        currentKeyObject = crtSecretKey.getPrimeP().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getPrimeQ().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getCrtCoefficient().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getPrimeExponentP().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getPrimeExponentQ().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 128, dataToSend, offset, 128);
        Arrays.fill(currentKeyObject, (byte) 0);
        offset += 128;
        currentKeyObject = crtSecretKey.getModulus().toByteArray();
        System.arraycopy(currentKeyObject, currentKeyObject.length - 256, dataToSend, offset, 256);

        String putKeyCommand = "10DB3FFF";
        String lastPutKeyCommand = "00DB3FFF";

        // Now we're ready to communicate with the token.
        offset = 0;
        String response;
        while (offset < dataToSend.length) {
            int dataRemaining = dataToSend.length - offset;
            if (dataRemaining > 254) {
                response = communicate(
                        putKeyCommand + "FE" + Hex.toHexString(dataToSend, offset, 254)
                );
                offset += 254;
            } else {
                int length = dataToSend.length - offset;
                response = communicate(
                        lastPutKeyCommand + String.format("%02x", length)
                                + Hex.toHexString(dataToSend, offset, length));
                offset += length;
            }

            if (!response.endsWith("9000")) {
                throw new CardException("Key export to Security Token failed", parseCardStatus(response));
            }
        }

        // Clear array with secret data before we return.
        Arrays.fill(dataToSend, (byte) 0);
    }

    /**
     * Return fingerprints of all keys from application specific data stored
     * on tag, or null if data not available.
     *
     * @return The fingerprints of all subkeys in a contiguous byte array.
     */
    public byte[] getFingerprints() throws IOException {
        String data = "00CA006E00";
        byte[] buf = mTransport.transceive(Hex.decode(data));

        Iso7816TLV tlv = Iso7816TLV.readSingle(buf, true);
        Log.d(Constants.TAG, "nfcGetFingerprints() Iso7816TLV tlv data:\n" + tlv.prettyPrint());

        Iso7816TLV fptlv = Iso7816TLV.findRecursive(tlv, 0xc5);
        if (fptlv == null) {
            return null;
        }
        return fptlv.mV;
    }

    /**
     * Return the PW Status Bytes from the token. This is a simple DO; no TLV decoding needed.
     *
     * @return Seven bytes in fixed format, plus 0x9000 status word at the end.
     */
    private byte[] getPwStatusBytes() throws IOException {
        String data = "00CA00C400";
        return mTransport.transceive(Hex.decode(data));
    }

    public byte[] getAid() throws IOException {
        String info = "00CA004F00";
        return mTransport.transceive(Hex.decode(info));
    }

    public String getUserId() throws IOException {
        String info = "00CA006500";
        return getHolderName(communicate(info));
    }

    /**
     * Call COMPUTE DIGITAL SIGNATURE command and returns the MPI value
     *
     * @param hash the hash for signing
     * @return a big integer representing the MPI for the given hash
     */
    public byte[] calculateSignature(byte[] hash, int hashAlgo, boolean useAuthKey) throws IOException {
        if (!mPw1ValidatedForSignature) {
            // (Verify PW1 with mode 81 for signing)
            // (Verify PW1 with mode 82 for auth)
            verifyPin(useAuthKey ? 0x82 : 0x81); 
        }

        // dsi, including Lc
        String dsi;

        Log.i(Constants.TAG, "Hash: " + hashAlgo);
        switch (hashAlgo) {
            case HashAlgorithmTags.SHA1:
                if (hash.length != 20) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
                }
                dsi = "23" // Lc
                        + "3021" // Tag/Length of Sequence, the 0x21 includes all following 33 bytes
                        + "3009" // Tag/Length of Sequence, the 0x09 are the following header bytes
                        + "0605" + "2B0E03021A" // OID of SHA1
                        + "0500" // TLV coding of ZERO
                        + "0414" + getHex(hash); // 0x14 are 20 hash bytes
                break;
            case HashAlgorithmTags.RIPEMD160:
                if (hash.length != 20) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 20!");
                }
                dsi = "233021300906052B2403020105000414" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA224:
                if (hash.length != 28) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 28!");
                }
                dsi = "2F302D300D06096086480165030402040500041C" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA256:
                if (hash.length != 32) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 32!");
                }
                dsi = "333031300D060960864801650304020105000420" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA384:
                if (hash.length != 48) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 48!");
                }
                dsi = "433041300D060960864801650304020205000430" + getHex(hash);
                break;
            case HashAlgorithmTags.SHA512:
                if (hash.length != 64) {
                    throw new IOException("Bad hash length (" + hash.length + ", expected 64!");
                }
                dsi = "533051300D060960864801650304020305000440" + getHex(hash);
                break;
            default:
                throw new IOException("Not supported hash algo!");
        }

        String apdu;

        if (!useAuthKey) {
            // Command APDU for PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE (page 37)
            apdu =
                    "002A9E9A" // CLA, INS, P1, P2
                            + dsi // digital signature input
                            + "00"; // Le

        } else {
            // Command APDU for INTERNAL AUTHENTICATE (page 55)
            // This command doesn't take /
            apdu =
                    "00880000" // CLA, INS, P1, P2
                            + dsi  // digital signature input, card does PKCS#1
                            + "00"; // Le

        }

        String response = communicate(apdu);

        if (response.length() < 4) {
            throw new CardException("Bad response", (short) 0);
        }
        // split up response into signature and status
        String status = response.substring(response.length() - 4);
        String signature = response.substring(0, response.length() - 4);

        // while we are getting 0x61 status codes, retrieve more data
        while (status.substring(0, 2).equals("61")) {
            Log.d(Constants.TAG, "requesting more data, status " + status);
            // Send GET RESPONSE command
            response = communicate("00C00000" + status.substring(2));
            status = response.substring(response.length() - 4);
            signature += response.substring(0, response.length() - 4);
        }

        Log.d(Constants.TAG, "final response:" + status);

        if (!mPw1ValidForMultipleSignatures) {
            mPw1ValidatedForSignature = false;
        }

        if (!"9000".equals(status)) {
            throw new CardException("Bad NFC response code: " + status, parseCardStatus(response));
        }

        // Make sure the signature we received is actually the expected number of bytes long!
        if (signature.length() != 256 && signature.length() != 512
                && signature.length() != 768 && signature.length() != 1024) {
            throw new IOException("Bad signature length! Expected 128/256/384/512 bytes, got " + signature.length() / 2);
        }

        return Hex.decode(signature);
    }

    /**
     * Transceive data via NFC encoded as Hex
     */
    private String communicate(String apdu) throws IOException {
        return getHex(mTransport.transceive(Hex.decode(apdu)));
    }

    public Transport getTransport() {
        return mTransport;
    }

    public void setTransport(Transport mTransport) {
        this.mTransport = mTransport;
    }

    public boolean isFidesmoToken() {
        if (isConnected()) { // Check if we can still talk to the card
            try {
                // By trying to select any apps that have the Fidesmo AID prefix we can
                // see if it is a Fidesmo device or not
                byte[] mSelectResponse = mTransport.transceive(Apdu.select(FIDESMO_APPS_AID_PREFIX));
                // Compare the status returned by our select with the OK status code
                return Apdu.hasStatus(mSelectResponse, Apdu.OK_APDU);
            } catch (IOException e) {
                Log.e(Constants.TAG, "Card communication failed!", e);
            }
        }
        return false;
    }

    /**
     * Generates a key on the card in the given slot. If the slot is 0xB6 (the signature key),
     * this command also has the effect of resetting the digital signature counter.
     * NOTE: This does not set the key fingerprint data object! After calling this command, you
     * must construct a public key packet using the returned public key data objects, compute the
     * key fingerprint, and store it on the card using: putData(0xC8, key.getFingerprint())
     *
     * @param slot The slot on the card where the key should be generated:
     *             0xB6: Signature Key
     *             0xB8: Decipherment Key
     *             0xA4: Authentication Key
     * @return the public key data objects, in TLV format. For RSA this will be the public modulus
     * (0x81) and exponent (0x82). These may come out of order; proper TLV parsing is required.
     */
    public byte[] generateKey(int slot) throws IOException {
        if (slot != 0xB6 && slot != 0xB8 && slot != 0xA4) {
            throw new IOException("Invalid key slot");
        }

        if (!mPw3Validated) {
            verifyPin(0x83); // (Verify PW3 with mode 83)
        }

        String generateKeyApdu = "0047800002" + String.format("%02x", slot) + "0000";
        String getResponseApdu = "00C00000";

        String first = communicate(generateKeyApdu);
        String second = communicate(getResponseApdu);

        if (!second.endsWith("9000")) {
            throw new IOException("On-card key generation failed");
        }

        String publicKeyData = getDataField(first) + getDataField(second);

        Log.d(Constants.TAG, "Public Key Data Objects: " + publicKeyData);

        return Hex.decode(publicKeyData);
    }

    private String getDataField(String output) {
        return output.substring(0, output.length() - 4);
    }

    private String tryPin(int mode, byte[] pin) throws IOException {
        // Command APDU for VERIFY command (page 32)
        String login =
                "00" // CLA
                        + "20" // INS
                        + "00" // P1
                        + String.format("%02x", mode) // P2
                        + String.format("%02x", pin.length) // Lc
                        + Hex.toHexString(pin);

        return communicate(login);
    }

    /**
     * Resets security token, which deletes all keys and data objects.
     * This works by entering a wrong PIN and then Admin PIN 4 times respectively.
     * Afterwards, the token is reactivated.
     */
    public void resetAndWipeToken() throws IOException {
        String accepted = "9000";

        // try wrong PIN 4 times until counter goes to C0
        byte[] pin = "XXXXXX".getBytes();
        for (int i = 0; i <= 4; i++) {
            String response = tryPin(0x81, pin);
            if (response.equals(accepted)) { // Should NOT accept!
                throw new CardException("Should never happen, XXXXXX has been accepted!", parseCardStatus(response));
            }
        }

        // try wrong Admin PIN 4 times until counter goes to C0
        byte[] adminPin = "XXXXXXXX".getBytes();
        for (int i = 0; i <= 4; i++) {
            String response = tryPin(0x83, adminPin);
            if (response.equals(accepted)) { // Should NOT accept!
                throw new CardException("Should never happen, XXXXXXXX has been accepted", parseCardStatus(response));
            }
        }

        // reactivate token!
        String reactivate1 = "00" + "e6" + "00" + "00";
        String reactivate2 = "00" + "44" + "00" + "00";
        String response1 = communicate(reactivate1);
        String response2 = communicate(reactivate2);
        if (!response1.equals(accepted) || !response2.equals(accepted)) {
            throw new CardException("Reactivating failed!", parseCardStatus(response1));
        }

    }

    /**
     * Return the fingerprint from application specific data stored on tag, or
     * null if it doesn't exist.
     *
     * @param keyType key type
     * @return The fingerprint of the requested key, or null if not found.
     */
    public byte[] getKeyFingerprint(@NonNull KeyType keyType) throws IOException {
        byte[] data = getFingerprints();
        if (data == null) {
            return null;
        }

        // return the master key fingerprint
        ByteBuffer fpbuf = ByteBuffer.wrap(data);
        byte[] fp = new byte[20];
        fpbuf.position(keyType.getIdx() * 20);
        fpbuf.get(fp, 0, 20);

        return fp;
    }

    public boolean isPersistentConnectionAllowed() {
        return mTransport != null && mTransport.isPersistentConnectionAllowed();
    }

    public boolean isConnected() {
        return mTransport != null && mTransport.isConnected();
    }

    private static class LazyHolder {
        private static final SecurityTokenHelper SECURITY_TOKEN_HELPER = new SecurityTokenHelper();
    }
}